Organophosphate Ester Flame Retardants and Plasticizers in the Canadian Arctic

Lisa M. Jantunen1, Anya Gawor2, Fiona Wong3, Terry Bidleman4, Gary Stern5, Monica Pucko6 and Roxana Sühring2

1) Environment Canada, ON 2) University of Toronto, Toronto, ON. 3) ITM, Stockholm University, Sweden. 4) Umea University, Umea Sweden 5) University of Manitoba, Winnipeg, MB.

Introduction
Persistent Organic Pollutants are transported to the Arctic by air and ocean currents. Sampling in the Canadian Archipelago has been done at land based stations and on cruises aboard Canadian Coast Guard ships (Louis S. St. Laurent and Amundsen). These studies have been conducted by the same team since 2007. Compounds of interest are organophosphate ester flame retardants and plasticizers (OPEs).

Rationale
This work supports the Canadian Chemical Management Plan, Northern Contaminants Program, and Canadian Environmental Protection Act (CEPA) 1999.

Materials and Methods
- Water: 40-100 L were processed through a glass-fiber filter followed by XAD-2 resin. OPEs are mainly in the dissolved phase.
- Air: 400–1500 m³ were sampled with a glass fiber filter – PUF/XAD cartridge, OPEs are in the particulate phase.
- OPEs were determined by capillary GC using a DB-5 column, with detection by ECNI-MS and EI-MS modes.
- Labelled surrogates (13C and deuterated) were added to each sample to monitor recoveries (range from 67-109%).

Target OPEs
- Tris(chloro-isopropyl) phosphate (TCiPP)
- Tri-phenyl phosphate (TPhP)
- Tris(chloro-ethyl) phosphate (TCEP)
- Tris(dichloro-propyl) phosphate (TDiCPP)
- ethyl hexyl di-phenyl Phosphate (EHDP2)
- tri-cresyl phosphate (TCP2/3)
- Tris(butyl) hexyl phosphate (TBP)

Results and Discussion
- Most are Canadian Chemical Management Plan priority compounds, TCEP has been phased out in Europe and is being phased out in Canada due to toxicity.
- OPEs were found on air particles, not in the gas phase.
- Northern communities are local sources of OPE to Arctic air and rivers inflows are also sources of OPEs.
- The levels of OPEs are orders of magnitude higher than other flame retardants ie PBDEs and novel BFRs.
- OPEs in snow and melt pond water are very well correlated (r² = 0.991) indicating snow is a delivery pathway of OPEs to surface waters.

Trend in Canadian Arctic Air: 2007-2013
- TCEP significant declined between 2007-2013, probably in response to Europe’s ban, TCEP is also slated to be banned in Canada
- Generally the levels of sum-OPEs is increasing, this trend is being driven by declines in alkylated OPEs, where the Sum-Ci-OPEs are remaining constant.

Acknowledgements:
This work has been supported by the Northern Contaminants Program, ArcticNet, Environment Canada, Circumpolar Pesticide Levels Study, International Polar Year, NSERC Discovery Grant Program, Environmental Management Plan (CMP), and Centre for Global Change Science at the University of Toronto. Also thanks goes to Miriam Diamond, Martin Scheringer and CMP (Mark Bird) for the use of Roxana funding and preparation of this poster.