Icefield Ranges Climatology Program St. Elias Mountains

1964

PART II

PRESENTATION AND ANALYSIS
OF RADIATION DATA

PART III

PRESENTATION AND ANALYSIS
OF ABLATION DATA
(U)

1945

SUPPORTED IN PART BY
U.S. ARMY NATICK LABORATORIES
UNDER
CONTRACT DA 19-129-AMC-312(N), IRRP

Reproduction in whole or in part is permitted for any purpose of the United States Government.

October 1968

THE ARCTIC INSTITUTE OF NORTH AMERICA

3458 REDPATH STREET, MONTREAL 25, P.Q. 1619 NEW HAMPSHIRE AVENUE, N.W. WASHINGTON, D. C. 20009

ICEFIELD RANGES RESEARCH PROJECT ST. ELIAS MOUNTAINS, 1964

Part II

Presentation and Analysis of Radiation Data

Part III

Presentation and Analysis of Ablation Data

by

Anthony J. Brazel

June 1968

The Arctic Institute of North America 1619 New Hampshire Avenue, N. W. Washington, D. C. 20009

and

American Geographical Society 156th Street at Broadway New York, New York 10032

Supported in part by U.S. Army Natick Laboratories Contract DA19-129-AMC-312(N), IRRP

ICHPICEL RAPINGUESEANNO PROCEST

II most

Presentation and Anniyais of Radigiton Data

W stell

Presentation and Analysis of Abidira Date

713

losself of geodick

Jane 1766

The Arctic Institute of North America 1819 Nov Hampshire Avenue, N. W. Washingers, D. C. 28003

£12733

American Geographical hadiony Unith Stract at Bandway New York, New Yolk 19912

The Supposted in past by U.S. Avay Notick Learnstories

TABLE OF CONTENTS

Preface iv	, i
Part II ja a na jako kata kata kata kata kata kata kata k	nis i
Introduction	
IRRP Operations in Icefield Ranges	F . 7
Description of Radiation Recording Stations 10	
Instrumentation, Periods of Observation, and	J. 73
Statistical Analysis	3-7-
Station Comparisons and Contrasts	
Summary	
Bibliography	
Appendix A. Radiation Data for the 1964 Field	
Measurement Sites)- 1/F
Instrumentation, Periods of Observation, and Local Site Factors Divide	9- J.I
Analysis of 1964 Field Season Weather and Ablation Seward Rock and Seward Ice	
Comparisons and Contrasts Between Seward and Divide 65	[T]
Summary :	<u> </u>
Bibliography Governor years (1 years of beauty of beginning and beauty of the contract of	Fig. 13

FIGURES

11	-1	Location Map, Showing Area of the Icefield Ranges 6 Research Project Operations
11	-2a	Radiation and Sunshine at Base Camp
II	-2b	Radiation and Sunshine at Divide Camp
II	-3 [©]	Correlation of Sunshine and Radiation for Base Camp
	Ç.	်ီး အချိန်းအချိန်းအရ အချိန်းမှာ အချိန်းသည်။ မြန်မာတို့ သောင်းမေးသည် သောင်းမေးပြုသည် ပေါက လေးသန်းမျှန်းသန် တွေ့ သြန်မာများသည် မြန်မာများသည် သည်။
Ш		Location Map, Showing Area of the Icefield Ranges 6 Research Project Operations
Ш	-2 ·	Weather and Ablation, Seward Rock and Seward Ice
Ш	-3 y	Snow Density Profiles for Seward Rock and Divide57 Stations
ш	-4	Seward Rock Wind Characteristics
Ш	- 5	Mean Daily Cloudiness Versus Daily Ablation, Seward 60 Rock
ш	-6	Mean Daily Wind Speed Versus Daily Ablation, Seward60Rock
	-7	Daily Noon Temperatures Versus Daily Ablation,
ш	-8 ::	Daily Degree Days Versus Daily Ablation, Seward Rock . 61
Ш	-9	Gumulative Degree Days Versus Cumulative Ablation, 62 Seward Rock
Ш	-10	Cumulative Degree Days Versus Cumulative Ablation,
ш	-11	Weather and Ablation, Divide Station
ш	-12 ^{%)} ১১	Comparisons of Relative Trends of Ablation, Divide
ш	-13	Correlation of Cumulative Ablation, Divide Versus 67 Seward Rock

Preface

Environmental studies of the St. Elias Mountains, Yukon Territory, Canada, and surrounding district were initiated by the Icefield Ranges Research Project in 1961 under joint sponsorship of the Arctic Institute of North America and the American Geographical Society. During the summer field seasons of 1961 through 1964, research was carried out in such interrelated earth sciences as glaciology, glacial geology, photogrammetry, sedimentology, and geophysics. An integral and important phase of the larger research program was concentrated in climatological and meteorological research, particularly in terms of regional climatology and the operation of a weather station network.

Salakir in Albertan Salah

During the summer field seasons of 1961 and 1962, before a regular climatology team was a part of the Icefield Ranges Research Project, field personnel carried out reconnaissance meteorological observations in the region. In 1963, with support from the Earth Sciences Division, Quartermaster Research and Engineering Command, U.S. Army, a meteorology program was initiated under the direction of James N. Haven, U.S. Army Natick Laboratories. Weather stations were operated at Kluane Lake Base Camp and at Divide Station during that field season.

In 1964, the climatology program was expanded to include four manned weather stations and four automatic stations. Six workers constituted the basic observational team under the direction of Melvin G. Marcus, and seven other project personnel participated on a part-time basis. The basic objectives of the program were to begin the development of a climatological profile of the St. Elias Mountains and all phases of the operation were supported by the Polar and Mountain Section, Earth Sciences Division, Quartermaster Research and Engineering Command, United States Army Natick Laboratories, Natick, Massachusetts, under Contract DA19-129-AMC-312(N). A presentation of the data obtained is Part I of this report (Icefield Ranges Climatology Program, St. Elias Mountains, 1964; Part I: Data Presentation, Arctic Institute of North America Research Paper 31-A, February, 1965).

Early in the 1964 field season, it was recognized that the climatology team would be able to make rudimentary radiation, micrometeorological, and ablation measurements. It was also realized that these observations would not be as sophisticated as we might have wished, due to limited instrumentation. In view of the general lack of such climatic information for high mountain areas, it was decided that the effort would be worthwhile even under limiting circumstances. Parts II and III of this report (Research Paper 31-B) summarize the supplementary programs.

Mr. Tony Brazel, who has analyzed the data and written Parts II and III, has, therefore, had to work under less than ideal conditions. I believe, however, that he has optimized the results of the 1964 supplementary program and provided us with data and conclusions of value to other research workers operating under the Icefield Ranges Research Project in particular and in the St. Elias Mountains in general.

Forest de la composition del composition de la composition de la composition de la composition del composition de la com

Department of Geography
The University of Michigan

From the control of all selections are given as a control set, and the control of the control of

មួយប្រទេស អំពី នេះជា ប្រទេស ប្រធាន ប្បធាន ប្រធាន ប្បធាន ប្រធាន ប្តី ប្រធាន ប្ត

Part II

PRESENTATION AND ANALYSIS OF RADIATION DATA

Property of the second

ACT O MOINADIAM TO STORM AND A COMPARTMENT OF

ICEFIELD RANGES CLIMATOLOGY PROGRAM ST. ELIAS MOUNTAINS, 1964 PART II

The Control of the State of the Control of the State of t

PRESENTATION AND ANALYSIS OF RADIATION DATA

waster the season introduction of the arm of a manage plants of a garden

Broad scale mountain barrier effects and local topographic influences are two of the most important factors in glacio-climatological studies. It is common knowledge to climatologists that mountain masses influence regional precipitation patterns and temperature distributions on both flanks of a range. In general, the effect of relief on regional precipitation and temperature regimes depends on elevation above sea level, relative slope, exposure, and valley orientation and configuration. This effect, though it has been recognized, has been neither easily measured nor even adequately observed, since considerable variation of weather elements occurs across a range. The variation tends to confuse any distinct elevational relationships.

A transect across any mountain range reveals many irregularities in the terrain, and this partially explains the variability in weather conditions in the lower layers of the atmosphere near the earth-air interface. The nature of the interface, type of surface (e.g., snow, bare soil, meadowland), its extent (areal homogeneity), and its physical characteristics (reflectivity, absorptivity, and transmissivity), also varies considerably across

Andrew Control of the Control of the

[&]quot;Broad scale" and "local" are here loosely defined. Broad scale refers to the scale of air mass climatology (macroscale analysis); local connotes an intermediate scale (mesoscale) between microclimatic and macroclimatic. An example of broad scale is the effect of the Pacific West Coast Mountains in North America on the precipitation regime along the Pacific littoral. An illustration of "local" is the influence of topography on wind patterns over a small area. Anabatic and katabatic winds are diurnal flows primarily caused by the nature of the topography with respect to the sun. See, for example, Buettner and Thyer, "Valley Winds in the Mount Rainer Area," Archiv. fur Mete., Geophy., und Bioklim., XIV (No. 2, 1966), 125-147.

² See, for example, Spreen, "A Determination of the Effect of Topography Upon Precipitation," <u>Transactions</u>, <u>American</u> Geophysical Union, XXVIII, No. 2, 1947, p. 285

a range and plays a significant role in the variation in energy exchange.

Local influences must necessarily be considered in the study of climate-glacier relationships. Exactly how and why a glacier reacts to short-term and long-term climatic variations has long been a topic of concern and these questions remain a basic issue. Explanations are partially masked in the complexity of influences operating at local and broad scales. The study of the distribution, intensity, and sources of energy contributing to glacier responses is a key to understanding the climate-glacier interaction. As Hoinkes has pointed out:

"The relative importance of... sources of energy must be known at least in order of magnitude before one can hope to find a physically reasonable correlation between the behavior of the glaciers and the oscillations of climate." 2

Larsson, for the Chamberlain Glacier (a valley glacier), notes that in the lower layers of the atmosphere (including meteorological screen level) the effects of surface composition and configuration cannot be ignored. Daily temperature ranges reflect local conditions. Larsson, "A Preliminary Investigation of the Meteorological Conditions on the Chamberlain Glacier, 1958," Research Paper No. 2 (Washington: Arctic Institute of North America, 1960), p. 33. Marcus, for the St. Elias Mountains, indicates that local variations of temperature over small regions must be understood before extrapolations and estimates can be made in determining climate-glacier interactions. Nunatak site temperatures were found to generally represent regional air mass regimes, but temperatures recorded over glacier surfaces varied sharply from nunatak values and cannot be employed as estimations of air mass temperatures across the range. Conversely, nunatak temperatures are not accurate approximations of the temperatures over glacier surfaces. Marcus, "Summer Temperatures Relationships Along a Transect in the St. Elias Mountains; Alaska and Yukon Territory," Man and Earth, Series in Earth Sciences, (Boulder: University of Colorado Press, 1965), pp. 15-30.

² Hoinkes, "Measurements of Ablation and Heat Balance on Alpine Glaciers," Journal of Glaciology, II, No. 2, 1955, p. 498.

Many past investigations have attempted to determine climatological variables and energy components responsible for glacier wastage. The energy components radiation (short and long wave), convection, conduction, and latent heat exchange (evaporation and condensation) - all have been examined in the context of climate-glacier interaction, i.e., energy transfer to and from the glacier surface. Preliminary results indicate that marine glacier environments and low elevational zones are predominantly related to advective processes. More remote and higher elevation snow fields are primarily controlled by radiative transfer mechanisms. Hence, climate-glacier relationships, as reflected in the controlling heat budget terms, have been hypothesized and a general model of climate-glacier interaction has been formulated.

However, energy relations over glacier surfaces are as yet not adequately understood. Moreover, meteorological observations have been obtained mostly by the methods of extrapolation from remote sites away from the glacier surface, or from only one or two glacier camp stations. On the other hand, ablation measurements have attained a sophisticated level; over many glaciers large ablation stake networks are established. In order to compare ablation with weather, one must assume that climatic conditions over the network are similar to those measured at the one or two meteorological stations.

opina is the colour medical colour is an included a color in a color in a color in a See, for example, Sverdrup, "The Ablation on Isachen's Plateau and on the Fourteenth of July Glacier in Relation to Radiation and Meteorological Conditions, Geografiska Annaler XXVII (1935), 145-166; Wallen, "Glacial-Meteorological Investigations on the Karsa Glacier in Swedish Lapland: 1942-48," Geografiska Annaler, XXX (1948), 451-672; Orvig, "Glacial-Meteorological Observations on Icecaps in Baffin Island, Geografiska Annaler, XXXVI (1954), 193-318; Hubley, "An Analysis of Surface Energy During the Ablation Season on Lemon Creek Glacier, Alaska," Transactions, American Geophysical Union, XXXVIII (February, 1957), 68-85; Lister and Taylor, "Heat Balance and Ablation on an Arctic Glacier, " Medd. om Grønland, Band 158, #7 (1961), 55 pp.; and Keeler, "Relationship Between Climate, Ablation, and Run-off on the Sverdrup Glacier, 1963 Devon Island, N. W. T.," Research Paper 27 (Washington, Arctic Institute of North America, 1964), 80 pp.

The receipt of incoming radiation (global radiation) over a glacier surface varies with the irregularities in the topography and slope aspect with respect to the sun, as well as with elevation above sea level, atmospheric vapor and particles, and overlying cloud layers. The angles which the sun makes with various points on a glacier (and on nearby slopes) during the course of the diurnal and seasonal solar cycle becomes of critical importance the more rugged and irregular the terrain. Extrapolations and/or assumed areal homogeneity of incoming radiation (measured from sites neither located near glacier environments nor situated across or down glacier valleys within glacier environments) will most likely be very unrepresentative of actual radiation transfer in a glacier-strewn mountainous region.

A comparison of short wave incoming radiation between two sites within the confines of the St. Elias Mountain Region in the Yukon Territory, when considered under similar and diverse weather conditions, indicates that not only do elevation and atmospheric transmissivity account for differences, but that site characteristics and local climate are important and can not be disregarded. As indicated by the station comparisons, the role of local influences on the energy exchange is significant.

¹ Global radiation is defined as the sum of direct solar radiation (not reflected by clouds, absorbed by the atmosphere, or scattered diffusely) and nondirectional sky radiation or diffuse radiation (reaching the surface by multiple reflection).

² See, for example, Hoeck, "Influence of Radiation and Temperature on Melting Process of the Snow Cover," Beitrage zur Geologie der Schweiz, Geotechnische Serie, Hydrologie, Lieferung 8, 1952, 1-36, (Translated into English by K. Martinoff of USA SIPRE Bibliography Project, Library of Congress - translation #49, January, 1958); and Geiger, The Climate Near the Ground, (Cambridge, Mass.: Harvard University Press, 1965), pp. 369-374.

