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ABSTRACT. Arthropods active on  the surface of the  tundra near  Barrow,  Alaska, 
were trapped throughout  four  summer seasons (1966-1969), using "sticky-board" 
traps. More  than  95 per  cent of the  arthropods (excluding Acarina and Collembola) 
captured were of the  order Diptera.  Adults of most species of Diptera emerged in 
the middle two weeks of July;  the abundance of arthropods  on  the  tundra surface 
was maximal at  that time. Year-to-year variations  in abundance of various arthro- 
pod taxa  are related to prevailing weather  conditions and  to  the cycle of tundra 
disturbance and recovery associated with the abundance of brown lemmings. 

RÉSUMÉ. Modalités  de l'abondance des  arthropodes  de la toundra selon les sai- 
sons, près  de  Barrow. Près de Barrow, Alaska, on  a,  au cours des quatre étés 
(1966-1969), capturé  au moyen de pièges à glu les arthropodes  actifs à la surface de 
la  toundra. Plus de  95  pour cent des arthropodes  capturbs (à l'exclusion des Aca- 
riens et des Collemboles) appartenaient à l'ordre des Diptères. Les adultes  de la 
plupart des espèces de Diptères  apparaissaient au cours des deux semaines du milieu 
de juillet : c'est à ce  moment que les arthropodes  étaient les plus  nombreux à la 
surface de  la  toundra. Les variations  annuelles  d'abondance des divers taxa d'arthro- 
podes sont liées aux  conditions du temps  et au cycle de déprédation  et de reprise 
de  la  toundra selon l'abondance des lemmings. 

PE3IOME. Ceaoxn~ue u 3 ~ e w e w u ~  e uucaewwomu unenuCrnoHoeux (Arthropoda) ua 
n o s e p x ~ m u  mywdpu e paüowe Bappoy (Amma). ?heHHcToHorHe, 0 6 ~ ~ a m r q ~ e  Ha 
n o s e p x H o c T H  TYHAP~I  B p a t i o H e  Bappoy, H c c n e a o s a n n c b  B T e Y e H H e   Y e T H p e x  neTHHx 
CeSOHOB (1966-1969 FI'.). CBbIILle 95% BCeX c06pa~~b1x YJIeHHCTOHOI'HX (sa 
HCKJUOYeHHeM OTPSIAOB Acarina H Collembola) SfBJISfJIHCb IIpeACTaBHTeJISIMH O T p A a  
Diptera. B a p o c n b ~ e   o c 0 6 1 1  6OJIbUHHCTBB  BHAOB  OTpSIAa Diptera IIOSIBJISIJIHCb B 

HO~HX~OCTH~~JI~M~KCElM~JIbHbIXSH~YeHH~.OTMeYeHHbIeH3MeHeHHSIBYHCJIeHHOCTH 
pa3JIEIYHbM TaKCOHOB THna Arthropoda 0 6 y c n a ~ n ~ ~ a m ~ c ~ f  KJIHMaTUYeCKHMH 
YCJIOBHSIMH, a T a K X e   K O J I ~ ~ ~ H H S I M H  B YElCJIeHHOCTH 6 y p b 1 x  JIeMMHHI'OB, 06~~am1qnx  
B T y H A p e .  

T e g e m e  B T O P O ~  A e K a n b I  H ~ J I S I  H B TOT xce n e p H o n   Y H c n e H H o c T b   B c e x   w r e H H c T o -  

INTRODUCTION 

The abundance of insect  activity near the tundra surface is a conspicuous feature 
of the short arctic summer. During favourable weather conditions at the height 
of the season the tundra may appear as a continuous swarm of insects, particularly 
representatives of the order Diptera. They are heavily preyed upon by birds. In 
fact, there is reason to believe that the breeding of tundra shorebirds, the most 
important group of insectivores in many tundra areas, is  timed so that the young 
birds hatch during the period of maximum abundance of adult insects (Hurd and 

1Department of Zoology, University of Illinois, Urbana, U.S.A. 
ZDepartment of Zoology and Museum of Vertebrate Zoology, University of California, 

Berkeley, U.S.A. 



20 SEASONAL PATTERNS OF ABUNDANCE OF ARTHROPODS 

Pitelka 1954; Holmes 1966a; MacLean 1969). At other times  of the summer 
the birds feed on larvae of these same insect  species  (Holmes 1966b; Holmes  and 
Pitelka 1968). 

The relationship of arthropods to avian predators is but one aspect of their 
important role in the flow  of energy  and  cycling of nutrients in tundra ecosystems 
(Pitelka 1969). Since in many groups the adults do not feed, the trophic and 
energetic function is concentrated in the immature forms (larvae and  nymphs). 
The numbers of the more conspicuous  and  readily sampled adults serve  as  an 
index of the abundance of immature forms. 

This paper reports the results of systematic  sampling of arthropods on the 
tundra surface throughout 4 summer  seasons near Barrow, Alaska. The tundra 
arthropods of arctic Alaska have  received  comparatively little attention. Weber 
(1950a) surveyed the insects of the arctic slope.  Although the investigations of 
Hurd (1958), Strandtmann (1967), and Bohnsack (1968; Challet and  Bohnsack 
1968) studied the soil arthropods of the Barrow area broadly, they paid particular 
attention to soil  mites (Acarina) and  springtails  (Collembola). Hurd (1958) de- 
veloped a check-list of the terrestrial arthropods known to occur in the immediate 
vicinity of the Naval Arctic Research Laboratory. Holmes (1966b) sampled larval 
and adult insects to assess food availability for sandpiper populations. In that 
study few  taxonomic  distinctions  were  made. 

All of the studies  mentioned  above  have either anticipated or  confirmed 
Downes' (1964) contention that the tundra insect fauna is  low in diversity.  Many 
orders that  are important in temperate regions are lacking or  are represented by 
only a few  families and species. The order Diptera, and  especially the family 
Chironomidae, contribute the largest number of species  to  the tundra insect fauna. 

The questions of arthropod life  cycles, trophic and energetic roles, and their 
importance in the decomposition  process  all require much  investigation in tundra 
regions. Until more data are available, extrapolation from studies in temperate 
regions  may  be  dangerous.  Because of this our interpretations of the data presented 
here are often  incomplete and speculative.  Still, we believe that significant pat- 
terns relating to the functioning of the tundra ecosystem  emerge. It is our hope 
that this paper will serve as an introduction to the detailed  work,  especially  on 
Diptera, which  must  follow. 