IRRP Operations in Icefield Ranges

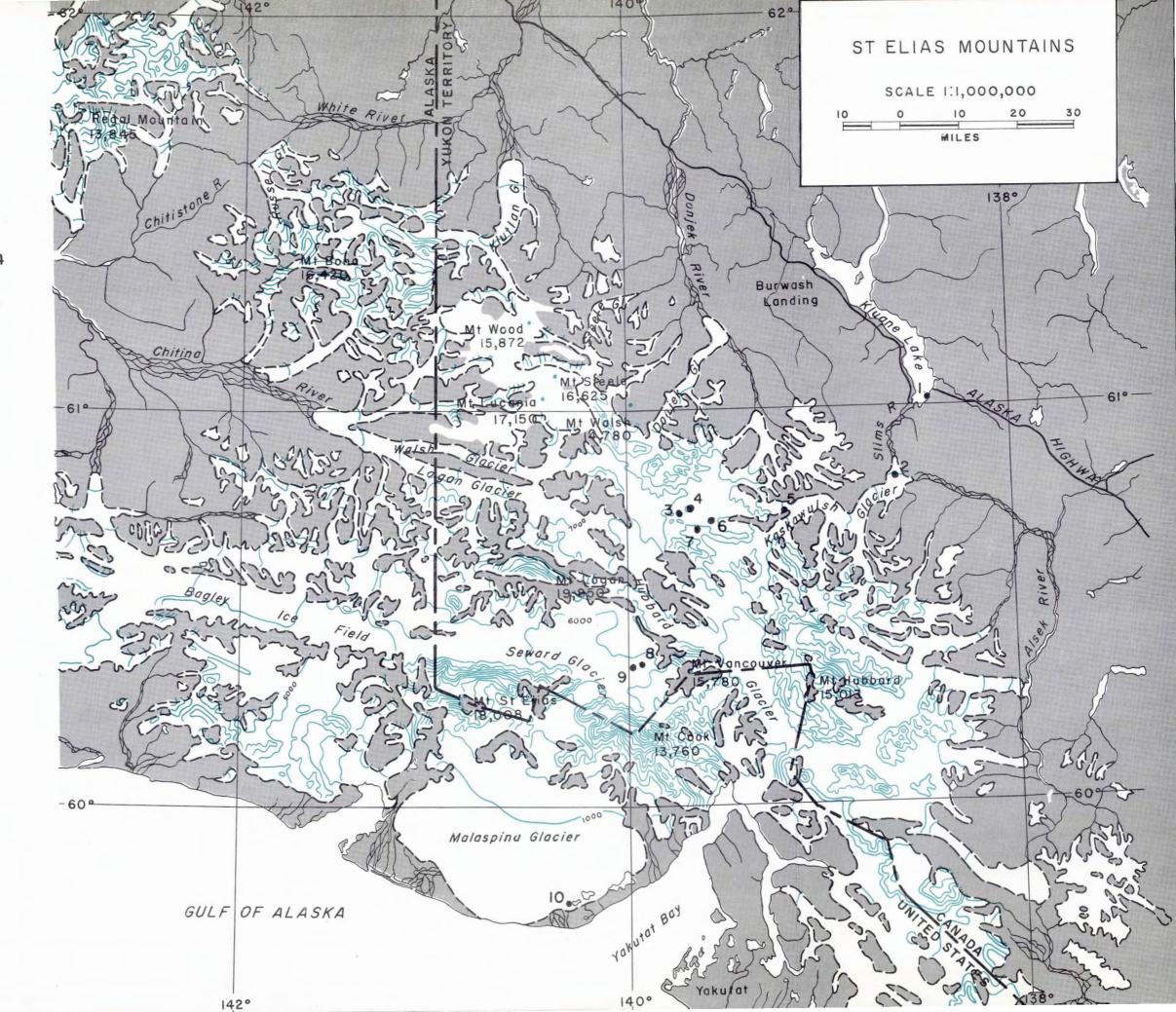
The Icefield Ranges Research Project (IRRP), a project sponsored jointly by the Arctic Institute of North America and the American Geographical Society, established during the summer months of 1964 a weather network across the glacier-laden St. Elias Mountain Range in the southwest part of the Yukon Territory, Canada. The network was arranged in a linear fashion, representing a transect perpendicular to the longitudinal axis of the mountain range. An accompanying map (Fig. 1) locates all camp sites established in the region during past field seasons. The main purpose of the network was the development of a transmountain climatological profile from the drier continental interior to the more moist marine coastal zone.

Prior to 1964, glacier investigations in this region were conducted during the summers of 1948-49 and 1961-63. The first glaciological team effort in the St. Elias Mountains occurred in 1948 on the Upper Seward and Malaspina Glaciers. The Arctic Institute of North America (under the support of the Office of Naval Research, the American Alpine Club, and the California Institute of Technology) initiated scientific work under the project name of "Snow Cornice". A study was made of ablation and accumulation for the purpose of estimating the mass budget of the Seward-Malaspina system. During the summer seasons of 1961 and 1962, preliminary glaciological and meteorological investigations were made under IRRP at the Divide area; Kluane Base Camp was established as a logistical supporting station.

¹ For a description of IRRP aims, goals, and past activities, see W. A. Wood, "The Icefield Ranges Research Project," The Geographical Review, LIII, (1963), 163-184; R. H. Ragle, "The Icefield Ranges Research Project," Arctic, XVII (December, 1964), 286; R. H. Ragle, "Icefield Research Project," Ice, No. 13, (December, 1963), 2; R. H. Ragle, "Icefield Ranges, Y. T.," Ice, No. 17, (April, 1965), 3.

² See R. P. Sharp, "Accumulation and Ablation on the Seward-Malaspina Glacier System, Canada-Alaska," <u>Bulletin of the Geological Society of America</u>, LXII (July, 1951), 726-744; and Sharp, "Thermal Regimen of Firn on Upper Seward Glacier, Yukon Territory, Canada," <u>Journal of Glaciology</u>, I (March, 1951), 476-487.

seguel Graffer of the House


processor of ((Minds)) restricted to recessor the constitution of a literature of a literature

The property of the control of the property of the property of the property of the control of th

Abstract of off on notablity that admirance about and the control of the design of

WEATHER STATIONS

- I. Base Camp 1963,64
- 2. Terminus 1963,64
- 3. Cache 1964
- 4. Divide 1963, 64
- 5. Kaskawulsh 1964
- 6. Glacier Central 1963
- 7. Cairn B 1964
- 8. Seward Rock 1948, 49, 64
- 9. Seward Ice
- 10. Lower Ice Camp 1948, 49

7

An IRRP climatological program was first organized in 1963, ¹ and included three weather station locations: (1) Kluane Base Camp (786 meters above sea level), a manned weather station on the continental side of the mountain range approximately 140 miles west-northwest of Whitehorse, Yukon Territory, and located at the southern end of Lake Kluane; (2) Terminus (c. 825 meters), at the terminal moraine of the Kaskawulsh Glacier and 16 miles up the Slims River from Base Camp; and (3) Glacier Central (2,587 meters) and Divide (2,640 meters), two manned weather stations located at the Divide area of the Kaskawulsh and Hubbard Glaciers. At the Divide Camp, a five stake ablation farm was employed and observations were made of the short and long wave radiation components, in conjunction with wind and temperature measurements made at several heights above the snow surface. Published material on this data is forthcoming.

In 1964, the climatology program was expanded to include sites on both flanks of the Icefield Ranges. Four manned and four automatic stations were operated. Tables 1A and 1B give an

The 1963 Climatology Program was under the direction of James M. Havens of the U.S. Natick Laboratories. He was assisted by David E. Saarela of the U.S. Marine Corps and Mrs. Linda Upton of the Arctic Institute of North America. The program was supported by the Earth Science Division of the U.S. Army Natick Laboratories, Natick, Massachusetts. For a review of the 1963 weather picture in the St. Elias Region, the reader is referred to James M. Havens and David E. Saarela, "Exploration Meteorology in the St. Elias Mountains, Yukon, Canada," Weather, XIX (1964), 342-352. Detailed weather data are available in project files, but are not at present available in published form.

² J.M. Havens, (Compilation of Data and Primary Analysis of Summer Weather, IRRP 1963), Natick Report (in press). The report was in press at the time of writing of this research paper. However, 1963 data have been consulted for the purposes of field season comparisons.

³ The 1964 Climatology team was led by Melvin G. Marcus of the University of Michigan, and constituted six investigators: Dr. Marcus; Tony Brazel and Raymond Lougeay, Rutgers University; Edward Grew, Dartmouth University; David Witter, Clark University; and Mrs. Linda Upton, Arctic Institute of North America. The program was supported by the Earth Sciences Division of the U.S. Army Natick Laboratories, Natick, Massachusetts, under contract # DA19-129-AMC-312 (N).

Commence of the state of the st

inventory of the station grid coordinates, elevations, periods of record, and types of surfaces. Marcus has given a summary of instrumentation and weather elements observed at each station; also presented are most of the observed and recorded data for the 1964 field season. Not included in that report are data on radiation and ablation. The first part of this report is a presentation of radiation data and discussion of several points on the measurement and use of the data; a short analysis of Divide and Base Camp radiation is included. The second part presents and analyzes 1964 ablation data in relation to the field season weather. This research paper serves to supplement the 1964 Climatology Report as Parts II and III of that report.

and Princephone Control of the contr

The first of the figure of the second of the

But at the common time of the common terms of

The state of the s

and the particular section of the se

Control of the second wife of the

an Wall bake t

MARKET BELLEVILLE

and the first term of the control of

and the first of the grown of the control of the co

of the complete on the European State of the Company of the complete of the company of the company of the comp The province of the company of

on the fill of a comparison with the species of the filter of the second section of the species of the second of the second section of the section of the second section of the

and the server of the Age of the

¹ M. G. Marcus, "Icefield Ranges Climatology Program
St. Elias Mountains, 1964 - Part I: Data Presentation," Research
Paper 31A, (Washington: Arctic Institute of North America, 1965),
109 pp. In the Appendix to that report, radiation gear is listed
for those stations which recorded global radiation.

² It should be noted at this point that the section on radiation deals solely with short wave incoming radiation (global radiation).

TABLE 1A

MANNED WEATHER STATIONS, ST. ELIAS MOUNTAINS, 1964

Station	Latitude	Longitude	Elevation in meters	Periods of record	Type Surface
Base Camp (Lake Kluane)	61° 03' N	138° 22' W	786	1 June-26 August	gravel. 50 meters NW of Kluane air strip
Kaskawulsh	60° 44 и	139° 08' N	c. 1,770	4 July-22 August	thin moraine overlying ice.
Divide	60° 47' N	139° 40' W	c. 2,637	10 June-17 August	snow.
Seward	60° 20' N	139° 55' W	c. 1,850	18 June-14 August	rock ridge. c. 20 meters from nearest snow.
	. W	AUTOMATIC WRATE	TABLE 1B BR STATIONS; ST. ELIA	s mountains, 1964	
Terminus	60° 49' N	138° 38' W	c. 825	11 June-18 August	gravel. On moraine c. 50 m from Slims river floodplain; l meter higher than floodplain surface.
Cache-Divide	60° 46' N	139° 42' W	2,674	13 June-16 August	small rock nunatak. 5 meters to nearest snow.
Cairn B-Divide	60° 46' N	139° 38' W	2,741	13 July-15 August	snow. on ridge just east of nunatak summit.
Seward Ice	60° 20' 11	139° 56' W	c. 1,780	6 July-13 August	snow. c. 1.5 km west of nunatak.

Description of Radiation Recording Stations

Radiation was recorded at only two of the weather stations during the 1964 summer season - Base Camp and Divide. The same two stations recorded radiation during the 1963 field season.

At the foot of the eastern flanks of the St. Elias Range, Base Camp is situated along the Alaskan Highway at the southern tip of Lake Kluane. Relief to the west and south rises sharply 1,500 meters above camp level within a distance of only 4 to 5 miles; in the northern and eastern directions the topography is relatively level. The effect of mountains to the west and south on receipt of incoming radiation over the summer is strongest in the latter part of the season (middle and late August), since solar altitude decreases and the sun is blocked by high peaks in afternoon hours. On the other hand, Divide Station, located on a snow field whose major axis is aligned east to west, has less contrictions on incoming radiation due to topographic barriers.

Base Camp and Divide represent extremes in the types of environments found across the range. The nature of the interface during summer months at Base Camp presents a picture of subhumid topography and vegetation; Divide Station straddles a drainage divide of five of the longest glaciers on earth outside the Polar Regions. 2

Temperatures for 1964 are a reflection of environmental differences. Base Camp temperatures were well above freezing throughout the summer period. Daily mean temperatures ranged from a low of 44.0° F (6.7°C) on 21 June to a high of 59.5°F (15.3°C) on 29 July, with a seasonal mean (1 June-27 August) of 51.8°F (11.0°C). At Divide, temperatures ranged from 21.3°F (-6.0°C) on 1 July to 34.6°F(+1.4°C) on 18 July, with a seasonal mean (10 June-17 August) of 26.9°F (-3.2°C).

¹ Precipitation totals (inches water) for the 1963 and 1964 field seasons (June-August) were 3.23 and 3.42 inches respectively.

Wood, W. A., Op. Cit., p. 166.

Instrumentation, Periods of Observation, and Limitations of a Radiation Analysis.

At Base Camp in 1964, an Instruments Corp. Pyrheliograph (serial 207), with weekly charts, was installed in association with standard meteorological equipment on 1 June and operated without interruption through 27 August. The instrument was periodically calibrated for zero radiation conditions.

The pyrheliograph dome is pyrex glass with a transmission coefficient of 90% for all wave lengths from 0.36 to 2.0 microns. Since precision of recording is 0.1 langleys for 3/32" of chart width, the instrument responded within 5% of actual insolation values; ¹ the variance around the zero base line on the chart during periods of no radiation was negligible compared to absolute values of radiation received throughout the season.

The speed of response, accuracy, and precision of recording are not comparable to more refined pyrheliometers, however, the pyrheliograph (actinograph) has the advantage of convenience, simplicity, and low cost. Also, it does not require other recording mechanisms such as a potentiometer.

Appendix A summarizes radiation data for Base Camp and Divide for the 1964 field season. For Base Camp, two-hour totals were calculated from pyrheliograph strip charts by extracting half-hour instantaneous values; the half-hour values (in langleys per minute) were averaged, and the averages multiplied by 120 minutes to give representative two-hour figures. Curve smoothing and planimeter methods were not employed in this case; it is felt that within the accuracy of the instrument, the extraction technique is sufficient.

The radiation totals for two-hour intervals were summed on a daily basis and are listed in the column headed "sum Q_s ". Also listed are the theoretical daily incoming radiation values (Q_e) for the top of the atmosphere at 61°N latitude. The last column Q_g/Q_e is the ratio of the actual to the theoretical radiation - the so-called insolation index. This index gives an indication of the role of the atmosphere in deterring radiation from reaching the surface.

A simple and the master of the distance

A brief description of the response characteristics of the Instruments Corp. Pyrheliograph is given in Instruction Recording Pyrheliometer, a pamphlet issued by Belfort Instrument Co., catalog no. 5-3850.

Radiation totals over two-hour periods, actual daily totals, theoretical daily totals, and insolation indices were summed, and means were calculated for each month and for the summer field season. The format is comparable to other 1964 meteorological Program that compared to the Francis of the larger plant of the participants of the billion of data. and the explorer, these telephones were selfer to be presented to be selected, and like expenses

March 1998 Ke to girdra T. A. Abptomentation

At Divide Station, an Instruments Corp. Pyrheliograph (serial 235) was positioned on a small wooden platform 1 meter above the snow surface, 100 meters west of camp. Installed on 9 June, the recorder was in operation through 16 August; but, because of a malfunction which could not be repaired in the field. the recorded data are believed unreliable. The chart curves could not be reduced with any reasonable degree of accuracy; in many cases the zero base line on the strip charts varied more than 30% of the actual incoming radiation. A warrant to the second of the second

In order to estimate daily incoming radiation for the Divide field season, an empirical relationship was used. From a correlation analysis of the sunshine index and insolation index derived by Havens for the 1963 season at Divide, 2 1964 daily incoming radiation totals were calculated. He expressed the analysis to relationship for 1963 as follows:

 $Q_8/Q_e = 0.73 + 0.27 \text{ n/N}$ (1)

where

- Qs = the actual daily incoming short wave (global) Fradiation totals
- = the theoretical daily incoming radiation at the top of the atmosphere for 61°N latitude
- n = the actual daily sunshine hour total measured from a Lambrecht sunshine recorder 3

were link proud before anyone and in both oraller beauty free on the first of the section from the grown because the first finishing the section in the section of the sectio

= the theoretical daily sunshine hour total (which depends on latitude and site exposure). en une a serrar ara de la la comencia de la comencia del la comencia de la comencia de la comencia del la comencia de la comencia del la comencia de la comencia del la comenci

the all the Complete time the Gibbs of the sufficient probability of the sufficient probability of the sufficient of the suffi 1 Marcus, M. G., Op. Cit., p. 23-107. ఇక్కిమ మండల్లోకి కుల్లు జె

TABLE TO THE TENTH OF THE CALL WAS IN THE THE THE THE WAS INTO Havens, J. M., "On Insolation and Sunshine in the St. Elias Mountains, Yukon Territory, Canada'', (in press), 5 pages, 1 diagram. This paper is presently available in mimeographed form in project files.

is anadizībums izvidu uz ir augzent izvis komenin induzība diķāks ir 3 The recorder used was a Lambrecht sunshine recorder, type 1605 (45-90° lat.), serial 26515.