STUDY AREA 

Barrow is situated near the northern tip of the coastal plain of northern Alaska, 
at 71"20'N., 156'46'W. Surface relief in this area is  slight, resulting primarily 
from old, raised beaches  which form longitudinal ridges  and from frost features 
such as low-centred and raised polygons and ice-cored mounds (Hussey and 
Michelson 1966). Because of the limited  relief  and  presence of permafrost near 
the surface, water  runoff  is retarded and much of the  tundra remains wet or 
saturated for most or all of the summer  season. The vegetation  is dominated by 
grasses and sedges. These form nearly  all of the cover in the low-lying,  wetter 
areas which comprise the majority of the tundra near Barrow. Prostrate willows 
and flowering herbs appear in greater abundance on more elevated sites; however, 
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grasses and sedges remain dominant on all but the most  exposed  sites.  Most  of 
the tundra is  covered by an understory of moss  and  lichens. 

An important aspect of the tundra ecosystem near Barrow  is the periodic dis- 
ruption of vegetation  and  soil surface which results from heavy  grazing  by  brown 
lemmings (Lemmus trimucronatus) during the winter preceding their cyclic 
population high.  Such disruptions occur at three to five-year intervals and have 
a severe impact on the tundra. During the long winter  lemmings feed on the 
narrow bands of meristematic  tissue of grasses  and  sedges near ground level, but 
leave the dead blades. The blades  fall to the ground at spring melt; when  grazing 
is  heavy nearly every  blade is cut over large areas of tundra. This changes the 
insulating  layer  over the tundra, thus influencing  soil temperature and depth of 
thaw. It also produces a sudden, large pulse of dead organic material entering 
the saprovore food chains.  Since  many,  even  most, of the insect larvae are 
saprovorous, and since the growth of larvae in tundra sod  is  directly related to soil 
temperature, it is  likely that both of these effects of lemmings  grazing  will influence 
insect populations. A lemming  high occurred at Barrow in 1965. The insect 
sampling reported here occurred in the summers  of 1966 to 1969. Thus, one 
complete cycle of tundra recovery  is  included in this report. 

The climate of the Barrow area is  strongly  influenced  by the immediate prox- 
imity of the Beaufort and Chukchi seas.  Summers are  short and cool. Melt-off 
usually  begins in early June, with  most of the snow  melting  between 13 and 19 
June.  The average  daily  maximum,  minimum, and mean temperatures, as 
recorded by the U.S. Weather Bureau station in Barrow Village, are given in 
Fig. 1.  The daily  mean temperature does not reach OOC. until 11 June, and the 
daily  minimum temperature remains  below freezing throughout June. The warm- 
est  days  (daily mean temperature 45°C.) occur in mid- to late July. Even then, 
daily  low temperatures below  freezing are not uncommon. Cold rain and fog 
frequently occur in the last half  of July and in  August. 
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The temperature conditions encountered in the 4 years of this  study,  expressed 
as cumulative deviation from normal temperature, are shown in Fig. 2. This 
4-year period included  extremes of temperature conditions: 1966 and 1967 were 
somewhat cooler than normal; the period between  mid-July and mid-August of 
1968 was  unusually warm; the comparable period of 1969, in contrast, was quite 
cold. In a normal year 270 centigrade degree days  above  freezing are accumulated 
between 11 June (the 0°C. threshold) and the end of August; 232 of these  ac- 
cumulate in the months of July and August. The temperature increments for July 
and August of 1968  and  1969 were 351 and 77 centigrade degree days, respec- 
tively. (The temperature deviations of Fig. 2 include values  below  freezing,  and 
thus are not directly translatable to these  values.) These significant deviations 
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FIG. 2. Seasonal temperature conditions in the summer months at  Barrow, Alaska, 1966-69, 
expressed as cumulative deviation  from normal  temperature in degree-days. 
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TABLE 1. Summer  season precipitation (inches) recorded at Barrow, Alaska, 
1966-1969. 

1966 1967 1968 1969 Long-term 
average - 

June O. 31 0.28 0.45 0.29 O .  36 
July 2.01 1.43 O .  19 O. 34 0.17 
August 0.57 O .  32 0.09 o. 88 0.90 

Totals 2.95  2.03  0.73  1.51  2.03 
- - ” - - 

from the normal thermal regime  must have a considerable impact on the growth 
and emergence of arthropods. 

Because of the flat topography, surface drainage is limited; immediately after 
snow  melt  all of the tundra except the most  elevated  polygons  and  ridges  is 
saturated with or covered by  melt  water. This gradually drains and evaporates 
during the season. The degree of drying of the tundra is dependent on the inci- 
dence of rain in July and  August. In years  with little rain the intermittent ponds, 
and even the margins of permanent ponds, may  lose their water. This alters the 
habitat for developing arthropods, and also exposes these areas to heavy  avian 
predation. Both of these factors may  influence the survival and development of 
arthropods in these areas, and thus influence  emergence in the following season. 
The effect of habitat desiccation on tundra arthropods is not known and should 
be studied, especially in view  of the large variation in summer precipitation 
indicated in Table 1. 

METHODS 

All data reported here were  collected at 2 study  sites approximately 2 and 
3 km. southeast of the Naval Arctic Research Laboratory. At each site 6 masonite 
strips 1 m. x 0.1 m.,  covered by a sticky  resin (“Tree Tanglefoot”, The Tangle- 
foot Co., Grand Rapids, Michigan) on the upper surface, were placed on the 
ground (Fig. 3). The boards were distributed to sample 3 habitat types; at each 
study site 2 boards were  placed on saturated meadow tundra, 2 on mesic tundra, 
and 2 on dry, elevated tundra (polygon tops and ridges). The same sampling 
locations were  used throughout the study. Each board was protected by an 

FIG. 3. A  sampling board 
(1 m. x 10 cm.)  in  typical 
grass-sedge  tundra  near 
Barrow,  Alaska  (photographed 
July, 1969). 
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exclosure of 1-inch  “chicken-wire”  mesh to prevent disturbance by birds or lem- 
mings; the wire has no noticeable  effect on the movement of arthropods. Arthro- 
pods that encountered the boards were trapped in the resin and remained to be 
counted when the boards were  removed from the tundra and taken into the lab- 
oratory. A dissecting  microscope  and laboratory counter were  used to identify 
and count the arthropods on the boards. 