The ratio Q_8/Q_e is the insolation index; n/N is the sunshine index. The correlation coefficient of the relationship is 0.89, based on 58 pairs of data; the standard error of the estimate is \(^1 \)4.6%.\(^1\)

Thus, about 95.0% of the observations of a given value of the sunshine index will be at a particular value of the insolation index \(^1 \)9.2%. The above relationship is based on an Eppley Pyrheliometer (50 junction), rather than on a pyrheliograph. A comparative analysis of Eppley data and that from pyrheliograph must not altogether ignore instrumental differences, because at low sun angles and during times of the year when solar altitude is below a critical angle, an Eppley instrument responds differently than an actinograph. Because the 1964 data are based on different instruments and are statistically derived (in the case of Divide), an elevational comparison must be treated with caution.

Since the intensity of solar radiation generally increases with elevation above sea level because of less atmospheric absorption, incoming radiation at Base Camp is expected to be lower than at Divide; but, since a more sensitive instrument was used at Divide (and the 1964 data are based on the response characteristics of that instrument), a greater difference than actually exists would be expected. This is especially true for cloudy conditions and at times of low sun altitude.

Clouds produce another set of radiative exchange conditions at the snow interface. In the Divide area, for example, the albedo of

¹ Havens, J. M., Op. Cit., p. 4.

Hubley, Op. Cit., p. 70-71, points out that the most serious error in the Eppley instrument (and the most difficult for which to make corrections) is a dependence of the instrument response on angle of incidence of radiation falling on the sensing element. The error is commonly called the "cosine response error", because an instrument set normal to the surface is actually recording the cosine value of a unit of radiation recorded normal to the sun. Hubley discarded data when the sun was 30° or less above the horizon, as the cosine error became very great under those periods. A detailed discussion of the Eppley is given in Fuguay and Buettner, "Laboratory Investigation of Some Characteristics of the Eppley Pyrheliometer," Trans. Amer. Geophy. Union, XXXVIII (Feb., 1957), 38-43.

the glacier snow surface, overlying clouds and nearby slopes increases and becomes more randomly oriented than during clearer weather. Fog (or total whiteout) tends to accuentuate diffusion of incoming radiation to an even greater degree, causing a sharp increase in recorded measurements. These factors are, of course, partially dependent on cloud height and thickness. It is assumed, therefore, that although radiation relationships for the 1964 season are based on two different types of recorders, any correlations between Divide and Base Camp reflect strong environmental differences; and, while relationships must be treated with caution, they are not largely dependent on dissimilarities in instrumentation. The barred of the established for the burner of the established the A CONTRACT OF THE SECOND OF TH

KRECT OF CONTROL OF SERVICE AND CONTROL OF SERVICE OF CONTROL OF C

do a section of the s

in the subject of the

spoke quality is the morn and the subject of the contractions. and the control of th , divisit the property to accompanies of the grant of the property of the second paints. n and the second transport to the second of the second ent andre visa elevitinamento de mandello del como de la como del como del como de la como del como del como d era material (n. 1941), in mer Pullemera, legio materia politici e e la contrata de la compositione de la comp

and the Citable of the factor estimates and selections.

€ €

¹ This assumption is not without foundation; many investigators have measured radiation over glacier and snow surfaces and have found that particularly snow albedo and cloud cover have altered incoming radiation regimes from those measured over nonglacial surfaces. For a review of the discussion of dependence of radiation on snow surface, cloud cover, and other factors, see Olsson, "Sunshine and Radiation, Mount Nordenskiold," Geografiska Annaler, XVIII (1936a), 105-106; Olsson, "Scientific Results of the Norwegian-Swedish Spitsbergen Expedition in 1934. Part VII. Radiation Measurements on Isachen's Plateau," Geografiska Annaler, XVIII (1936b), 225-244; Wallen, Op. Cit., p. 492; Hubley, "Measurements of Diurnal Variations in Snow Albedo on Lemon Creek Glacier, Alaska," Jour. Glac., II (Oct., 1955), 561-562; Hubley, Op. Cit., p. 76-77; and Lister & Taylor, Op. Cit., pp 32-34.

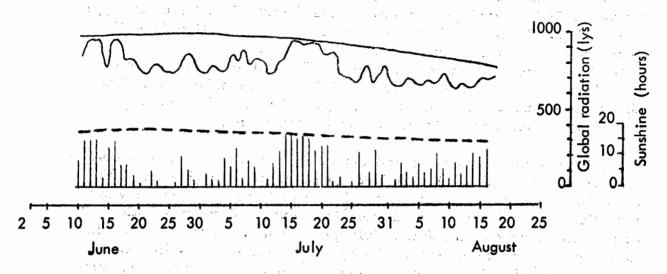
Statistical Analysis

From 10 June to 16 August 1964, Divide Station received 44% more incoming short wave radiation than Base Camp. For this 68 day period, the snow camp recorded a grand total of 52,348 langleys; Base Camp totaled 36,429 langleys, or a difference of almost 16,000 langleys. Over this period, Divide averaged 769.8 langleys per day; Base Camp, 535.7 langleys per day. Figs. 2a and 2b illustrate the seasonal variation in daily sunshine and incoming radiation for the two stations. The theoretical incoming radiation curve for 61°N latitude is drawn on both Figs., since there is only a 16' latitudinal difference. Base Camp is the northernmost station. The theoretical sunshine curve¹ for each station is shown by a dotted line.

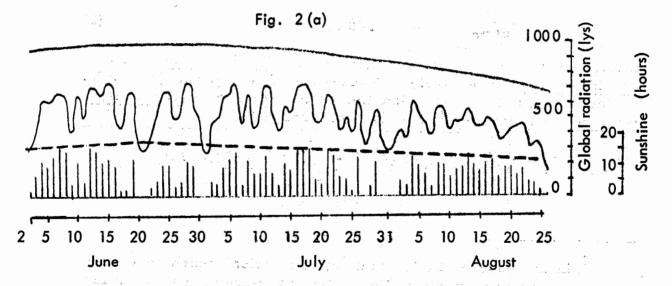
Base Camp insolation and sunshine indices show a reasonable 1964 correlation (Fig. 3) based on 86 pairs of data (2 June - 26 August). Over the field season, theoretical incoming short wave radiation (Q_e) and theoretical sunshine hours (N) vary - both decreasing through late June, July and August. The indices take into account this temporal variation. A least squares line was fitted to the Fig. 3 scattergram and the linear regression equation was calculated as,

$$Q_s/Q_e = .38 + .40 \text{ n/N},$$
 (2)

where, as before, Q_8/Q_e and n/N are the insolation index and sunshine index respectively. A measure of the spread (population variance) about the regression line is the standard error of the least squares equation, and is expressed as:

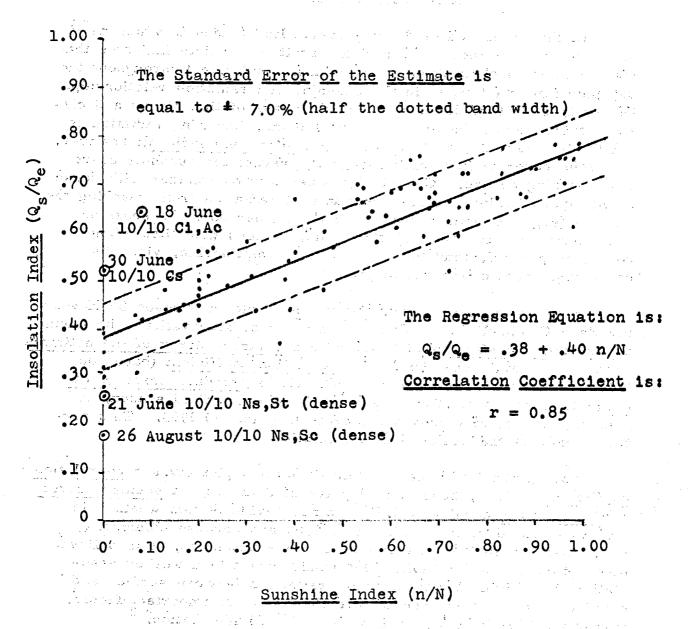

east squares equation, and is expressed as:
$$\frac{1}{Q_s/Q_e} \frac{j}{n/N} = \sum_{i=1}^{j} \frac{(Q_s/Q_e - \overline{Q_s/Q_e})^2 - b \sum_{i=1}^{j} \frac{(n/N - n/N)(Q_s/Q_e - \overline{Q_s/Q_e})}{i=1}}{j-2}$$

In the case of Divide Station, theoretical sunshine values were obtained from project files. Havens calculated these values for the 1963 field season. For Base Camp, the values were estimated from an approximation curve drawn by connecting 1964 clear day values of actual sunshine hour totals.


² Blalock, H. M. <u>Social Statistics</u>. New York: McGraw-Hill, 1960, p. 308.

RADIATION AND SUNSHINE AT DIVIDE CAMP, 1964 SEASON

Fig. 2(b)



RADIATION AND SUNSHINE AT BASE CAMP, 1964 SEASON

N.B. The smooth curve on both figs. is the theoretical incoming short wave radiation received at the top of the atmosphere at 61°N latitude. Divide radiation is derived from sunshine values. See text for explanation. Dotted line is theoretical sunshine.

01

N.B. Us wally the dotted band diverges at the extremities; here it is assumed that the points are normally distributed about the regression line.

where,

 Q_s/Q_e = the individual values of the insolation index. n/N = the individual values of the sunshine index. j = the number of observations (86).

b = the slope value in the linear regression equation; it is equal to .40.

At the lower end of the regression line (cases in which negligible sunshine is recorded), a wider scatter of points indicates that the variation in cloud density, patchiness, and extent throughout the day play important roles in the sunshine and radiation relationship. On the 18 and 30 of June, for example, days of thin cirrus and cirrostratus covering the entire celestial dome, incoming radiation is relatively abundant (as shown by larger insolation indices); however, the cloud cover is just thick enough to prevent the sunshine chart from burning an arc. Conversely, when stormy weather with dense cloud layers inhibits abundant amounts of radiation from reaching the surface (e.g., 21 June and 26 August), neither does the sunshine chart burn an arc. On the other hand, periods with little cloud cover, in general, tend to strengthen the relationship, viz., the upper right part of the scattergram.

A sunshine index and insolation index plot was made by Havens for Base Camp, 1963. Based on 44 pairs of observations, he found a correlation coefficient of 0.93, with a standard error of the estimate equal to = 4.6%. For 1964, the correlation coefficient (based on twice as many observations) is 0.85, with a standard error of the estimate equal to = 7.0%. The 1964 Base Camp field season, in general, was more cloudy and stormy than that of 1963. This partially explains the weaker 1964 association.

For Divide 1963, the sunshine-insolation plot gives a correlation coefficient of 0.89, based on 58 pairs of data, with a standard error of the estimate equal to = 5.8%. Since Divide Station weather in 1964 was considerably cloudier than 1963 and because cloudiness tends to diminish the sunshine-insolation relationship, it is believed that a correlation for Divide 1964 would result in a weaker association than Divide 1963. Multiple reflection between surface and cloud layers and cloud density are the two most important factors in the sunshine-insolation relationship for Divide Station. 2

¹ Havens, J. M. Op. Cit., p. 4.

² Havens, J. M. Op. Cit., p. 5.

Radiation relations with other factors (e.g., sunshine and cloudiness) in snow and glacier environments must be measured accurately at many spots within specific areas to be representative of local environmental conditions, though in most cases this may not be possible from a logistical standpoint. The nature of the terrain, i.e., configuration of local topography, is a factor which contributes to variation in radiation budgets over small areas. Does the Divide sunshine-insolation relationship show the same correlation characteristics at the foot of adjacent slopes at the edge of the snowfield as it does out in central portions? Probably not, since position of the station relative to diurnal and seasonal paths of the sun is of importance in radiation relationships. A study of the question may give insights into climatic relationships over the glacier surface. At any rate, before climatic factors can be employed as estimators of average radiation regimes in rugged mountainous glacier environments, questions such as the above must be explored. er e jakon la linear rohibili je se obj

and the control of the second of the control of the second of the second

over der framilieren im de eksperten kalt gelek dele William de eksperten kalt frami Er dem in 1915 etallen in die delementen eksperten 1916 kalt van de eksperten kalt in de weeks hope many as been presented by the may be

the professional and the second secon

The say that the term are positive description on the approximation

were the contract of the effect of the entire of the contract

and the property of the state o

and the control of th

ten en la film de la companya de la La companya de la co

(A) " " 我们的,我们的" 我们我们 我们 我们 我想到我们的 "我说来," (2) "。"

the Book for their property and their and the contract of the position of the second of the contract of and the last Marchester Marchester and the second of the two proceedings of the first na mijerija arasta ili prasija na prajek kao estoje na ili silo kalo salj

And the second of the second o

And the second the sales of the second

Station Comparisons and Contrasts

The primary factor contributing to the variation between Divide and Base Camp incoming radiation is elevation above sea level (less atmospheric absorption). Divide Station is situated 1,851 meters above Base Camp level and receives, on the average, between 200 and 300 langleys per day more incoming radiation during the summer season than does Base Camp. Table II gives a 1963-64 field season comparison (on a monthly basis) of some weather elements and incoming radiation for the two stations. The field seasons were not equal in length nor did they extend over exactly the same dates, however, the two are made comparable by calculating values over similar time spans. Weather conditions closely correlate with radiation and sunshine data as expected. Receipt of incoming short wave radiation at Base Camp and Divide was much less in 1964. The severity of the 1964 field season weather is especially remembered by those who camped at the Divide area and at Seward Station. Over a span of 23 days (20 June to 13 July) generally cloudy and stormy weather with snow prevailed at all glacier camps. Only for a short period in July (16-18 July) were there any consecutive clear days across the range. During the 1963 season, weather was much less severe.

Tables IIIA and IIIB list clear and cloudy periods during the 1963 and 1964 field seasons, with data on incoming short wave radiation, sunshine, and mean cloud cover. The 1963 periods are selected from data available in project files; these periods are judged by the author to be most representative of clear and cloudy situations for the 1963 field season. For 1964, data are chosen in order to be comparable to a temperature analysis by Marcus, and also because the periods selected are the most illustrative of cloudy and clear conditions for the 1964 field season.

The nature of the environment at both stations is reflected in the intensity of incoming short wave radiation at the surface for the chosen periods. This may be observed by noting that the following inequality holds upon inspection of Tables IIIA and IIIB:

$$(Q_{sD} - Q_{sB})$$
 cloudy \Rightarrow $(Q_{sD} - Q_{sB})$ clear

It has not been determined whether these periods are actually representative of frontal and nonfrontal conditions. It is likely that the clear periods do depict nonfrontal situations, but cloudy periods are more difficult to assess.

Marcus, M.G., Op. Cit., pp. 15-30.

TABLE II 1963 and 1964 IRRP Season Radiation, Sunshine, and General Weather Summary*

Month	Date	Q _S	Q _s	$\overline{\mathrm{Q_s/Q_e}}$	n	^O F (^O C) Mean Temp.	Prec. (i	in. H ₂ 0)
		especialists and activities conditingly decimalists or statistic	maja nyakunya alikulahanja seo nakhano mihalaha mili kisili mi	В	ase Cam	p - 1963		
June	7-30	14,460	602.5	.607	-	49.1 (9.5)	1.21	
July	1-31	16,549	533.2	.570	- 1.5.	53.9 (12.1)	1.72	
August	1-25	12,644	505.7	•654		52.9 (11.6)	0.28	The state of the s
Season		43,653	547.1	.605		51.9 (11.0)	3.23	
5.74	gr?			1	ase Cam	o - 1964	1/2 / 1/2 /	
June	7-30	14,073	582.2	•590	173	52.1 (11.1)	0.71	
July	1-31	16,464	531.1	. 566	227	52.4 (11.3)	1.73	eren erne
August	1-25	11,144	445.7	. 576	178	50.8 (10.4)	1.21	
Season		41,680	519.6	.578	578	51.7 (10.9)	3.65	agangga anaman at kanan an am Pand Pala Abi Marag

^{* 1963} data taken from project files; 1964 data extracted from the 1964 Climatology Report (Marcus M.G., Op. Cit.) and from 1964 project files.