The boards were  placed on the tundra as soon as the snow had left the study 
sites. Boards were  changed at 3-day intervals in June and July, and at longer 
intervals in August. In  the figures  which  follow, exposure periods of more than 
3 days are indicated by a horizontal line through the  data point. The length of 
the line indicates the total length of the exposure period. The  data for such periods 
have  been adjusted to give  mean catch per 3-days of exposure, and thus are 
directly comparable to the values for the standard 3-day exposure period. 

The two  study  sites  included boards in similar habitats and produced almost 
identical results. They differed  only  slightly  in  phenology. In the analysis that 
follows results obtained at the 2 sites are combined. Our observations at other 
sites near Barrow indicated no large departures in species represented or in timing 
and extent of emergence of adult arthropods. Thus, we feel that these results are 
representative of events in the arthropod populations in the Barrow area as a 
whole. 

Xl~eeffectiv~ness of &is  sampling method is  influenced by a-number of factors. 
The number of animals of a given taxon captured in any period is a function of 
1) their absolute abundance, 2) the probability that any individual animal will 
encounter one of the sampling boards, and 3) the probability that  an encounter 
with a board will trap the animal. The second factor, above,  is  influenced by the 
dispersion pattern of the animals and by their mobility; this in turn is influenced 
by ambient temperature and, possibly, by population density as well. The prob- 
ability of capture is  influenced by presence or absence of wings,  length and 
strength of legs,  etc.  Because of these  variables the numbers of individuals cap- 
tured do not have the same significance  from one taxon to another. 

The sticky-boards thus give a relative estimate of arthropod activity rather 
than a measure of absolute abundance (Southwood 1966). A comparison of 
results obtained using absolute sampling  techniques  along  with simultaneous 
relative  sampling methods, including  sticky traps, is  given by Hadley (1969) for 
a species of crane-fly (Diptera, Tipulidae) found on British  bogs. He found that 
sticky traps and direct enumeration of emerging adults gave  similar information 
on the dates of fist, last, and mean captures. The sticky-board estimate is  ex- 
tremely  useful in documenting seasonal patterns and year-to-year variation in 
the activity of the various taxa of surface-moving arthropods. It is  also  useful  in 
indicating habitat preferences. It is in these  ways that sticky-board results are 
used  in  this paper. 

RESULTS 

DIPTERA 

The crane-flies (Tipulidae) are one of the most prominent groups of tundra 
insects. Three species occur abundantly in the Barrow area (Hurd 1958): Tipula 
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carinifrons Alexander, Prionocera  gracilistyla (Holmgren), and Pedicia hannai 
antennata Alexander. The  former 2 species are large crane-flies  (body  length c. 
15 mm.) of the subfamily Tipulinae; P .  hannai is a smaller  species  (body  length 
usually 10 mm. or less) of the  subfamily  Limoniinae  (Wirth and Stone 1956). 
Females of T .  carinifrons and P .  hannai lack wings. The males of these  species 
are winged but use the wings  only  in  fluttering  along the tundra surface rather 
than in sustained  flight. Both sexes of P .  gracilistyla have  wings,  and on the occa- 
sional  warm and wind-free  days  they are capable of sustained  flight. On most 
days,  however,  they  remain  near the tundra surface and behave  much like the 
other 2 species.  Males of all 3 species are more conspicuous than females.  Males 
move  actively  over the tundra whereas  females  move  slowly about the surface 
and stop frequently to insert their  ovipositor into the tundra. Males are much 
more frequently trapped on the sticky-boards. 

The numbers of crane-flies trapped during each of the 4 seasons are shown 
in Fig, 4. In all 4 seasons P .  gracilistyla was the least abundant species. In 1967 
T .  carinifrons was  most abundant; in 1968, 1969, and apparently 1966, P .  hannai 
was the most abundant species. The total catch of crane-flies was approximately 
the same in 1967 and 1968. The numbers of P .  gracilistyla and T .  carinifrons 
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FIG. 4. Seasonal patterns of abundance of adults of the crane-flies Pedicia hannai, Tipula 
carinifrons, and Prionocera gracilistyla near  Barrow, Alaska, 1965-69. On this and the 
following figures  results  are  expressed as total  number  caught on 16 sticky-board traps  per 

three  days of exposure. 
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decreased from 1967 to 1968, whereas the numbers of P.  hunnui increased in the 
same period. Thus there is no evidence that the warm  weather of 1968 increased 
crane-fly abundance. 

In 1969, when the July weather was  unusually  cold, the catch of each species 
was  less than half that of 1968 (T.c., 41 per cent; P.g., 43 per cent; P.h., 42 per 
cent). The populations of P .  hunnai larvae in tundra sod  were  also sampled in 
1968 and 1969. This sampling indicated that there were more large larvae in 
June of 1969 than in June of 1968, and in early  August of 1969 many large larvae 
remained in the soil (MacLean, unpublished results). The presence of this popu- 
lation of large larvae argues against the importance of habitat desiccation in the 
warm, dry summer of 1968 as a factor influencing later adult abundance (also 
see below). But in 1969, low temperatures in the normal pupation period resulted 
in a reduced emergence, not because of fewer larvae, but because of a failure of 
larvae to pupate. 

TABLE 2. Timing of emergence of Tipulidae and Trichoceridae, 1967-1969. 

1967  1968  1969 

T. carinijirons males 
Median  capture  date 
Middle  67 % (days) 
Middle  95 % (days) 
Total number captured 

T. curinijirons females 
Median  capture  date 

Middle 95 % (days) 
Middle 67 ”/, (days) 

Total number captured 

Median  capture  date 
Middle  67 % (days) 
Middle  95 % (days) 
Total number captured 

Median  capture  date 

Middle 95 % (days) 
Middle  67 % (days) 

Total number captured 

Median  capture date 

Middle  95 % (days) 
Middle  67 % (days) 

Total number captured 

Median  capture  date 

Middle  95 % (days) 
Middle 67 % (days) 

Total number caatured 

P.  gracilistyla males 

P.  hannai males 

P.  hannai females 

Melusina saltator (Trichoceridae) 

11 July 
7.3 

15.3 
671 

12  July 
5 .3  

13.2 
158 

9 July 
8.3 

16.1 
80 

11 July 

12.7 
6.3 

515 

11 July 
5 . 1  
8.6  

66 

30  July 
11.6 
31 .O 
138 

13  July 
7.4 

19.3 
293 

14  July 
8 .9  

23.5 
58 

. .. 