 $p^{*}(x,y) = p^{*}(x,y) + p^{$

TABLE II (con't)

Month	Date	Q _S	$\overline{Q_{\mathtt{S}}}$	$Q_{\rm s}/Q_{\rm e}$	n	^O F (^O C) Mean Temp.	Prec. (in. H ₂ 0)
1,503					Divide	Camp - 1963	
June	24-30	6,392	913.1	.880	57	21.7 (-5.7)	egt = 10 0.00 (₁₀ 2 - j = e ₁
July	1-31	25,143	811.1	.870	248	29.6 (-1.3)	0.61
August	1-16	11,414	713.3	.880	140	29.4 (-1.4)	0.02
Season		42,949	812.5	.880	445	26.9 (-2.8)	0.63
** ;				5 °	Divide	Camp - 1964	
June	24-30	5,335	762.2	.770	45	24.3 (-4.3)	0.25
July	1-31	24,496	790.0	.840	217	27.4 (-2.5)	1.10
August	1-16	10,765	672.8	.840	-96	26.3 (-3.2)	0.52
Season		40,596	741.6	.820	358	26.0 (-3.3)	1.87
					·		

SELECTED PERIODS OF
INCOMING SHORT WAVE RADIATION, SUNSHINE HOURS, AND MEAN
CLOUD COVER - 1963, ON A DAILY BASIS*

		vide Camp			BASE CAMP		DivKluane
	Inc. Rad.		Mean Cld	Inc. Rad.		Mean Cld	Rad. Diff.
Day Mo.	(langleys)	Sunshine Hrs.			Sunshine H	rs.Cover (10ths) (langleys)
10 Aug.	776.0	15.0	1.4	596.4	-	0.0	179.6
11 Aug.	775.0	15.2	1.9	333.6		4.0	441.4
12 Aug.	774.0	15.3	0.2	549.6	-	1.0	224.4
13 Aug.	772.0	15.1	0.0	542.4	•	0.5	229.6
14 Aug.	754.0	15.0	ö.o	552.0		0.5	202.0
15 Aug.	745.0	14.6	2.8	568 <u>.</u> 8	<u> </u>	2.0	176.2
Sum	4596.0	90.0	6.3	3142.8		8.0	1453.2
Mean	765.0	15.0	1.1	525.0	-	1.3	242.0
	No. 2	e gant.	Cloudy	Period			:
10 July	555.0	0.2	9.7	310.8	- -	10.0	244.2
11 July	797.0	0.1	10.0	409.2		10.0	387.8
12 July	714.0	1.5	9.3	218.4	-	10.0	495.6
Sum	2066.0	1.8	29.0	938.4		10.0	1127.6
Mean	690.0	0.6	9.6	312.8	-	10.0	375.8

^{*} Periods selected and data compiled from the 1963 field data in project files.

SELECTED PERIODS OF
INCOMING SHORT WAVE RADIATION, SUNSHINE HOURS, AND MEAN
CLOUD COVER - 1964, ON A DAILY BASIS*

			. 7		•		.*
		ivide Camp		DivKluane			
Day Mo.	<pre>inc. Rad. (langleys)</pre>	Sunshine Hrs.	Mean Cld Cover (10ths	Inc. Rad.) (langleys)		Mean Cld Cover (10ths)	Rad. Diff. (langleys)
14 July	950.0	16.5	Clear Pe				- 1
15 July	946.0	16.5	1.3	The second secon	* · · · · · · · · · · · · · · · · · · ·	en e	e combe y combe e comb
16 July	919.4	15.1	0.8	721.2	16.4	1 (Ac)	198.2
17 July	937.0	16.5	0.9	730.8	16.3	1 (Cu)	206.2
18 July	927.3	16.1	2.5	727.2	15.4	2 (Ac)	200.1
Sum**	2883.7	47.7	4.2	2279.2	48.1	4	604.5
Mean***	961.2	15.9	1.4	759•7	16.0	1 ″	201.5
22 July	691.3	1.7	Cloudy 8.9	Period 592.8	12.2	6 Ci, l Ac	98.5
23 July	694.8	2.2	9.6	400.8	5.2	1 Ci, 6 Ac	294.0
24 July	661.2	0.2	10.0	518.4	4.7	5 Ac, 2 Sc	152.8
25 July	667.5	0.9	9.0	380.4	1.3	8 Ac, 3 Sc	287.1
26 July	806.3	10.6	4.8	637.2	11.8	4 Cu	169.1

^{*} Sunshine and Cloud Cover data taken from the 1964 Climatology Report (Marcus, M.G., Op. Cit., pp. 26, 58, 64, and 99).

^{**} Sum includes only 16, 17, 18 July

^{***} Mean includes only 16, 17, 18 July.

TABLE IIIB (con't)

Day Mo.	Inc. Rad.	ivide Camp Sunshine		Mean Cld Cover (10ths)	Inc. Rad. (langleys)	Base Camp Sunshine Hrs.	Mean Cld	Div- Kluane Rad. Diff. (langleys)
			• :	Cloudy Pe	riod (con't)			
27 July	645.3	0.0	-	10.0 (fog)	286.8	0.0	10 Ns	358.5
28 July	698.8	3•9	7* 5	9.1	417.6	2.9	1 Ac, 8 Sc	281.2
29 July	797.9	11.0	51 17.5 244,	6,1	578.4	10.8	9 Cs, 6Ac	219.5
30 July	679.7	3.2		8.0	304.6	0.0	1 Ac, 4 Sc	375.1
31 July	630.2	0.1		10.0 (fog)	271.2	0.0	10 St	359.0
Sum*	6973.0	33.8		84.6	4388.2	38.9	80.0	2594.8
Mean**	697.3	3.4		8.5	438.2	3.9	8.0	259.5
Sum***	2637.8	3.2		38.6	1339.2	6.5	36.0	1298.6
Mean****	659.4	0.8		9.6	344.8	1.6	9.0	324.6

Sum of all days 22-31 July

Mean of all days 22-31 July

^{***} Sum of 23, 25, 27, 31 July - the more distinct cloudy days.

*** Mean of 23, 25, 27, 31 July - the more distinct cloudy days.

where Q_{SD} and Q_{SB} stand for the values of short wave incoming radiation at Divide and Base Camp stations respectively. The subscripts "cloudy" and "clear" denote periods for which the differences are computed. For days view cloudy conditions prevailed at both camps, the difference in receipt of incoming radiation (Divide-Base Camp) was greater than for clear periods. The variation in cloud density, cloud extent, and radiative interaction between local surface and cloud cover contributes to the contrast between the two sites with respect to incoming radiation totals. The relations for 1963 field season may be expressed as follows:

$$(Q_{SD} - Q_{SB})$$
 clear = 242 lys/day
 $(Q_{SD} - Q_{SB})$ cloudy = 376 lys/day.

Symbolizing the first difference as d_{clear}, and the second as d_{cloud},

$$d_{cloudy} - d_{clear} = 134 lys/day.$$

This value represents 14% of the value of incoming radiation received at Divide on a clear day in July, and 18% of that received at Base Camp for the same time. Referring to the previous discussion (p. 11-14) on instrumental differences, these percentages are probably greater than actual figures, but are believed to be significant indicators of the importance of local environmental conditions on energy availability.

For 1964, similar relationships hold, particularly when clear day totals are compared with the four day totals which represent the more distinct cloudy situations. Partially cloudy conditions reveal no apparent associations.

Summary

Radiation, which comprises the highest percentage contribution to the energy exchange over most glaciers, must be accurately measured and understood. Point measurements assume areal homogeneity of energy availability. Extrapolations or estimations of radiation, by means other than direct measurement by sensitive instruments, will dilute an understanding of important environmental influences on radiative transfer.

Divide and Base Camp stations represent extremes in the types of environments across the mammoth St. Elias Range. Elevation primarily explains the difference in receipt of incoming short wave radiation at the two stations. A closer inspection reveals that environmental conditions (e.g., cloud density, cloud extent, types of surfaces and albedo relations) are reflected in the radiation data by the contrast in langley values under clear and cloudy periods.

A better understanding of the energy exchange over glacier surfaces will come only when a larger network of recording stations are placed transversely and longitudinally across a range. Microclimatic and local analyses of the heat budget also must be explored in conjunction with the broader scale analysis in order to comprehend the connection between lower layers of the atmosphere near the earth-air interface and air masses which prevail across the range.

in the confidence of the section of the less interesting

a maka usa sensa ataun 1900 na mpika 190 na mpika 190 na mpika na mpika na mpika na mpika na mpika na mpika na

· 被连续连续 有效 医二氯酚 经保证证据 1.6 倍。

*PODE STORY OF THE STORY OF THE PROPERTY OF THE STORY ·受到的人员会通信。在1966年1月1日,1967年1月1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日,1967年1日

BIBLIOGRAPHY

- Blalock, H. M., Social Statistics. New York: McGraw-Hill, 1960.
- Buettner, K. J. K. and Thyer, N., "Valley Winds in the Mount Rainer Area," Archiv. fur Meteorologie, Geophysik und Bioklimatologie, Series B, XIV (1966), 125-147.
- Fuguay, D. and Buettner, K. J. K., "Laboratory Investigation of Some Characteristics of the Eppley Fyrheliometer,"

 Transactions, American Geophysical Union, XXXVIII

 (February, 1957), 38-43.
- Geiger, R., The Climate Near the Ground. Cambridge, Mass.:
 Harvard University Press, 1965, 3rd ed.
- Havens, J. M. and Saarela, D. E., "Exploration Meteorology in the St. Elias Mountains, Yukon, Canada," Weather, XIX (1964), 342-352.
- Havens, J.M., "On Insolation and Sunshine in the St. Elias
 Mountains, Yukon Territory, Canada," (in press), 5 pages,
 l diagram, Natick Report.
- Summer Weather," IRRP 1963, Natick Report (in press).
- Hoinkes, H., "Measurements of Ablation and Heat Balance on Alpine Glaciers," Journal of Glaciology, II, (1955), 497-501.
- Hoeck, E., "Influence of Radiation and Temperature on Melting Process of the Snow Cover," Beitrage zur Geologie der Schweiz, Geotechnische Serie Hydrologie, Lieferung 8, pp 1-36 (1952), Translated into English by K. Martinoff of USA SIPRE Bibliography Project, Library of Congress Translation # 49, January, 1958.
- Hubley, R.C., "Measurements of Diurnal Variations in Snow Albedo on Lemon Creek Glacier, Alaska," <u>Journal of Glaciology</u>, II (Oct., 1955), 560-563.
- Season on Lemon Creek Glacier, Alaska," Transactions,

 American Geophysical Union, XXXVIII (February, 1957),

 68-85.

BIBLIOGRAPHY (con't)

- Instructions Recording Pyrheliometer, Belfort Instrument Company, Catalog N. 5-3850.
- Keeler, C. M., "Relationship Between Climate, Ablation, and Run-off on the Sverdrup Glacier, 1963 Devon Island, N. W. T.," Research Paper # 27 (Washington: Arctic Institute of North America, 1964), 80 pp.
- Larsson, P., "A Preliminary Investigation of the Meteorological Conditions on the Chamberlain Glacier, 1958," Research Paper # 2 (Washington: Arctic Institute of North America, 1960), 89 pp.
- Lister, H. and Taylor, P., "Heat Balance and Ablation on an Arctic Glacier," Medd. om Grønland, Band 158, # 7 (1961).
- Marcus, M. G., "Icefield Ranges Climatology Program St. Elias Mountains, 1964 - Part I: Data Presentation," Research Paper # 31-A (Washington: Arctic Institute of North America, 1965), 109 pp.
- Transect in the St. Elias Mountains; Alaska and Yukon Territory," Man and Earth, Series in Earth Sciences, (Boulder: University of Colorado Press, 1965), pp. 15-30.
- Olsson, H., "Sunshine and Radiation, Mount Nordenskiold,"

 Geografiska Annaler, XVIII (1936a), 93-118.
- . "Scientific Results of the Norwegian-Swedish
 Spitsbergen Expedition in 1934. Part VII. Radiation
 Measurements on Isachen's Plateau," Geografiska Annaler, XVIII (1936b), 225-244.
- Orvig, S., "Glacial-Meteorological Observations on Icecaps in Baffin Island," Geografiska Annaler, XXXVI, (1954), 193-318.
- Ragle, R. H., "Icefield Research Project," Ice, (Dec., 1963), 2.
- . "The Icefield Ranges Research Project," Arctic, (Dec., 1964), 286.
- . "Icefield Ranges, Y. T.," Ice, (April, 1965), 3.

BIBLIOGRAPHY (con't)

- Sharp, R. F., "Accumulation and Ablation on the Seward-Malaspina Glacier System, Canada-Alaska," Bulletin of the Geological Society of America, LXII (July, 1951), 726-744.
- Yukon Territory, Canada," Journal of Glaciology, I, (March, 1951), 476-487.
- Spreen, W. C., "A Determination of the Effect of Topography Upon Precipitation," <u>Transactions</u>, <u>American Geophysical Union</u>, XXVIII (April, 1947), 285-290.
- Sverdrup, H. U., "The Ablation on Isachen's Plateau and on the Fourteenth of July Glacier in Relation to Radiation and Meteorological Conditions," Geografiska Annaler, XXVII (1935), 145-166.
- Wallen, C. C., "Glacial-Meteorological Investigations on the Karsa Glacier in Swedish Lapland: 1942-48," Geografiska Annaler, XXX (1948), 451-672.
- Wood, W. A., "The Icefield Ranges Research Project," The Geographical Review, LIII (1963), 163-184.

tion president descent in electric de l'entre de la company de la company de la company de la company de la co Transfer de la company de

and the second of the second reserve the transplacement is the first project of the second of the se

AND LONG TO THE RESERVE OF THE WARREST OF THE PROPERTY OF THE

A BEGINSON CONTRACTOR RECEIVES AND A CONTRACTOR OF THE STREET

A COMPANIE OF A MARKET STATE OF THE STATE OF

APPENDIX A

RADIATION DATA FOR THE 1964 FIELD SEASON

BASE CAMP AND DIVIDE

INCOMING SHORT WAVE RADIATION (lys) BASE CAMP (LAKE KLUANE), ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.: 61° 03' N Long.: 138° 22' W Elevation: 786 meters Date: June, 1964

		YUKO	N STANI	ARD TIM	Œ (two-	hour pe	eriod er	ding)		
Date	02	04	06	08	10	12	14	16	***	-
1 2 3 4 5		1.8	16.8 10.8 19.2 14.4	43.2 49.2 63.6 54.0	26.4 38.4 109.2 98.4	40.8 34.8 103.2 116.4	45.6 36.0 139.2 116.4	114.6 62.4 64.8 127.2 90.0	-	
6 7 8 9 10	;	3.6 3.6	13.2 9.6 10.8 22.8 19.2	38.4 56.4 50.4 61.3 69.6	67.2 108.0 106.8 79.2 115.2	118.0 129.6 140.4 87.6 140.4	138.0 141.6 138.0 70.8 128.4	118.8 115.2 101.6 45.6 115.2		
11 12 13 14 15		2.4 1.2 2.4	9.6 18.0 14.4 15.6 15.6	28.8 64.8 57.6 55.2 51.6	93.6 115.2 116.4 94.8 110.4	86.4 118.8 135.6 147.6 157.2	115.2	93.6 130.8 99.6 104.4 126.0	a .	
16 17 18 19 20			15.6 9.6 15.6 14.4 7.2	44.4 16.8 46.8 46.8 15.6	110.4 58.8 84.0 78.0 22.8	140.4 85.2 132.0 123.6 37.2	147.6 87.6 147.6 145.2 50.4	105.6 64.8 96.0 128.4 56.4		
21 22 23 24 25			7.2 4.8 10.8 7.2 12.0	18.0 20.4 75.6 28.8 54.0	40.8 55.2 74.4 98.4 98.4	56.4 93.6 100.8 135.6 118.8	128.4	37.2 67.2 90.0 126.0 128.4		
26 27 28 29 30		1.2	8.4 10.8 19.2 14.4 14.4	22.8 40.8 55.2 25.2 62.4	55.2 67.2 112.8 85.2 116.4	121.2 126.0 141.6 125.4 106.8	102.0 103.2 140.4 128.4 91.2	84.0 92.4 134.4 115.2 67.2		
31										
Sum	asam alamah Militagan viron kah kinggan daga sasam	16.2	381.6	1317.7	2437.2	3204.4	3238.8	2788.4	de desgrat saaker sydgebloggebouw on	opening (State of the Control of the
Mean		.6	13.1	45.5	84.0	110.1	111.6	96.3	de minimum en en entre en en	eritaria de la cincia del cincia de la cincia del cincia de la cincia del cincia del cincia de la cincia del cincia de la