15  July 
5 .O 

10.5 
67 

16  July 
4 . 4  

13.9 
861 

15 July 
4 .5  

11.4 
52 

20 July 
14.1 
24.0 

58 

12  July 

30.2 
11.6 

136 

9 

10 July 
6 . 2  

1 1 . 1  
26 

12  July 
6 .2  

15.2 
353 

1 1  July 
3.8 

12.6 
29 

29  July 
10.1 
33.9 

73 

Characteristics of the seasonal timing of activity of adult Tipulidae are sum- 
marized in Table 2. In all three years for which data  are complete, the median 
captures for the 3 species  fell  within a 3-day period. Thus there is a very strong 
interspecific  synchrony of adult activity. All 3 species  showed  similar changes 
in the date of median  emergence: earliest in 1967, latest in 1968, intermediate 
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in 1969. The magnitude of change was greatest in P .  grucilistylu, which  occupies 
the lowest  (wettest) habitat, and least  in T .  curinifrons, which  occupies the most 
elevated (dryest) habitat. This can be related to pattern of snow  melt: In 1968 
cold  weather  between 16 and 21 June resulted in a protracted melt-off;  elevated 
sites  were  exposed  normally,  while  low-lying  sites retained their snow  cover later 
than usual. This difference  in date of exposure  and onset of growth  could  influence 
the timing of pupation, which  begins  only 2 to 3 weeks later. The degree of 
retardation matches the habitat characteristics of the 3 species.  Although  the 
magnitude of change (6 days  in P. gracilistyla, 5 days  in P. hunnui) was  small, 
especially  by temperate-latitude standards, its effect  is  magnified  by  the short 
duration of the period  activity. 

Intraspecific  synchrony of activity  was more  pronounced in P. grucilistylu and 
P .  hannai than in T .  curinifrons. T .  carinifrons is more eurytopic in larval habitat 
than the other species (MacLean, unpublished  results), and thus is  subject to a 
wider range of melt-off dates and conditions for growth and pupation. 

In 1968 the period of activity of T .  curinifrons and P. hunnai began  gradually, 
but ended abruptly. Both  species  went from their  seasonal  mode to low  numbers 
in  successive  3-day periods, even  while  the  weather  remained  warm. In fact, the 
period of abrupt decline  in  numbers  in T .  curinifrons was the period of peak catch 
of P. hannai. It appeared that, under  the warn conditions,  all  crane-flies that 
began pupation quickly  completed it and emerged as adults, leaving none to 
emerge later in the season. 

The cold  July of 1969 resulted  in a prolonged  period of activity of T .  curinifrons 
and P. hunnai. This is  evident  in  the  period  encompassing 95 per cent of the 
catch of these  species. 

These data seem to indicate a more  synchronous  emergence in female than 
in  male P. hannai; however,  Hadley (1969) interpreted the small  difference  be- 
tween  sticky-trap  catches and direct enumeration of emerging adults as  indicating 
greater locomotory  activity in flies  emerging into a low  density population, i.e., 
early and  late in the emergence  period. This would increase the probability of 
capture and thus flatten the apparent emergence  curve. In P. hannai the  male  is 
the  more  mobile  sex  and  would  be  effected more by this  phenomenon. The sexual 
difference  shown  in Table 2 may  reflect  locomotion rather than abundance. 

The winter  crane-flies (Trichoceridae) are closely related to the Tipulidae. At 
Barrow,  this  family is represented by a single  species, Melusinu  sultator Harris 
(Hurd 1958). In 1966 the number of captures of this  species was not recorded. 
In  the following years, 138 (1967), 58 (1968), and 73 (1969) were trapped. In 
each year the median capture occured  in late July, after the median captures of 
the 3 tipulid species (Table 2). The later period of emergence  gives the larvae 
of this species  more  time to be  influenced  by  prevailing temperature conditions, 
In the warm  season, 1968, the emergence of M. saltator was  significantly  advanced 
and compressed  in duration compared  with 1967 and 1969; however, there was 
no  evident  effect of temperature on the total numbers captured. 

Five other families of the suborder Nematocera are represented at  Barrow 
(Hurd 1958): Chironomidae (40 to 50 species),  Culicidae (1 species),  Mycetophi- 
lidae (7 species),  Sciaridae (8 or  more species), and Cecidomyiidae (1 species). 
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4000 a 

FIG. 5. Abundance of adult 
Nematocera (Diptera)  other 
than Tipulidae near  Barrow, 
Alaska, 1965-69. 
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These were counted together  as  “small Nematocera” in 1966 and 1967. The 
Cecidomyiidae are actually  much  smaller than the others. They are, apparently, 
too small to serve  as  prey for the insectivorous birds whereas the other families 
are used  extensively  (Holmes 1966b; Holmes and Pitelka 1968). In 1968 and 
1969 this  difference  was  recognized and the Cecidomyiidae  were counted sepa- 
rately from the other “small  Nematocera”. The distinction  was made  on the basis 
of size, and it  is  possible that some  very  small  species of the other families  were 
counted  with the Cecidomyiidae. Thus this group is  distinguished  collectively  as 
“micro-Nematocera”,  defined as flies  with a total length of 2 mm. or less. 

The number of flies of these  groups trapped on the sticky-boards is  shown on 
Fig. 5. In all  years there was a peak  in abundance in midJuly followed  by a sharp 
decline,  with  very  few  flies trapped in  August. This midJuly peak  is  synchronous 
with the peak in abundance of the tipulid  species. In 1967, 1968, and 1969 the 
July  peak of the 2 groups  fell  in the same  3-day  sample  periods.  Unlike the  Tipu- 
lidae, the other Nematocera showed another peak in abundance earlier in the 
season in the 3 years for which the data are complete. In 1969 this peak  consisted 
entirely of micro-Nematocera and fell at the end of June. In 1968 the  peak oc- 
curred later in the season and consisted of both small  and  micro-Nematocera. In 
both years the emergence of micro-Nematocera occurred significantly  earlier in 
the season than the emergence of species  grouped  together as small Nematocera. 
In 1967 an early  season peak occurred in the first  sampling period in July, com- 
parable to the similar  peak  in 1969. The distinction  between  small and micro- 
Nematocera  was not made in 1967. In 1967 and 1968 the early  peak  was  smaller 
than the later peak, whereas in 1969 the  early  peak  was the larger. 