June, 1964 (con's)

w (V)	in the second	er in de la companya)。 李 如,。。 	Maria de Sala de Caracidado de Caracidado de Caracidado de Caracidado de Caracidado de Caracidado de Caracidad Caracidado de Caracidado d	.1 17. 18 8 18. 	
		NDARD TIME (<u> </u>		0.00	Date
18	20	22 24	Sum Q _s	Q _e	Q_s/Q_e	
76.8 40.8 70.8 55.2 80.0	38.8 14.4 46.8 16.4 40.8	19.2 2.4 8.4 8.4	294.6 360.0 641.6 618.8	965.0 968.0 972.0 974.0	.306 .372 .660 .636	1 2 3 4 5
82.8 64.8 74.4 28.8 60.0	45.6 46.8 32.4 12.0 20.4	13.2 12.0 8.4 4.8 6.0	635.2 684.0 663.2 416.5 678.0	977.0 980.0 982.0 984.0 986.0	.653 .698 .675 .423 .688	6 7 8 9 10
44.4 94.8 92.4 57.6 87.6	22.8 54.0 57.6 49.2 43.2	9.6 15.6 20.4 24.0 10.8	502.8 717.6 709.2 675.6 745.2	988.0 990.0 991.0 993.0 994.0	.508 .725 .715 .680	11 12 13 14 15
86.4	43.2 34.8 44.4 44.4 24.0	9.4 10.8 14.4 19.2 10.8	695.8 424.8 639.6 686.4 276.0	995.0 996.0 997.0 997.0	.700 .427 .642 .688	16 17 18 19 20
26.8 43.2 75.6 88.8 93.6	22.8 27.6 32.4 39.6 30.0	9.6 4.8 1.2 12.0 9.6	263.2 435.6 571.2 664.8 685.2	998.0 998.0 998.0 997.0	.264 .437 .573 .667	21 22 23 24 25
	38.4	9.6 1.2 9.6 15.6 9.6	481.2 555.6 758.4 628.8 514.8	995.0 993.0 992.0	.483 .558 .764 .634 .519	26 27 28 29 30
· v · *	St. 1					31
1916.4 1	1023.2	299.8	16623.3	28681.0	e e e e e e e e e e e e e e e e e e e	***
66.2	35.4	10.3	574.0	989.0	.581	

INCOMING SHORT WAVE RADIATION (lys) BASE CAMP (LAKE KLUANE), ST. ELLAS MOUNTAINS YUKON TERRITORY, CANADA

1.0

Lat. : 61° 03' N Long. : 138° 22' W Elevation: 786 meters Date: July, 1964

Date	YUKON STANDARD TIME (twolhour period ending)								
	02	04	06	08	10	12	14	16	
1 2 3 4 5		4.8 2.4 1.2	8.4 33.6 3.6 22.8 27.6	19.2 75.6 50.4 52.8 75.6	26.4 42.8 105.6 100.8 127.2	49.2 74.4 123.6 116.4 118.8	45.6 54.0 75.6 121.2 135.6	36.0 50.4 63.6 118.8 81.6	
6 7 8 9 10		1.2	30.0 8.4 19.2 12.0	75.6 20.4 62.4 60.0 9.6	115.2 48.0 114.0 110.4 33.6	138.0 75.6 174.0 99.6 86.4	147.6 99.6 106.8 56.4 123.6	123.6 104.4 74.4 33.6 120.0	
11 12 13 14 15		1.2 1.2	9.6 8.4 1.2 20.4 20.4	50.4 21.6 13.2 52.8 80.4	106.8 48.0 58.8 104.4 124.8	135.6 88.8 68.4 129.6 140.4	146.4 150.0 72.0 140.4 63.6	132.0 147.6 104.4 72.0 44.4	
16 17 18 19 20		1.2 1.2 1.2		80.4 81.6 75.6 27.6 19.2	121.2	140.4 133.2 138.0 78.0 102.0	134.4 136.8 136.8 66.0 123.6	108.0 110.4 110.4 81.6 117.6	
21 22 23 24 25	53 5 81 84 84	1.2 1.2	15.6 25.2 15.6 13.2 10.8	62.4 61.2 40.8 32.4 20.4		130.8 112.8 43.2 68.4 67.2	130.8 117.6 51.6 106.8 64.8	115.2 84.0 93.6 120.0 91.2	
26 27 28 29 30	17 (17 (17 (17 (17 (17 (17 (17 (17 (17 (13.2 8.4 4.8 12.0 1.0	60.0	74.4 67.2 75.6 98.4 39.6	128.4 56.4 79.2 118.8 76.8	128.4 37.2 91.2 120.0 66.0	111.6 45.6 62.4 92.4 67.2	
31			1.2	14.4	28.8	50.4	58.8	64.8	
Sum		19.3	439.0 18	80.2	2524.6	3142.8	3109.2	2782.8	
Mean	-	.6	15.1	64.8	81.4	101.5	100.0	89.7	

July, 1964 (con't)

YUKON STANDARD TIME (two-hour period ending)								
18	20	22	24	Sum Q _s	Q _e	Q _s /Q _e	Date	
37.2 34.8 43.2 76.8 64.8	27.6 25.2 21.6 34.8 16.8	10.8 2.4 2.4 3.6 1.2	and the second	260.4 468.0 489.6 650.4 650.4	988.0 987.0 985.0 983.0 980.0	.264 .474 .497 .664 .665	1234 5	
81.6 68.4 64.8 28.8 99.6	27.6 15.6 45.6 20.4 52.8	8.4 14.4 16.8		747.6 440.4 676.8 421.2 543.6	978.0 975.0 972.0 969.0 966.0	.765 .453 .696 .435 .563	6 7 8 9 10	
102.0 103.2 46.8 60.0 27.6	52.8 56.4 21.6 25.2 21.6	8.4 15.6 1.2 1.2 2.4	43 73	744.0 639.6 387.6 607.2 526.8	962.0 958.0 954.0 950.0 946.0	•774 .667 •406 •639 •567	11 12 13 14 15	
73.2 75.6 76.8 84.0 67.2	31.2 37.2 37.2 34.8 20.4	7.2 7.2 7.2 7.2 12.0		721.2 730.8 727.2 455.8 514.8	941.0 937.0 932.0 928.0 923.0	.767 .780 .781 .490 .558	16 17 18 19 20	
74.4 74.4 79.2 84.0 61.2	30.0 31.2 34.8 31.2 26.4	1.2 3.6 2.4 2.4		672.0 592.8 400.8 518.4 380.4	918.0 912.0 907.0 902.0 896.0	•733 •649 •442 •575 •424	21 22 23 24 25	
72.0 28.8 43.2 52.8 33.6	48.0 14.4 16.8 21.6 6.0	2.4 1.2 2.4		637.2 286.8 417.6 578.4 304.6	890.0 884.0 879.0 873.0 867.0	.717 .324 .475 .663	26 27 28 29 30	
31.2	19.2	2.4	en beginskalens	271.2	861.0	•315	31	
1951.2	906.0	147.6		16463.6	29003.0			
63.0	29.2	4.7		531.0	937.0	.566		

INCOMING SHORT WAVE RADIATION (1ys) BASE CAMP (LAKE KLUANE), ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.: 61° 03' N Long.: 138° 22' W Elevation: 786 meters Date: Aug., 1964

Date	n galani e i dininatara i n Balandaray i	YUKON S	TANDARD 1	TIME (two-	hour per	iod ending	3)	auregement o programme management de l'annagement
Date	02	04	06	08	10	12	14	16
1 2 3 4 5			7.4 13.2 10.8	19.2 12.0 14.4 58.8 50.4	45.6 36.0 40.8 108.0 70.8	70.8 63.6 57.6 130.8 100.8	62.4 106.8 78.0 129.6 121.2	55.2 88.8 66.0 104.4 105.6
6 7 8 9 10) () () ()		14.4 9.6 8.4 16.8 8.4	63.6 54.0 39.6 55.2 27.6	98.4 90.0 94.8 103.2 85.2	87.6 46.8 127.2 123.6 118.8	91.2 56.4 126.0 98.4 86.4	69.6 73.2 98.4 58.8 52.8
11. 12 13 14 15	. ** **** * *** * **		9.6 6.0 9.6 10.8 8.4	31.2 31.2 54.0 54.0 38.4	43.2 45.6 92.0 104.4 72.0	109.2 95.8 124.8 128.4 91.2	126.0 112.8 124.8 93.6 87.6	94.8 102.0 97.2 38.4 76.8
16 17 18 19 20			8.4 1.2 12.0 14.4 13.2	45.6 16.8 45.6 45.6 44.4 34.8	93.6 81.6 57.6 911179.2 57.6	118.8 121.2 61.2 44.4 91.2	84.0 111.6 78.0 76.8 111.6	86.4 80.4 73.2 78.0 76.8
21. 22 23 24 25	#1 		12.0 12.0 8.4 4.8	60.0 43.5 42.0 25.2 9.6	75.6 78.0 82.8 69.6 34.8	109.2 118.8 90.0 92.4 92.4	96.0 112.8 48.0 98.4 62.4	60.0 73.2 19.2 39.6 61.2
26 27 28 29 30			4.8 4.8	15.6 en	21.6 92.4 ad of sea	30.0 144.8 son	24.0 97.2	15.6 81.6
31				÷		.' .		
Sum			235.4	996.3	1934.4	2591.4	2502.0	1927.2
Mean			8.7	36.9	71.7	96.0	92.9	71.5
Sum fo	or ason	35.5	1056.0	4194.2	6896.2	8939.6	8850.0	7498.4
Mean Se	for ason	.4	12.1	48.2	79.2	102.6	101.8	86.1

Aug., 1964 (con't)

Ÿ	YUKON STANDARD TIME (two-hour period ending)								
18	20	22	24	Sum Q _s	₽ _e	ର୍ _ଚ /ର୍	Date		
50.4 84.0 46.8 64.8 60.0	22.8 39.6 33.6 18.0 22.8	1.2 1.2 6.0 1.0	-	333.6 432.0 350.6 628.6 543.6	855.0 849.0 842.0 836.0 830.0	.390 .508 .417 .750 .654	1 2 3 4 5		
42.0 25.2 69.6 78.8 38.4	26.4 13.2 21.6 14.4 14.4		Ç., 3	493.2 368.4 585.6 549.2 432.0	824.0 818.0 812.0 805.0 797.0	.598 .450 .721 .682	6 7 8 9		
52.8 55.2 60.0 25.2 51.6	12.0 15.6 15.6 14.4 18.0	1.2		478.8 464.2 578.0 470.4 444.0	790.0 783.0 776.0 769.0 761.0	.606 .594 .745 .617	11 12 13 14 15		
51.6 38.4 22.8 42.0 36.0	15.6 6.0 4.8 4.8			504.0 457.2 355.2 379.2 426.0	754.0 747.0 739.0 732.0 723.0	.670 .613 .481 .518	16 17 18 19		
33.6 27.6 12.0 12.0 32.4	6.0 4.8 3.6 1.0 4.8			452.4 470.7 306.0 343.0 297.6	715.0 706.0 698.0 690.0 682.0	.632 .666 .439 .497 .436	21 22 23 2 ⁴ 25		
12.0 38.4	1.0 4.8 end of	season		118.6 479.6	674.0 666.0	.176 .720	26 27 28 29 30		
	-					production of the state of the	31		
1163.6	359.6	11.8		11741.7	20673.0				
43.2	13.4	.4		435.0	764.0	.569			
5031.2	2288.8	459.2		44828.6	78357.0				
57.8	26.3	5.4		515.0	900.0	•572			

ESTIMATED INCOMING SHORT WAVE RADIATION (lys)* DIVIDE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat. : 60° 47' N Long. : 139° 40' W Elevation: 2,637 meters Date: June, 1964

								.
Date		n	n/N	Q _e	Q _s		·	
1 2 3 4 5	and schillippopour or au							
6 7 8 9		8 . 0	•473	987.0	846.8			
11 12 13 14 15	· :	14.8 14.5 14.9 1.7 12.1	.876 .853 .876 .100	988.0 990.0 992.0 993.0 995.0	954.4 950.4 958.2 751.7 916.3	A 1		
16 17 18 19 20		13.9 6.1 6.6 2.8 0.1	.813 .357 .386 .163 .006	996.0 997.0 998.0 998.0	946.2 823.5 831.4 772.4 729.5		• • • • • • • • • • • • • • • • • • • •	
21 22 23 24 25	204 878 973 14	0.0 4.3 1.1 0.0 0.2	.000 .250 .064 .000	999.0 998.0 998.0 997.0	729.3 796.4 745.5 727.8 730.8			
26 27 28 29 30		0.6 9.4 4.7 1.4 0.0	.035 .550 .276 .082	996.0 995.0 993.0 992.0 990.0	736.0 873.6 798.4 745.9 722.7	. A.s.		
31								
Sum		117.7	6,880	20886.0	17087.2			- milestate po
Mean		5.6	.328	994.0	813.7			-

^{*} Derivation of $Q_{\rm S}$ is explained in text.

ESTIMATED INCOMING SHORT WAVE RADIATION (1ys) DIVIDE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.

60° 47' N 139° 40' W Elevation: 2,637 meters Date: July, 1964 Long. :

Date	n	n/N	д _е	Q _s		
12345	3.3 1.28 0.7 5.5	.195 .071 .047 .518 .327	988.0 987.0 985.0 983.0 980.0	773.6 739.2 731.8 855.2 801.6		
6 7 8 9 10	12.1 1.9 7.5 5.6 0.0	.724 .114 .449 .335	978.0 975.0 972.0 969.0 966.0	904.6 742.0 827.2 794.6 705.2		
11 12 13 14 15	1.8 6.5 10.5 16.5 16.5	.108 .390 .632 1.000	962.0 958.0 954.0 950.0 946.0	730.2 799.9 859.6 950.0 946.0		
16 17 18 19 20	15.1 16.5 16.1 11.2 12.4	.915 1.000 .981 .683 .756	941.0 937.0 932.0 928.0 923.0	919.4 937.0 927.3 848.2 862.1		
21 22 23 24 25	13.1 1.7 2.2 0.2 0.9	.799 .104 .135 .012 .055	918.0 912.0 907.0 902.0 896.0	868.4 691.3 694.8 661.2 667.5		
26 27 28 29 30	10.6 0.0 3.9 11.0 3.2	.654 .000 .241 .683 .199	890.0 884.0 879.0 873.0 867.0	806.3 645.3 698.8 797.9 679.7	VOEA	
31						
Sum	216.6	13.133	29003.0	24496.1		
Mean	7.0	.424	935•5	790.2		·

ESTIMATED INCOMING SHORT WAVE RADIATION (lys) DIVIDE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.

Long. :

60° 47'N 139° 40'W Elevation: 2,637 meters Date: Aug., 1964

					North Andrew State (Control of Anthrope	
Date		n	n/N	Q _e	Q _S	
1 2 3 5		1.6 7.0 3.6 2.5 7.1	.100 .440 .228 .158 .450	855.0 849.0 842.0 836.0 830.0	647.2 720.8 666.9 646.2 707.2	
678 9 10		4.0 5.2 11.1 4.5 2.2	.256 .335 .716 .292 .143	824.0 818.0 812.0 805.0 797.0	658.4 670.8 749.5 651.2 612.9	
11 12 13 14 15		7.0 3.4 10.1 9.1	.457 .222 .404 .673 .601	790.0 783.0 776.0 769.0 761.0	673.9 618.6 651.1 701.3 678.8	
16 17 18 19 20		11.7	.785 end of	754.0 season	710.3	8 % 8 % 8 % 8 % 8 % 8 %
Sum		96.2	6.260	12901.0	10765.1	
Mean	·	6.0	•391	806.3	672.8	
Sum for Seaso		430.0	26.273	62790.0	52348.4	
Mean fo		6.4	.387	924.0	760.0	

A superior of the superior of the

Part III

in the second of the second of

PRESENTATION AND ANALYSIS OF ABLATION DATA

Measurement Sites

Snow ablation and accumulation were measured from stake networks and snow pits at three sites in the St. Elias Mountains during the 1964 field season: Divide, Seward Rock, and Seward Ice (Fig. 1). The locations and coordinates of these stations are given in Parts I & II of this report. Snow measurements were accomplished in conjunction with meteorological observations at all three stations. The locations and coordinates of the three weather stations are given in Part I of this report. I

The essential difference between locations is that the Seward stations are situated on the windward, more marine exposure of the St. Elias Mountains, while Divide station is located at the watershed boundary of the Kaskawulsh and Hubbard glaciers and is transitional between the marine and continental slopes.

Although the two Seward stations are in close proximity, their local environments are quite different. Weather observations at Seward Rock (1860 m.) were taken on a nunatak generally characterized by an exposed rock surface throughout the field season. Snow measurements were made at a site some 30 meters north of the nunatak and weather station. Seward Ice (1780 m.) was an automatic weather station located 1.5 Km west and 80 m. lower than the nunatak. The Seward stations are only 37 Km northwest of the head of Yakutat Bay, but a large mountain

Im. G. Marcus, "Icefield Ranges Climatology Program St. Elias Mountains, 1964- Part I: Data Presentation," Research Paper 3IA, (Washington: Arctic Institute of North America, 1965), p.5.

barrier intervenes. The Upper Seward glacier is surrounded - with the exception of its narrow outlet to the Malaspina glacier - on all sides by mountain masses. The most prominent peaks are Mt. Logan (6050 m.), Mt. St. Elias (5488 m.), Mt. Augusta (4206 m.), Mt. Cook (4128 m.), and Mt. Vancouver (4710 m.).

Although the Upper Seward glacier is only a short distance from the Gulf of Alaska, it has been suggested that the high mountains shield the Seward stations from the direct influences of moist air masses. Sharp's 1948-49 study of the Seward-Malaspina glacier system indicates that there is a transition from a marine to a more continental environment from the Malaspina to the Upper Seward Basin. Pit data from a hydrological traverse of the St. Elias Mountains during the summer of 1965 reveals that there is a 3 to 1 water differential between sites at 1765 m. on the windward Upper Seward Basin and the leeward Kaskawulsh glacier. The water differential between the Divide and Seward locations was calculated to be approximately 1 to 2 for the 1964-65 Accumulation Season. In general, therefore, Seward precipitation characteristics would be classified as more marine than continental in relation to stations at higher elevations towards the divide and to the leeward slope of the St. Elias Mountains.

R.P. Sharp, "Accumulation and Ablation on the Seward-Malaspina Glacier System, Canada-Alaska," <u>Bulletir of the Geological Society of America</u>, IXII (July, 1951), 728.

M.G. Marcus, "A Hydrological Traverse of Glaciers in the Icefield Ranges, St. Elias Mountains, Alaska-Yukon Territory," A paper presented at the VII INQUA CONGRESS of the International Association for Quaternary Research Boulder, Colorado September 1, 1965, p.4.

Ibid., see preliminary data at end of paper.

On the local scale, rugged mountainous terrain influences precipitation patterns to a considerable degree and distorts the variations in precipitation which might be expected with an increase in elevation above sea level. Data from the 1965 hydrological traverse provides a case in point. Pit measurements on the Hubbard Glacier, where it is blocked by east-west trending ridges and nunataks, displayed much lower water equivalent values immediately to the north of these barriers than to the south. The abrupt relief produced a rain shadow and variations in accumulation locally which in magnitude equalled that between marine and continental legs of the hydrological traverse.

Instrumentation, Periods of Observation and local site factors.

Divide

At Divide Station, a stake farm was established approximately

100 m. west of camp and 30 m. north of the weather station. The

ablation farm consisted of five aluminum conduit poles positioned in

a 15 m. square formation with one pole in the center of the square.

The poles were placed in 4" by 4" wooden bases and then were implanted

in 3 meter deep holes drilled by a SIPRE snow corer. The holes were

packed with snow in the upper 1 meter zone. This procedure was

followed with the expectation that the poles would not show appreciable

vertical movement within the snow layer. Measurements of surface change

were made to the nearest 0.1 cm from the top of the exposed part of

the conduit pole to the snow surface. The difference (minus or plus)

<u>Ibid., p.5</u>

over each period was taken to be the lowering or raising of the snow surface during that time. To partially eliminate the drifting effect around stakes, a board was gently placed on the snow surface adjacent and to the right of each pole; the distance from the top of a stake to the bottom of the board was measured. This method was undertaken twice for each stake - once with the board placed with its longer dimensions extending from left to right, and a second time with the longer dimensions placed perpendicular to the board's first position. The two readings for each stake were averaged. The mean value was then calculated for the five stakes. This figure is assumed to be representative of ablation or accumulation conditions over the measurement period.

Commencing at 0600 on 14 June observations were made every 12 hours. The program terminated on 17 August. Mean values for the 12 hour periods are presented in Table I for each 12 hour and 24 hour period. Daily and 12 hourly values are cumulated throughout the season. It should be emphasized that the data in Table I give only daily fluctuations in the surface level. Since snow pit studies were not made on a daily basis, compaction and water equivalent values are only available for the field season period.

At the beginning and end of the 1964 field season, snow pits were excavated adjacent to the ablation farm and snow density profiles were determined. For the purposes of estimating mass gain or loss, data from the two pits give an approximation of actual values for the field season.

For periods of little or no ablation, the variance of stake readings for each observational period was generally between 20% and 30%. This shows good agreement with results obtained by Keeler. See Keeler, C.M. "Relationship Between Climate, Ablation, and Run-Off on the Sverdrup Glacier, 1963 Devon Island, N.W.T.," Research Paper #27 (Washington: Arctic Institute of North America, 1964), p. 47.

TABLE I

VERTICAL SNOW SURFACE CHANGES AT DIVIDE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA*

Lat.: 60° 47' N Long.: 139° 40' W Elevation: 2,637 meters Date: June, 1964

Date		Y	ukon stand	OARD TIME		
Dave	06-18	Daily value	s (cms) 06-06	06-18	18-06	06-06
1-2 2-3						
3-4 4-5	production is		·	e and the second		ing the solid
5-6	Production		m			
6-7 7-8	Server in		· } .	A Company	P	
8-9 9-10	e Valorita					
10-11						
11-12	e production of the second	•			ie na magn	
12-13 13-14 14-15 15-16	- 0.62	- 0.30 - 0.13	- 0.92 - 0.98	- 0.62 - 1.47	- 0.30 - 0.43	- 0.92 - 1.90
16-17 17-18 18-19 19-20 20-21	- 2.84 - 1.78	2.00 - 0.38 - 0.17 0.27 3.90	0.50 - 3.22 - 1.95 0.10 6.47	2.97 - 5.81 - 7.59 - 7.76 - 5.19	1.57 1.19 1.02 1.29 5.19	1.40 - 4.62 - 6.57 - 6.47 0.00
21-22 22-23 23-24 24-25 25-26	- 1.02	0.35 7.52 3.36 1.87 0.67	0.31 6.50 - 0.63 0.14 2.67	- 5.23 - 6.25 -10.24 -11.97 - 9.97	5.54 13.06 16.42 18.29 18.96	0.31 6.81 6.18 6.32 8.99
26-27 27-28 28-29 29-30 30- 1	- 2.82 - 1.39 - 0.53	0.24 0.75 0.17 9.73 1.27	- 1.15 - 2.07 - 1.22 0.20 3.68	-11.36 -14.18 -15.57 -16.10 -13.69	19.20 19.95 20.12 20.85 22.12	7.84 5.77 4.55 4.75 8.43
Total	-20.67	- 0.98	- 12.14	-13.6 9		
Total accum		23.10	20.57		22,12	
Net a		22,12	8.43			8.43

^{*}The values are average lowering or raising of the snow surface as indicated by a five stake ablation farm. Minus values indicate ablation.

TABLE I (con't)

VERTICAL SNOV SURFACE CHANGES AT DIVIDE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA*

Lat.: 60° 47' N

Long.: 139° 40' W

Elevation: 2,637 meters Date: July, 1964

Date	-		UKON STANDARD			
	12 / 200	Daily values				values (cms)
•	06-18	18-06	06-06	06-18	18-06	06-06
	- 0,18	0.28	0.10	- 13.87	22.40	8.53
	- 0.05	1.42	1.37	- 13.92	23.82	9.90 10.30
	0.22	0.18	0.40	- 13.70	24.00	9.79
	- 0.21	- 0.30	- 0.51	- 13.91	23.70	9.51
5 - 0	- 0.14	- 0.14	- 0,28	- 14.05	23.56	7.71
6-7	- 0.45	- 0.17	- 0.62	- 14.50	23.39	8.89
78		2.73	1.01	- 16.22	26.12	9.90
8~9	- 0.21	0.02	- 0.19	- 16.43	26,14	9.71
	0,03	2.14	2.17	- 16.40	28,28	11.88
10-11	- 0.14	0,68	0.54	- 16.54	28,96	12.42
11-12	- 0.57	- 0.27	- 0.84	- 17.11	28.69	11.58
	- 0.61	0.48	- 0.13	- 17.72	29.17	11.45
	- 2.37	- 0.05	- 2.42	- 20.09	29.12	9.03
	- 1.24	0.01	- 1.23	- 21.33	29.13	7.80
15-16			(- 1,00)**		***	6.80
			(=====		***	
16-17	- 1,20	- 0.22	- 0.42	- 22.53	28.91	6.38
-	- 0.44	- 0.39	- 0.83	- 22,97	28.52	5.55
	- 2.74	0.63		- 25.71	29.15	3.44
	- 1.22	1.14	- 0.08	- 26.93	30.29	3,36
	- 0.84	0.11	- 0.73	- 27.77	30.40	2.63
~~ ~~	- 0.04	0 1 1 1	0613	~;•;;	30.40	
21-22	- 1.37	0.70	- 0.67	- 28.74	30 .7 0	1.96
22-23	- 0.16	- 0.12	- 0.28	- 28.90	30.58	1.68
23-24	0.13	0.68	0.81	- 28.77	31.26	2.49
24-25	- 0.04	- 0.30	- 0.34	- 28.81	30.96	2.15
25-26	4.13	2,92	7.05	- 24.68	33.88	9.20
26-27	- 5.08	- 0.29	- 5.37	- 29.76	33.59	3.83
27-28		2,22	5.99	- 25.99	35.81	9.82
	- 5.68	- 0.07	- 5.75	- 31.67	35.74	4.07
	- 2.64	- 0.23	- 2.87	- 34.31	35.51	1.20
	- 2.27	- 0.10	- 2.37	- 36.58	35.41	- 1.17
31-1	3.99	5.00	8.99	- 32.59	40.41	7.82
Total						
	-31.17	- 2,65	-29.04	- 32.59	`	
Total		00.01	00.00	e e degree de la degree de		
	12.27	20.94	28.43	····	40.41	
Net a	c -18.90	18.29	- 0.61		A STATE OF THE STA	7.82
OI ac	C -10.7U	10.27				1.02

^{*} Cumulative values are continued on from the previous month and run over the whole field season.

^{**} No obs. were taken on 15-16 July. A value of -1.00 is assigned.

TABLE I (con't)

VERTICAL SNOW SURFACE CHA GES AT DIVIDE STATIO 1 ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.: 60⁰ 47' N Long.: 139° 40' W

Elevation: 2,637 meters Date: August, 1964

Long.	139 40	W	Elevat	ion: 2,637 me	eters Date:	August, 1964
Date			UKON STANDA			
	Daily 06-18	values (cm 18-06	s) 06 – 06		nulative val 18-06	ues (cms) 06-06
1-2 2-3 3-4 4-5 5-6	- 6.31 - 1.79 - 0.74 - 0.46 - 0.17	- 0.53 - 0.26 - 0.08 0.04	- 6.84 - 2.05 - 0.82 0.50 - 0.14	- 38.90 - 40.69 - 41.43 - 41.89 - 42.06	39.88 39.62 39.54 39.58 39.61	0.98 - 1.07 - 1.89 - 2.31 - 2.45
6-7 7-8 8-9 9-10 10-11	- 0.12 - 0.31 - 0.27 - 0.13 0.03	0.00 - 0.03 0.15 0.00 0.42	- 0.12 - 0.34 - 0.12 - 0.13 0.45	- 42.18 - 42.49 - 42.76 - 42.89 - 42.86	39.61 39.58 39.73 39.73 40.15	- 2.57 - 2.91 - 3.03 - 3.16 - 2.71
11-12 12-13 13-14 14-15 15-16	- 1.14 - 0.39 - 0.30 0.11 0.13	0.22 - 0.05 - 0.00 - 0.12 0.12	- 0.92 - 0.34 - 0.30 - 0.12 0.25	- 44.00 - 43.61 - 43.91 - 43.78	40.37 40.32 40.32 40.20 40.32	- 3.63 - 3.29 - 3.59 - 3.71 - 3.46
16-17 17-18 18-19 19-20 20-21		1.96	1.72	- 43.54	42.28	- 1.26
21-22 22-23 23-24 24-25 25-26						
26-27 27-28 28-29 29-30 30-31						
31-1 Total					Market and the second	
abl.	-11.50	- 1.07	-12.00	- 43.54		
Total	0.55	2.94	2.92		42.28	
Net al		1.87	- 9.08			- 1.26

Seward Rock

Ablation stakes employed at Seward Rock consisted of one foot long wooden pegs which were driven into the snow in such a manner that the top of each peg was made level with the snow surface. At the end of a 12 hour period, the lowering of the surface down from the top of each peg was measured; they were reset at a nearby undisturbed spot. Six pegs were arrayed in a linear fashion on a snow ridge 30 m. to the north of and slightly downslope from the meteorology station. The pegs were set 25 m. apart at the end of each 12 hour period. Located approximately 3 meters down the eastern slope of the ridge, the stakes were set in line with the strike of the ridge. The eastern side of the nunatak slopes gradually to a large basin at the foot of the vast Mt. Vancouver mountain system. The nunatak's west slope descends abruptly to the Upper Seward Glacier surface roughly 100 m. below the crest of the snow ridge. Measurements were taken from 0600, 26 June to 0600 13 August. Data are presented in Table II.

Snow pits were excavated to the east of the nunatak. Density profiles were determined at the beginning and end of the field season. The first pit, dug on 23 June, extended to 240 cms. On 29 July, the second snow density profile was made to 300 cms depth. The latter pit was located about $\frac{1}{2}$ Km east of the nunatak and 50 m. below camp level; the first pit was dug just NE of camp and not more than 20 m. east of the ablation pegs.

¹Sharp measured ablation with meter sticks (surface lowering) which were reset every day in order to minimize the effects of local ablation and compaction settling. See Sharp, R.P., Op. Cit., p. 733.