The total number of flies of these  groups trapped on the sticky-boards  increased 
strongly from 1966 through 1968. The increase of more than 100 per cent from 
1967 to 1968 may  be,  in part, a result of the warm  weather of 1968. For instance, 
in  most  years  mosquitoes  (Culicidae) are uncommon near Barrow;  however,  in 
1968 they  were  common and were  frequently trapped on the boards. In the cold 
1969 season the catch of these  insects  decreased  markedly,  even more than that 
of the Tipulidae. The catch of small Nematocera was 33 per cent, and of micro- 
Nematocera, 34 per cent, of the catch of these  same  groups  in 1968. It is  possible 
that this  reduction  was, in part, the result of drying and shrinkage of ponds  in 
August of 1968, which  reduced the amount of favourable habitat for aquatic 
Nematocera,  especially  Chironomidae.  None of the trapping boards, however, 
was adjacent to a pond and we believe that the majority of the Nematocera cap- 
tured were terrestrial species.  As is shown  below, the captures of small Nematocera 
were distributed about equally in 3 major terrestrial habitat divisions, and the 
reduction from 1968 to 1969 involved  all of these habitats. 

Hurd (1958) identified 15 additional families of Diptera near Barrow; in  this 
analysis  they are grouped together as Brachycera, sensu lato. Of these the Mus- 
cidae, and especially  the  genus Spilogona (11 species now  known from Barrow), 
are most abundant. In fact, the Brachycera, sensu stricto, are represented by but 
3 species  in 2 families  (Empididae,  Dolichopodidae), and these  did not contribute 
significantly to the numbers captured. Most of the captures were  members of the 
genus Spilogona. 
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25j 1 , b"l FIG. 6. Abundance of adult 
Brachycera, sensu lato (Diptera), near 
Barrow, Alaska, 1965-69. 
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Fig. 6 shows the patterns of relative abundance recorded for these  flies. The 
seasonal peak of abundance of this group is  less pronounced than in the Nema- 
tocera discussed  above.  Still, in each of the 4 seasons,  maximum numbers were 
trapped in mid-July  and  few  were trapped in August. 

Unlike the Nematocera, the numbers of Brachycera increased  steadily through- 
out the study (1966-67, + 100 per cent; 1967-68, + 79 per cent; 1968-69, 
+ 42 per cent). The abundance of Brachycera is thus not clearly related to 
weather  conditions. It is probable that the increase involves  only one or several 
of the species of Spilogona. For instance, the increase in number.captured  1968 
to 1969 resulted from the appearance of several peaks before the main  mid-July 
peak. Each of these early peaks  may  reflect a large emergence of one species. 

HYMENOPTERA 

The family Tenthredinidae is one of the relatively  few  families of herbivorous 
insects found near Barrow (Hurd 1958). Adult sawflies  were present at the first 
sampling interval in June and decreased to zero by late July  (Fig. 7). In 1967 and 
1969 maximum numbers were trapped in late June and early July. In  1968, in 
contrast, sawflies  increased in abundance to a peak in mid-July, then declined 
rapidly. Like the Brachycera, the sawflies increased in numbers throughout the 
4 seasons of this  study. They were  uncommon in 1966, although the data for that 
season are not complete. They increased 28 per cent from 1967 to 1968, and 
67 per cent from 1968 to 1969; no relationship with  weather conditions is  evident. 
The association of this increase with the recovery phase of the lemming  cycle  is 
again  suggested. The sawflies  feed primarily upon willow  leaves  and  while  lem- 
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FIG. 7. Abundance of adult 
Tenthredinidae  and  Braconidae + Ichneumonidae 
(Hymenoptera)  near 
Barrow, Alaska, 1965-69. 

mings  usually concentrate on grasses and sedges,  in  cyclic  highs  they  browse 
willow  twigs and it can be  assumed that they  influence  foliage production in suc- 
ceeding  years. 

The catch of Braconidae and Ichneumonidae is  also  given in Fig. 7. Hurd 
(1958) listed 1 species of Braconidae and 17 species of Ichneumonidae collected 
near Barrow. Thus the latter family  is the more important in  this  grouping. The 
group differs from all other insect groups recorded on the sticky-boards in reach- 
ing maximum abundance in late July and August. In 1968 and 1969 many  were 
trapped in the last sampling period in late August, just before tundra freeze-up. 
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Braconids and ichneumonids are parasitic on other insects. The adults appear 
after the larvae of other insects  have hatched  and grown to sufficient  size to be 
parasitized. The  numbers of braconids and ichneumonids  increased  from 1966 
to 1968 then declined  in 1969. Only the small and micro-Nematocera  exceeded 
this group in total number captured. 

Another  group of parasitic Hymenoptera, members of the  superfamily  Chalci- 
doidea (probably Anaphes alaskae, family  Mymaridae;  one  species of the family 
Pteromalidae was  also recorded by Hurd),  appeared in abundance  on  the  boards 
in 1969. They  were trapped most  frequently in the latter half  of July, but were 
also trapped throughout August. Thus their seasonal  activity period overlapped 
that of the Braconidae and  Ichneumonidae but the peak in  numbers occurred ear- 
lier in the season. 

TRICHOPTERA 

Hurd (1958) recorded  caddisflies  belonging to 3 families  (Limnephilidae, 
Brachycentridae,  Phryganeidae)  in  the Barrow area. The species  making up 
nearly all of our catch was  identified  by H. H. Ross (in letter 30 August 1968) 
as Lenarchus expansus Martynov  (Limnephilidae).  Unlike  most  caddisflies the 
larvae of this  species are not found in streams and ponds but occur  in saturated 
tundra sod (MacLean, unpublished data). The emergence of adults occurs  be- 
tween midJuly and mid-August, and is thus later in the  season. than- the emer- 
gence of most other adult insects in the Barrow area. 

More adult Trichoptera were captured in 1969 than in  any  previous  year of 
this  study (1966 - 26; 1967 - 14; 1968 - 20; 1969 - 50). This pattern (least 
in 1967, most  in 1969) was not recorded for any other group and its significance 
is not clear. The emergence  was not noticeably  inhibited by  cool  weather. The 
numbers of trichopterans (and other groups  mentioned  below) are small, but they 
do represent the take in a large systematic  sampling  effort, and accordingly can 
suggest  degrees of relative abundance in spite of the smaller  absolute  differences 
year to year. 

COLEOPTERA 

Very  few  beetles  were trapped on the sticky boards (1966 - 4; 1967 - 10; 
1968 - 1 ;  1969 - 0). Most of these  belonged to the families Carabidae  and 
Staphylinidae.  Beetles are more readily captured in pitfall traps (Bohnsack, 1968). 
A series of pitfall traps that  produced numerous carabid and staphylinid  beetles 
in 1967 produced  none in 1969. Thus although the sticky-board  results are 
scanty  they apparently reflect  a true decline  in the abundance of beetles. 

HEMIPTERA 

Hurd (1958) noted  only 2 species of Hemiptera near Barrow: Hardya youngi 
Beirne  (Cicadellidae) and Chiloxanthus stellatus (Curtis) (Saldidae). Both of these 
differ from the insects  discussed  above  in  having immature  forms (nymphs) that 
are active on the tundra surface (Ginger 1960), and  are thus subject to sticky- 
board trapping. As a result, no seasonal  peaks are evident for these  species; the 
relatively  few  animals  caught  were distributed evenly throughout the summer 
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season. The total catch in the 4 seasons of sampling  varied  widely. The herbiv- 
orous leaf-hoppers,  like the Tenthredinidae, increased  in  number, at least  from 
1967 to 1969.  (1966 - ?; 1967 - 4; 1968 - 7; 1969 - 19). The predacious 
Saldidae alternated years of greater and lesser abundance (1966 - 1 ; 1967 - 9; 
1968 - 1; 1969 - 9). The small  number of captures of Hemiptera probably 
reflects  their  scarcity  near  Barrow,  since  they are also  rarely captured by other 
sampling  techniques. 

SPIDERS (ARANEAE) 

One species of  wolf spider  (Lycosidae) and 10 species of Linyphiidae are 
known from  the Barrow area (Hurd 1958). Hurd, Pitelka, and Britton (unpub- 
lished manuscript) reported that 90 per cent of their total spider  collection  be- 
longed to 2 species of Linyphiidae  with the wolf spider “. . . found sparingly on 
high tundra.” The lycosid  is a large, robust species and was not trapped on the 
boards. All captures shown in Fig. 8 are of linyphiid  spiders. There were,  how- 
ever,  changes  in  composition of species,  with  the  most  common  species in 1968 
noticeably  different  from that trapped most  frequently  in other years. 

Immature spiders are active on the tundra surface and were trapped frequently. 
In 1966, 1967 and 1969 spiders  were  most abundant early  in the season.  Most of 
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these, particularly in 1969, were  very  small. In 1968, in contrast, maximum  num- 
bers  were captured in August.  Many of these  were  immature. Either the different 
species  have  different  breeding  seasons or the warm  weather of 1968 led to rapid 
hatching and development of young. The first alternative seems more likely. 

TABLE 3. Proportion (per cent) of catch occurring in three major terrestrial 
habitat divisions:  Diptera1. 

m 

1967 Wet 22.5  14.6  22.8  45.0  36.1  36.5  58.7 
Mesic 45.7  40.2  34.2  47.5  53.1  52.4  19.9 
Drv 31.8  45.2 44.0 7.5  10.8  11.1  21.4 
N -  I38 671 158 80 7  507 63 34,775 

1968 Wet 19.0  6.8  10.3  50.7  69.9  69.2 75.8 30.2 
Mesic 48.3  43.0  60.3  37.3  21.0  19.2  15.1  38.2 
Dry 32.8  50.2  29.4  12.0 9.1 11.5 9.1 31.6 
N 58 293 58 67 9 861 52 23,582 50,429 

1969 Wet 20.6 11.8 69.2 68.3 72.4 88.9 21.6 
Mesic 43.8 43.4 15.4 25.8 20.7 6.7 45.8 

77 176 
5.9  6.9  4.4 32.6 

9 26 7 357 29 9.072  15.416 
E Y  35.6 44.8 15.4 " _  

Total -Wet 21:: 12.2  19.6 50,9 65.2 5917 5 5 3  79.5  28.2 
Mesic 45.7  41.4  41.3  38.7  21.7  31.4  34.0  12.8 40.0 
g . Y  33.1  46.4  39.1  10.4  13.0  8.9  10.4  7.7 31.8 

269 1,100 225  173  23  1,725 I44 32,654 65,845 

37.2 
24.6 
38.2 

2,731 
31 .O 
31.8 
37.2 

~~ ~ 

4,886 
39.5 
36.2 
24.3 
6,920 
36.2 
32.6 

14,537 
31.2 

~~ ~~ ~~ 

'Yearly habitat distribution data  are  not given for groups with 20 or less occurrences. 

TABLE 4. Proportion (per cent) of catch occurring in three major terrestrial 
habitat divisions: Arthropods other than Diptera1. 

1967 Wet 
Mesic 
g . Y  

1968 Wet 
Mesic 
Dry 
N 

1969 Wet 
Mesic 
Dry 
N 

19.6 
47.2 
33.2 

163 
29.7 
34.9 
35.4 
212 

28.8 
43.2 
28.0 
354 

25.5 
27.8 
47.7 
1,064 

29.4 
37.6 

33 .O 
1.577 
~ 1-  

35.3 
30.4 
34.3 

1,199 

Total Wet 27.0  33.4 
Mesic 41.7  29.1 
Dry 31.3  37.5 
N 729 3,840 

42.3 
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1,181 
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20 
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50 
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7 I 
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52.5 
27.0 " . . 
20.5 
200 

83.7 
7.6 

289 
8.7 

81.9 
10.9 
7.2 
949 

73.8 0 21.0 78.2 
16.7 13.3 15.8 12.4 
9.5 86.7 63.2 9.4 
84 30 19 1,438 

lYearly habitat distribution data  are  not given for groups with 20 or less occurrences. 
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The total number of spiders captured increased  each  year from 1966 to 1969. 
Since the major  increase  in 1969 involved  large  numbers of small spiders, the 
increase in  biomass  was  much  less than the increase  in  numbers  shown  in Fig. 8. 

HABITAT DISTRIBUTION 

At each of the 2 sample  sites 2 boards were  placed on wet  meadow tundra, 
2 on mesic tundra, and 2 on relatively dry, elevated tundra. Wholly aquatic hab- 
itats were not sampled. By comparing the catch of the various taxa in  these 
habitats we can reveal the distribution of each  taxon along the moisture  gradient. 
This is  shown for the Diptera in Table 3 and for the other taxa in Table 4. The 
analysis pertains only to the 3 seasons for which data are complete. 