TABLE II

VERTICAL SNOW SURFACE CHANGES AT SE ARD NUNATAK STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

60° 20' N Lat.: 139° 55' W Elevation: 1,860 meters Date: June, 1964 Long.: YUKON STANDARD TIME Date Cumulative values (cms) Daily values (cms) 06-18 06-18 18-06 06--06 18-06 06-06 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 0.46 - 0.64 - 0.64 - 0.18 0.46 - 0.18 - 0.21 - 1.47 - 0.80 .- .0.85 - 1.65 27-28 -1.26 0.69 - 1.03 - 2.52 - 0.16 - 2.68 28-29 -1.72 0.18 - 4.25 29-30 -1.91 0.34 - 1.57 - 4.43 30-1 -0.13 1.68 - 4.56 1.86 - 2.70 1.55 Total abl. -5.02- 0.85 - 4.25 Total 1.86 acc. 0.46 1.55 Net abl. - 2.70 or acc-4-56 1.86 - 2.70

TABLE II (con't)

VERTICAL SNOW SURFACE CHANGES AT SEVARD MUNATAK STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA

Lat.: 60° 20' N Long.: 139° 55' W

ong.: 139° 55' W Elevation: 1,860 meters Date: July, 1964

Date .			YUKON STANDARD TIME			
	06-18	Daily values 18-06	(cms) 06-06	06 1 8	umulative 18-06	values (cms) 06-06
1-2 2-3 3-4 4-5	0.89 3.84 - 2.54 - 2.16 0.08	1.52 2.62 - 0.51 - 0.66	2.41 6.46 - 3.05 - 2.82	- 3.67 0.17 - 2.37 - 4.53	3.38 6.00 5.49	- 0.29 6.17 3.12 0.30 - 0.01
7 - 8 · 8 - 9 ·	- 1.17 - 1.52 - 3.25 - 2.06 1.60	- 0.97 2.31 0.31 5.08 0.51	- 2.14 0.79 - 2.94 3.02 2.11	- 5.62 - 7.14 -10.39 -12.45 -10.85	3.47 5.78	- 2.15 - 1.36 - 4.30 - 1.28 0.83
11-12 · 12-13 · 13-14 · 14-15 · 15-16 ·	- 1.80 - 1.67 - 1.93	- 0.30 0.40 - 0.18 - 0.25 - 1.09	- 3.68 - 1.40 - 1.85 - 2.18 - 3.40	-14.23 -16.03 -17.70 -19.63 -21.94	11.38 11.78 11.60	- 2.85 - 4.25 - 6.10 - 8.28 - 11.68
16-17 · 17-18 · 18-19 · 19-20 · 20-21 ·	- 6.02 - 6.47 - 0.66	- 1.53 - 1.54 - 0.85 - 0.66 - 0.30	- 5.84 - 7.56 - 7.32 - 1.32 - 2.26	-26.25 -32.27 -38.74 -39.40 -41.36	8.73 7.19 6.34 5.68 5.38	- 17.52 - 25.08 - 32.40 - 33.72 - 35.98
21-22 · 22-23 · 23-24 · 24-25 · 25-26 ·	- 2.97 - 2.54 - 2.21	- 0.64 2.74 1.52 4.06 0.94	- 5.41 - 0.23 - 1.02 1.85 - 1.60	-46.13 -49.10 -51.64 -53.85 -56.39	4.74 7.48 9.00 13.06 14.00	- 41.39 - 41.62 - 42.64 - 40.79 - 42.39
26-27 · 27-28 · 28-29 · 29-30 · 30-31 ·	- 1.83 - 5.03 - 4.75	- 0.21 - 0.63 - 0.45 0.00 - 0.32	- 4.45 - 2.46 - 5.48 - 4.75 - 3.32	-60.63 -62.46 -67.49 -72.24 -75.24	13.79 13.16 12.71 12.71 12.39	-46.84 -49.30 -54.78 -59.53 -62.85
31-1	- 2,11	- 2.34	- 4.45	-77.35	10.05	-67.30
Total	-79.20	-13.82	-81.24	-77.35		
Total acc.	6.41	22.01	16.64	12 T	10.05	
Net ab		8.19	-64.60	<u> </u>		-67.30

TABLE II (con't)

VERTICAL SNOW SURFACE CHANGES AT SEWARD NUNATAK STATION, ST. ELIAS MOUNTAINS YUKON TERRITOY, CANADA

	0	TOTION TERM	CALCAL CANADA		
	20' N 55' W	Elevation: 1,8	360 meters I	Date: August	1964
1011g (. 10)		DECYGOLOII: 150		Jacob Hagas	
		YUKON STA	ANDARD TIME		
Date	D- : 3			Q.,	seeluge (emg)
0		es (cms) -06 06-06	06-18	18-06	values (cms) 06-06
1-2: 2-3 -	1.60 - 0.7.75 - 0.	.43 - 2.03 .46 - 8.21	- 78.95 - 86.70	9.62 9.16	- 69.33 - 77.54
4-5 -	3.51 0. 4.01 - 0. 3.51 0.	- 4.45	- 90.21 - 94.22 - 97.73	9.16 8.72 9.05	- 81.05 - 85.50 - 88.68
7-8 -	4.11 - 0. 4.32 - 0. 3.30 0.	.13 - 4.45	-101.84 -106.16 -109.46	9.04 8.91 8.91	- 92.80 - 97.25 -100.55
	3.58 2. 4.49 - 4	.16 - 1.42 .45 - 8.94	-113.04 -117.53	11.07 6.62	-101.97 -110.91
12-13 13-14 -		.54 0.58 .76 0.96 .31 - 0.53	-119.49 -119.29 -120.13	9.16 9.92 10.23	-110.33 -109.37 -109.90
14-15 15-16	nes in Profits	83 a s		A	
16-17 17-18 18-19					
19-20 20-21	- T			A. A. K.	
21-22 22-23			egas sa estado en en estado en entre e La companya de la co	4 - P	
23-24 24-25			The second second		
25 – 26 26 – 27					
27 – 28 28 – 29 29–30	, 1	en e	Bogs of		
30-1	2 F 1 2		Control of		
Total abl4	2.98 - 5	.92 -44.14	-120.13		
Total		.10 1.54		10.23	
Net abl. or acc4		.18 -42.60			-109.90

Seward Ice

An ablation network similar to the one used at Divide was installed $l_{\overline{k}}^{\frac{1}{2}}$ Km west of Seward Rock and out on the glacier surface. The stakes were implanted on 13 July and readings were made weekly until the close of the field season on 13 'ugust. A hygrothermograph, with weekly charts, was placed immediately to the north of the Seward Ice stakes. Surface lowering measurements were made in conjunction with the changing of the hygrothermograph charts. The network enclosed a square area 4 times that of the Divide Station network. Ablation stakes consisted of the same type conduit poles and the same methods of installation were followed. Data are presented in Table III.

Analysis of 1964 Field Season

Weather and Ablation

Seward Rock and Seward Ice

The most striking aspect of the 1964 Ablation Season at Seward Rock and Seward Ice locations is the rapid and almost constant rate of snow surface lowering (Fig. 2), which commenced in mid-July and proceeded to the close of the field season. Prior to this sudden increase, ablation showed no definite trend, but from mid-July on daily melting took place regularly. This is a reflection of the deterioration of the chilled layer which was also noted by Sharp for this location. 1

Snow surface lowering at Seward Rock was 104 cms compared to 49 cms at Seward Ice over the period 13 July to 13 August. Snow pit

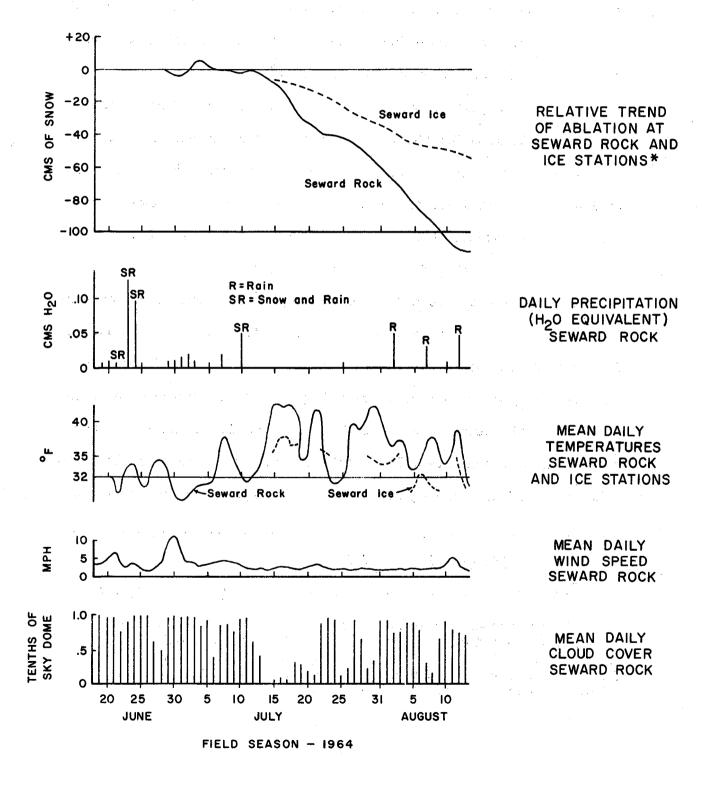
Sharp noted that a sudden amelioration began July 3 and lasted throughout the 1949 field season. See Sharp, R.P. "Thermal Regimen of Firn on Upper Seward Glacier, Yukon Territory, Canada," <u>Journal of Glaciology</u>, I (March, 1951), p. 484.

TABLE III

VERTICAL SNOW SURFACE CHANGES AT SEWARD ICE STATION, ST. ELIAS MOUNTAINS YUKON TERRITORY, CANADA*

60° 201 N Lat .: 139° 571 W Elevation: c. 1,780 meters Long .: Cumulative net Date Time of obs. (YST) Net lowering lowering (cms) (cms) 7/13 1030 7/20 - 8.92 1030 - 8.92 -22,26 7/27 1430 -13.34 8/3 -16.32 -38.58 1330 8/10 1300 8/13 - 3.54 -48.84 1045

The second of the second of the second second second of the second of th


The Article April 19 July May 1999

BA BARBAN BURNETAN DAN SERVER

^{*} Values are average lowering or raising of the snow surface as indicated by a five stake ablation farm just south of Seward Ice Meteorological shelter (containing a hygrothermograph) and approximately 1½ Kms west of and 80 meters lower than Seward Nunatak Station. The height of the stakes was read once each week (in conjunction with the changing of the hygrothermograph chart) beginning 13 July and ending 13 August.

FIG. 2

WEATHER AND ABLATION
SEWARD ROCK AND SEWARD ICE STATIONS
1964

floor Plus values indicate accumulation, minus values are ablation.

measurements at Seward Rock indicate that the average bulk density for the season was 0.51 gm/cm³. Assigning water equivalent values to both stations based on this figure results in a value of 56 cms for Seward Rock and 25 cms for Seward Ice. Sharp gives a 1949 Ablation Season value of 44 cms for the Upper Seward Basin. 1

From an analysis of two snow pit density profiles for Seward Rock (Fig. 3), mass loss for the field season was calculated. By this method mass loss for the field season at Seward Rock is equal to 30 cms water equivalent, a much lower figure than that obtained from stake measurements. It is assumed that the actual mass loss at Seward Ice is likewise less than that from stake measurements.

Although the two Seward sites are only $l\frac{1}{2}$ Km apart, there appears to be an appreciable difference in mass loss for the field season. It is hypothesized that a considerable proportion of this difference can be attributed to exposed rocks which supply a local source of heat to portions of the Seward Rock nunatak during the middle and latter parts of the field season, i.e., later July and August; and also attributable to a cold air ponding effect over the large Upper Seward Glacier.

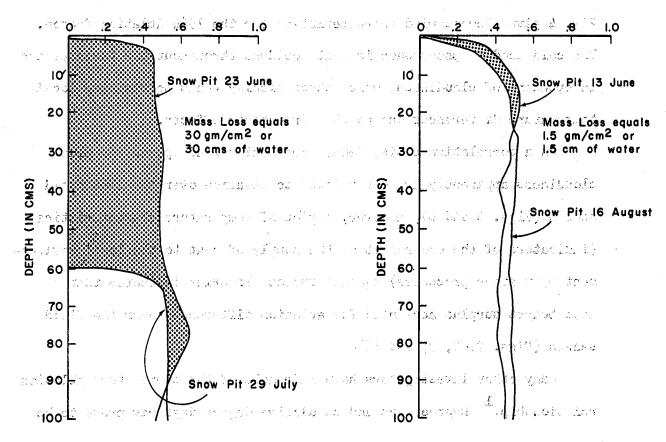
Sharp, R.P. Op. Cit., p. 738

²This phenomenon was noted by Sharp, R. P., Op. Cit., p. 736.

³Marcus presents a short analysis in Marcus, M.G., "Summer Temperature Relationships Along a Transect in the St. Elias Mountains Alaska and Yukon Territory," Man and the Earth, Series in Earth Sciences No. 3, University of Colorado Studies, University of Colorado Press, Boulder, 1965, p. 25.

Ledgins in the ring wint the riles. But the few and for the resets stated in the

SNOW DENSITY PROFILES* FOR SEWARD ROCK AND DIVIDE STATIONS


Wallah Towell Walcar Marco 1964 FIELD SEASON CONTROL OF

-dirage on i and encases in it the chart in the entire the second file is the co

From the second SEWARDs ROCK and the result of the result of the result of DIVIDES of the second

rana**ist**a t**i**s liist 70

DENSITY (GMS/CM3)

The document there is a republication of the property of the case and property and The standard LaChapelle E. Errors in Ablation Measurements from Settlement and Sub Surface Melting" Journal of Glaciology, III (No. 26), 1959, 459.

ormate etan kirili (langer) kirili langerik (langer) - kecahir peleberah (langer) peleberah arasil (l Nebel langer) in langerik (langer) langerik (langer) - kecahir langerik (langer) berah berahan berah

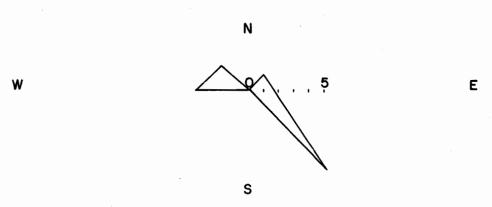
. The contract of the contract

Andrew Age of the control of the con

The state of the s

Located on the glacier surface, Seward Ice is much more affected by cold air drainage and ponding than Seward Rock. These local conditions are expressed in the mean daily temperatures for both sites (Fig. 2). Temperatures at Seward Ice were considerably lower during most of the field season. One of the principal reasons for the striking differences, even of mean temperatures, was the especially low wind speeds (not much mixing of air in the boundary layer) during the season. Fig. 4 gives Seward wind characteristics for the 1964 Ablation Season. The cold ponding phenomenon is quite evident throughout the field season, independent of cloudiness, which theoretically tends to minimize local temperature differences due to the "Greenhouse effect".

On a correlative basis, Seward mean daily wind speeds and mean cloudiness apparently are not related to ablation over the 1964 field season (Figs. 5 and 6); however, a plot of temperature characteristics (indicators of the end result of the supply of heat to the local environment by weather processes) against surface lowering indicates that a heat budget surplus accounted for ablation differences over the field season (Figs. 7, 8, 9, and 10).


Many other investigators have made note of the temperature ablation relationship. Degree days and cumulative degree days may prove to be

See, for example, Larsson, P. "A Preliminary Investigation of the Meteorological Conditions on the Chamberlain Glacier, 1958," Research Paper No. 2 (Washington: Arctic Institute of North America, 1960), p. 67; Hoeck, E. "Influence of Radiation and Temperature on Melting Process of the Snow Cover," Beitrage zur Geologie der Schweiz, Geotechnosche Serie, Hydrologie, Lieferung 8, 1952, p. 51; Nobles, L.H. "Glaciological Investigations, Nunatarssuaq Ice Ramp, Northwestern Greenland," Technical Report #66, U.S. Army 3.I.P.R.E., May, 1960 p.16; Keeler, C.M. Op. Cit., p.76, and Marcus, M.G., Climate-Glacier Studies in the Juneau Ice Field Region, Alaska. Research Paper No. 88 (Chicago: University of Chicago, 1964), pp. 75-79.