Of the 3 species of Tipulidae, T .  curinifruns was most  frequently captured on 
mesic and dry habitat, whereas  the others were more often captured on wet 
habitat. The difference  between  male and female T .  curinifrons was  significant, 
indicating that females  were more likely to be  found  on wet habitat than males. 
(All statements of significance  refer to the chi square test for homogeneity of 
distribution, interpreted at the 0.05 level.) The differences  in habitat distribution 
between the sexes of P.  gracilistyla and P .  hannai were not significant. 

Significant  year-to-year  differences  were found in habitat distribution of the 
catch. For instance,  in 1967 both male and female P.  hannai were captured less 
frequently on wet tundra than in other years. In the same year T .  curinifrons were 
captured more often on wet tundra than in later years. Thus, the patterns were 
not consistent for the  several  species. 

The majority of the captures of Trichoceridae occurred on mesic and dry 
tundra. There was  very little year-to-year variation in habitat distribution. 

Micro-Nematocera  were trapped predominately on wet tundra, whereas  small 
Nematocera occurred on all three habitats. The effects of habitat preference by 
individual  species are no doubt cancelled out in a large heterogeneous  assemblage 
such  as  small  Nematocera. The micro-Nematocera  consisted  almost  entirely  of 
a single  species of the  family  Cecidomyiidae,  and the preference of that species 
for  wet habitat is evident. The effect of cancellation of habitat preferences is also 
seen in the Brachycera, Tenthredinidae, and parasitic Hymenoptera; that is, these 
data reveal no strong habitat selection in those  groups.  Year-to-year  changes  in 
habitat distribution of those  groups  probably  result from changes  in abundance 
of the species  making up the group. 

The Trichoptera we trapped preferred wet  meadow habitat. This preference 
was most  strongly  expressed  in  the  year of maximum abundance.  Perhaps when 
density is lower there is  more  dispersal in search of mates than in  years of higher 
density. 

The 2 species of Hemiptera were  most  frequently captured on dry habitat. Of 
the 30 captures of Cicadellidae, 26 were on  boards  on dry tundra, as were 12 
of 19 captures of Saldidae. This apparent preference of Saldidae for dry tundra 
is  somewhat  surprising,  since  bugs of this  family are most  commonly  found  along 
the shores of streams, ponds, and the ocean, or in  bogs and marshes (Borror and 
DeLong 1964; Usinger 1956), but the same  was found by  Usinger (1960). 
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The spiders strongly preferred wet habitat. This occurred in all  years,  even 
though species  composition  changed. Challet and Bohnsack (1968) found more 
spiders along transects through polygon troughs and through a low,  wet  swale 
than along transects on a xeric slope and across polygons. Our results agree 
with their observations. 

The habitat distribution data, taken together, indicate that habitat preferences 
are expressed as frequencies of occurrence on the various habitat types rather 
than restriction to one or two of the 3 habitat divisions. This occurred for single 
species  as  well  as for multi-species  assemblages.  Only the Cicadellidae, of which 
merely 30 were captured, showed complete avoidance of one of the major hab- 
itat divisions.  Egg  laying and larval distribution, however,  may occur with greater 
habitat specificity. Individuals of various species and groups recorded on other 
than the preferred habitat may have been captured during a dispersal phase of 
the life  cycle. 

DISCUSSION 

The order Diptera is  clearly a very important element of the tundra fauna. Of 
the arthropods, only the mites  and  collembola  exceed the Diptera in abundance 
(Challet and Bohnsack 1968), and only the mites include more species  (Bohnsack 
1968). Since  individuals of these  two groups are much  smaller than most of the 
Diptera the total biomass of the mite and collembolan fauna is probably com- 
parable to that of the flies. Other tundra arthropod groups are  far less abundant. 
More than 95 per cent of the arthropods comprising the samples for this  study 
belonged to the order Diptera. 

A striking feature of tundra arthropod populations is the sharp peak  in surface 
activity  in  mid-July  followed by a rapid decline. This is  largely a product of the 
dominance of Diptera, since the other taxa reach seasonal peaks at other times 
(Hymenoptera, Trichoptera, Araneae), or, apparently, not at all (Hemiptera). 
Two possible advantages of a synchronous emergence, per se, are: 1) increasing the 
probability that, in  relatively  short-lived  species, the sexes  meet for production; 
2) reducing the impact of predation on a vulnerable phase of the life cycle  by 
“swamping” the predators. The first advantage pertains to  intraspecific  synchrony 
only,  whereas the second advantage would be enhanced by inter- as well  as 
intra-specific synchrony. The fact that the 3 species of Tipulidae and the majority 
of other Nematocera as well reach their seasonal peaks synchronously in mid-July 
argues for the importance of the second advantage. The major predators, the 
shorebirds, feed on the more accessible  surface-active arthropods, supplemented 
by larvae as  necessary. At the height of the July  emergence period, the avian 
predators feed  almost  exclusively on adult insects but can consume only an insig- 
nificant part of the total. When  fewer adults are emerging per day the proportion 
lost to predation may  be  much greater. This could provide a strong selective  pres- 
sure favouring individuals  emerging near the peak period. 

In the past, synchrony of activity has been attributed to the short arctic grow- 
ing season. However, it is clear from Fig. l that the abrupt decline in adult activ- 
ity occurs as the temperatures are reaching their seasonal peak. There is  no 
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evident climatic change in late July of sufficient magnitude to explain the abrupt 
decline  in  emergence of adults of many groups. While it is true that time  must be 
allotted for hatching of eggs and larval growth  before  winter, it seems  unlikely 
that an identical period would  be required by each of the species of this  diverse 
POUP. 

Synchronous emergence, of course, is not limited to flies in arctic regions. 
Hadley (1969) documented the emergence of Molophilus ater Meigen, a small 
crane-fly of the subfamily Limoniinae, on bogs of the Moor House National 
Nature Reserve in Great Britain. He found a degree of synchrony comparable 
to that of Pedicia hannai at Barrow. At Moor House, however, the various species 
of Tipulidae emerge out of phase (Coulson 1969). It may be  that the Moor House 
area (high Pennines) lacks an abundant predator fauna to make predator swamp- 
ing an important adaptation or that, with the much  longer  growing  season  and 
predominately annual life  cycles, the advantages of reduced competition by 
temporal separation are more important than possible reduction of predation. 