FIG. 4
SEWARD ROCK WIND CHARACTERISTICS
SUMMER 1964

N 5 10 15 20 E

S
WIND DIRECTION FREQUENCY
(PERCENT)

AVERAGE WIND SPEEDS FROM GIVEN DIRECTIONS (MILES PER HOUR)

FIG. 5

MEAN DAILY CLOUDINESS VERSUS DAILY ABLATION*
SEWARD ROCK - 1964

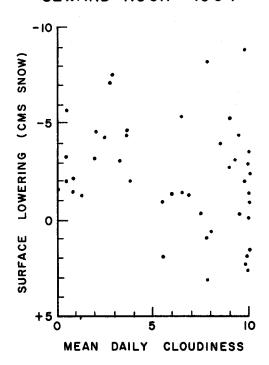
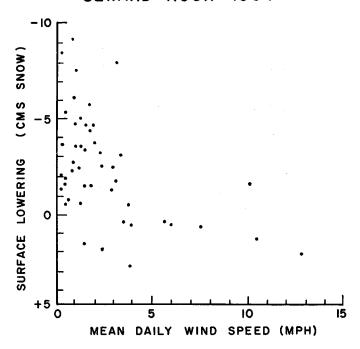



FIG. 6

MEAN DAILY WIND SPEED VERSUS DAILY ABLATION SEWARD ROCK-1964

^{*}Plus values indicate accumulation, minus are ablation.

FIG. 7 DAILY NOON TEMPERATURES VERSUS DAILY ABLATION* (0600 - 1800)SEWARD ROCK - 1964 FIELD SEASON

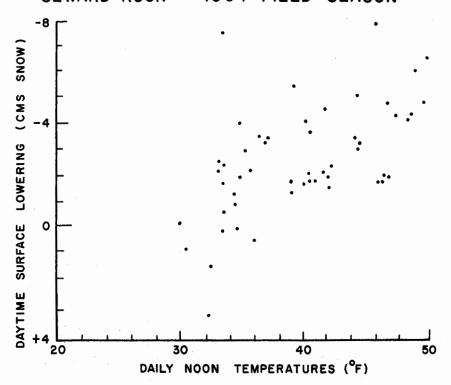
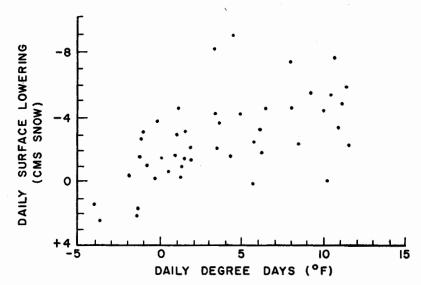



FIG. 8 DAILY DEGREE DAYS** VERSUS DAILY ABLATION SEWARD ROCK - 1964 FIELD SEASON

^{*}Plus values indicate accumulation, minus are ablation.

**To calculate degree days take the difference (plus or minus) of the mean daily temperature and 32°F for each day.

CUMULATIVE DEGREE DAYS VERSUS CUMULATIVE ABLATION SEWARD ROCK - 1964 FIELD SEASON

FIG. 9

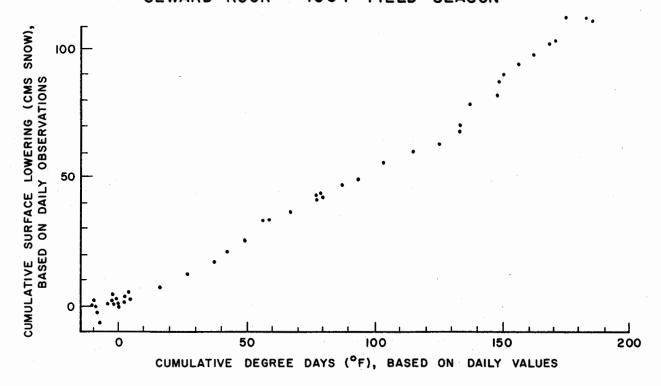
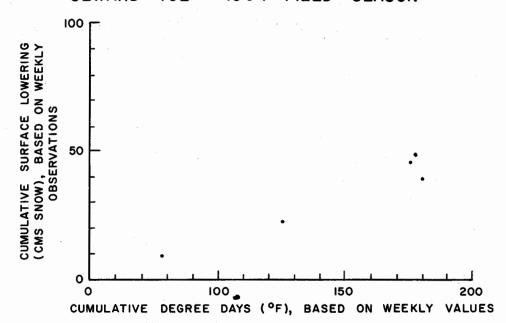



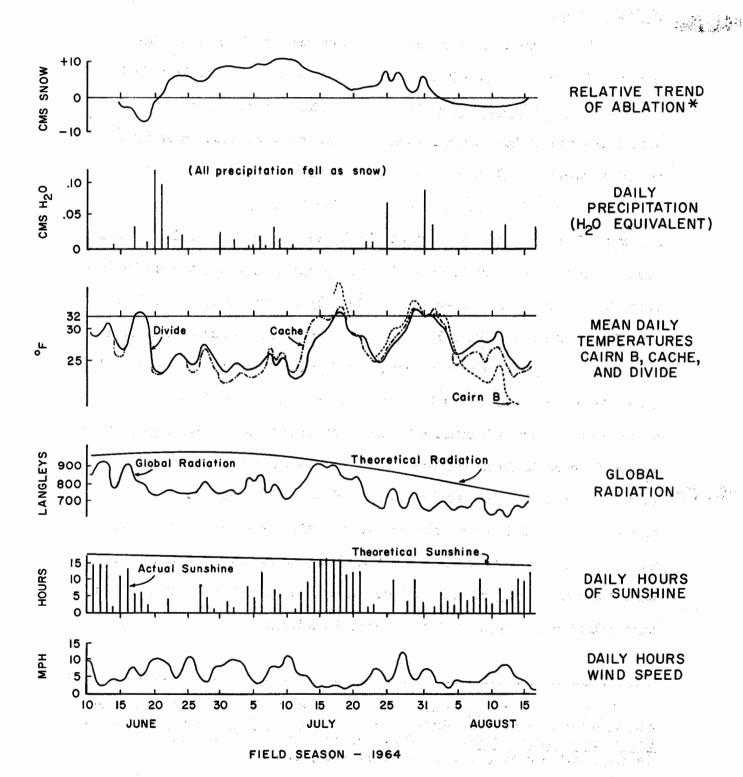
FIG. 10

CUMULATIVE DEGREE DAYS VERSUS CUMULATIVE ABLATION

SEWARD ICE - 1964 FIELD SEASON

accurate estimators of the temporal and spatial variations of mass loss throughout an ablation season.

Divide Station


The Divide area, at a higher elevation and at the head of the accumulation zones of the Hubbard and Kaskawulsh Glaciers, lies just above the temperate-subpolar glacier transition zone. Measurements of snow temperatures have been recorded in all years as late as early August towards the close of the blation Season.

Net surface lowering at the Divide for the 1964 field season was only 1.3 cms. From snow pit studies at the beginning and completion of the field season, mass loss is estimated to be only 1.5 cms water equivalent (Fig. 3). Only during clear weather in July was the rate of surface lowering substantial (Fig. 11). During this period sunshine was at a maximum, wind speeds were very low, and daytime temperatures were well above freezing. Mean daily temperatures were considerably less than daytime temperatures because of a large diurnal temperature range. This is due in part to local cooling brought on by outgoing long wave radiation from the snow surface during clear evening hours. This phenomenon caused freezing and crusting of the upper snow layer. It is significant to note from Table I that nighttime ablation measurements showed a net raising of the surface relative to ablation stakes. This same relationship appears for the Seward stations.

Temperate - subpolar are defined in terms of Ahlmann's classification of glaciers. See Ahlmann, Hans W:Son, Glaciological Research on the North Atlantic Coasts. R.G.S. Research Series: No. 1 The Royal Geographical Society, London, S.W. 7, 1948, p.66.

²Marcus, M.G., "A Hydrological Traverse....," p. 4.

WEATHER AND ABLATION DIVIDE STATION 1964

^{*}Plus values indicate accumulation, minus values are ablation.

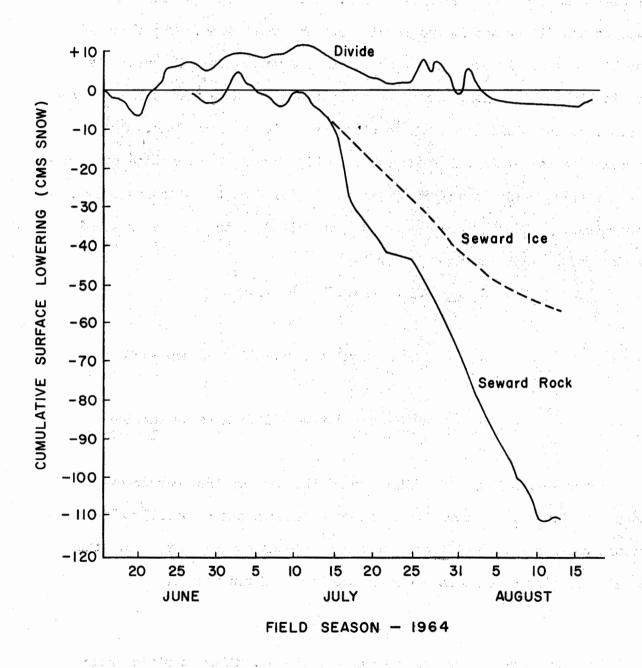
Other than the short July clear weather period at Divide, ablationweather relationships are unclear.

Comparisons and Contrasts Between Seward and Divide.

From mid-July to the close of the field season, the trend of ablation at all three stations was similar (Fig. 12). The slopes of the curves express the difference in geographic site and situations. The slope of the Divide curve is much less than those of Seward. This is primarily due to higher elevation, cooler temperatures, and the severity of the 1964 weather at the Divide compared to stations at lower elevations. On a correlative basis (Fig. 13) the relationship reveals the expected pattern - greater ablation at Seward per ablation at Divide as the Ablation Season progresses. A least squares parabola was fitted to the scattergram and the equation of the curve is given by:

$$S_a = -65.4 + 10.7D_a - .50D_a^2$$

where S - Seward cumulative ablation (snow surface lowering)


D_a = Divide cumulative ablation (snow surface lowering).

The relationship is a reflection of the more marine, warmer exposure of Seward. However, this expected pattern can be greatly altered by the complex nature of this rugged mountainous environment, viz., the local variation of mass loss within the Seward Basin itself.

Summary

On a broad scale, the climate across the St. Elias Mountain Range SW to NE changes from marine to continental in character, although locally vast differences in relief, orientation, terran configuration,

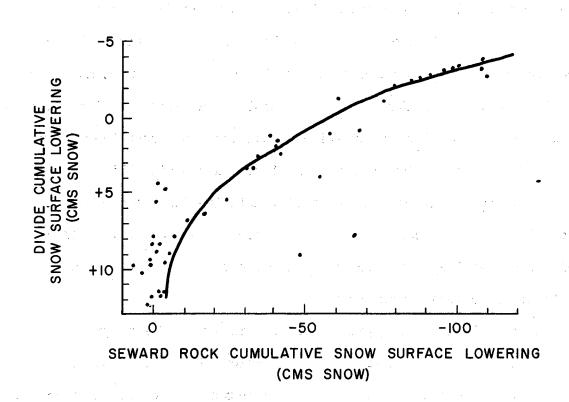

^{*} Plus values indicate accumulation, minus are ablation.

FIG. 13

CORRELATION OF CUMULATIVE ABLATION*

DIVIDE VERSUS SEWARD ROCK

1964

^{*} Plus values indicate accumulation, minus are ablation.

and type of surface alter the expected variation.

Accumulation and ablation, which inevitably determine the health of the immense snowfields and glaciers across the range, show, for the most part, the expected variations with climate on both large and small scales. Ablation at Seward for the 1964 field season was approximately 30-50 cms water equivalent, while at the topographic divide, ablation was only 1.5 cms. The water differential between Seward and Divide during the 1964-65 Accumulation Season was estimated at 2 to 1; during the 1964 Ablation Season the loss of water from the glacier interface to lower elevations and/or to the atmosphere was at least 30 times more at Seward than at Divide. Correlations between ablation and estimates of the amount of heat available during the Ablation Season indicates that the warmer marine environment and lower elevation of Seward explains this large ablation differential. On a local scale, ablation differs over small areas primarily in response to local climatic processes, e.g., cold air ponding and heat transfer from warmer air sources. Seward Rock and Ice illustrate these local variations.

Whether only a few stations can be utilized in order to provide insights into accurate climate-glacier relationships remains to be determined. In an area with so great a dimension as the St. Elias Range, it appears that a large weather and ablation network would be needed in determining accurate environmental relationships.

BIBLIOGRAPHY

- Ahlmann, Hans W:Son. Glaciological Research on the North
 Atlantic Coasts. R.G.S. Research Paper: No.1,
 The Royal Geographical Society, London, 1948.
- Hoeck, E. "Influence of Radiation and Temperature on Melting Process of the Snow Cover," Beitrage zur Geologie der Schweiz, Geotechnische Serie Hydrologie, Lieferung 8, pp 1-36 (1952), Translated into English by K. Martinoff of USA SIPRE Bibliography Project, Library of Congress Translation #49, January 1958.
- Keeler, C. M. "Relationship Between Climate, Ablation, and Runoff on the Sverdrup Glacier, 1963 Devon Island, N.W.T.," Research Paper #27 (Washington: Arctic Institute of North America, 1964), 80 pp.
- Larsson, P. "A Preliminary Investigation of the Meteorological Conditions on the Chamberlain Glacier, 1958," Research Paper #2 (Washington: Arctic Institute of North America, 1960), 89 pp.
- Marcus, M. G. "A Hydrological Traverse of Glaciers in the Icefield Ranges, St. Elias Mountains, Alaska-Yukon Territory," (A paper presented at the VII INQUA CONGRESS of the International Association for Quaternary Research, Boulder, Colorado, Sept. 1, 1965), 7 pp.
- Region, Alaska. Research Paper No. 88 (Chicago: Univ. of Chicago, 1964), 128 pp.
- . "Icefield Ranges Climatology Program St. Elias

 Mountains, 1964 Part I: Data Presentation," Research
 Paper #31-A (Mashington: Arctic Institute of North
 America, 1965), 109 pp.
- . "Summer Temperature Relationships Along a Transect in the St. Elias Mountains; Alaska and Yukon Territory,"

 Mand and Earth, Series in Earth Sciences (Boulder: Univ. of Colorado Press, 1965) pp. 15-30.
- Nobles, L. H. "Glaciological Investigations, Nunatarssuag Ice Ramp, Northwestern Greenland," Technical Report #66, U.S. Army S.I.P.R.E., May 1960.
- Sharp, R.P. "Accumulation and Ablation on the Seward-Malaspina Glacier System, Ganada-Alaska," Bulletin of the Geological Society of America, LXII (July, 1951), 726-744.
- . "Thermal Regimen of Firm on Upper Seward Glacier, Yukon Territory, Canada," Journal of Glaciology, I (March, 1951), 476-487.

And the second of the second o

And the second of the second of

and the first of the self of the self-being different to the self-being fit of the self-being season of the self-being different to the self-b

The state of the s

A RELIEF CONTROL OF THE CONTROL OF T

A substituti di Light (1905), primita di 1900 di mandra di 1900 di 1900 di 1900 di 1900 di 1900 di 1900 di 190 A supprinti di 1900 di A supprinti di 1900 di A supprinti di 1900 di

and Targan Basan Androma (1992) Androm A Androm A

n skerned i kver i sind og han er i fra de erge i had i fraktioner er fra de en en er er kleiser. Hen til sken i fra kver i stig fraktioner kver alle en døverete, fraktioner bli skelige. Dige til en gjeldere kongres i frigskaller galger er alle kver i til en er bli skelige.

og stadien 17 oktober 17 och sport och den 17 och sport och ett i 17 och sport och ett i 17 och sport 17 och s Borger och kan stadien 18 och blede stadien 17 och ett ett i 17 och ett i 17 och ett i 17 och ett i 17 och ett Stadien 18 och ett i 17 och ett