Although adult shorebirds take both adult and larval insects, the newly hatched 
birds are dependent upon adult prey for the first 2 weeks of life (Hurd and 
Pitelka 1954; Holmes and Pitelka 1968). Thus, the adult birds must time their 
breeding so that the young reach this  age before the decline in availability of 
adult insects. This may explain the abrupt termination of egg-laying  by shorebirds 
in late June, when  availability of surface-active prey  is increasing rapidly (Mac- 
Lean 1969). 

Among the external factors likely to influence  year-to-year variations in arthro- 
pod abundance are essentially random variations in weather conditions and the 
more regular cycle of tundra disturbance and recovery  associated  with  lemming 
abundance. In this  study  only the Tipulidae, “small” Nematocera, and Ceci- 
domyiidae  showed  clear  changes in abundance which  could  be related to weather 
conditions. In the Tipulidae this  consisted of a decrease in adult numbers in the 
cold  season. In the other Nematocera there was a large increase in the numbers 
of adults captured in the warm  season  as  well. A similar pattern was  seen  in the 
parasitic Hymenoptera (Braconidae and Ichneumonidae); however, the changes 
in number captured were of lower magnitude than in the Nematocera. More data 
are needed before such changes  may  be attributed to weather patterns. 

Changes in adult abundance associated  with weather may  be attributed to  dif- 
ferential survival of larvae and pupae, or to altered timing of life  cycles.  Sampling 
of larval populations of crane-flies indicates that these  insects require several 
growing  seasons  to complete larval development (MacLean, unpublished results). 
Prolonged larval development, apparently, also occurs in the Chironomidae, since 
large larvae are found at all  times of the season, including the period just after 
adult emergence. This was  observed in the Chironomidae of tundra ponds by 
Oliver (1968) as well.  As indicated previously, there was no decrease in the den- 
sity of P.  hannui larvae associated  with the reduced emergence of 1969. Thus, 
the mechanism of response to weather appears to be to extend the larval period 
when conditions are adverse and to speed  development  when conditions are 
favourable, thus varying the number of emerging adults. Insects with  obligatory 
one-year  life  cycles do not enjoy  this  flexibility;  they  must  complete  development 
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and risk  emergence regardless of conditions. Unfortunately, the life  cycles of very 
few tundra insects have been  worked out; however,  preliminary  evidence gathered 
in 1970 indicates that muscid  flies of the genus Spilogona and the winter  crane-fly 
Melusina saltator, both of which  showed no decrease in abundance in 1969, have 
one-year life cycles. 

The relationship of arthropod abundance to the lemming  cycle,  first  critically 
noted by Weber (1950b), is  difficult to evaluate without more information on the 
effects of lemmings on the tundra  and on the diets of the arthropods. Of the 
arthropods considered in this study, the Tenthredinidae, Cicadellidae,  Ceci- 
domyiidae and, possibly, Trichoptera are herbivorous. These use  different plant 
species and parts. The sawflies feed on the leaves of prostrate willows  and a few 
other vascular plants (e.g., Petasites frigidus); the leafhoppers feed on grass  leaves, 
probably Festuca (H. H. Ross, personal communication); the terrestrial caddisflies, 
if they are herbivorous, probably feed on grass and sedge roots; the cecidomyiids 
are gallformers.  All of these  insects increased in abundance during the study, al- 
though  they  were  never common. If their increase is related to the lemming  cycle 
it must be via the very  general  effect of recovering  vegetation to cause a similar 
response in these  functionally  diverse herbivores. 

The predatory arthropods include spiders, larvae of P .  hannai (Tipulidae), 
most of the Coleoptera, and Saldidae. Additionally, several  species of parasitic 
Hymenoptera occur in the Barrow area. Spiders increased in abundance through- 
out the study. Pedicia hannai peaked in 1968, as did the parasitic Hymenoptera. 
Coleoptera and Saldidae peaked in 1967 and then declined  sharply in 1968 
(based on few captures). Thus no common pattern is  evident.  However,  if the 
1969 decline in P .  hannai is attributed to weather, it may be  that they  generally 
increase in abundance through the recovery phase of the cycle and thus resemble 
the spiders. 

Most of the Diptera that occur near Barrow are saprovores. The two sapro- 
vorous  species of Tipulidae, T .  carinifrons and P .  gracilistyla, and the single 
species of Trichoceridae were most abundant in 1967, two seasons after the 
lemming  high. The small Nematocera were  most abundant in 1968.  The Brachy- 
cera (or, at least, Spilogona spp.) increased in -abundance each year from 1966 
through 1969. Thus these groups of saprovores reached peaks  in  successive years. 
If these  changes are related to the lemming  cycle,  they  would  suggest that each 
of these groups acts on dead organic matter at a different  stage of decomposition, 
i.e., there is a successional sequence of saprovores acting upon the pulse of 
organic material which enters the saprovore food chain following the lemming 
high. The Trichoceridae and saprovorous Tipulidae may feed on the material 
soon  after  it  becomes  available. Abundance of food could result in high  survival 
of larvae leading to a peak 2 years after the lemming  high,  with  some effect 
remaining in  the Tipulidae after 3 years, since a complete  life  cycle probably 
takes 3 years  in T .  carinifrons and P .  gracilistyla (MacLean, unpublished results). 
The other Nematocera might feed only on material that had been  processed by 
Tipulidae or otherwise altered through time. Thus the effect of the lemming  activ- 
ity would  be evident in this group later than in the others mentioned above. 
Finally, the Brachycera may represent yet a later phase in the reducer sequence. 
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This hypothesis is highly speculative and requires observation through additional 
cycles of tundra disturbance and recovery as well  as examination of the gut 
contents of larvae. 

Regardless of their cause, variations in the abundance of tundra arthropods 
of the magnitude recorded in this study must have an influence on other com- 
ponents of the tundra ecosystem. We might expect that  the reduced availability 
of arthropods in the 1969 season would have a negative  effect on the growth and 
survival of insectivorous birds; however, the supply of adults is abundant and the 
prolonged period of their emergence  would make the readily  accessible adult 
prey available for a longer period of time.  Similarly,  low numbers of arthropods 
coupled with a reduction in metabolic rate resulting from low temperatures must 
have severely retarded the rate of energy flow and nutrient release associated with 
this important segment of the  tundra fauna. Clearly, the patterns of interaction 
of arthropods with other ecosystem components are complex. These various 
effects must receive more attention if we are to understand the functioning of 
the tundra ecosystem, and in particular the roles played by various  insect groups 
in  decomposition phases of nutrient cycles. 
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