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ABSTRACT. Control data on the  ice algal bloom  at  Cape Hatt, northern Baffin Island, during 18 May-2 June 1982 were typical of those at other arctic 
locations. Ice algae were dominated by  pennate diatoms (80% of total cells), particularly Nitzschia grunowii (55%) and N. frigida (15%). In various 
locationsandsamplingperiods,celldensitiesrangedfrom1.7-384.7 X 107cells~m~z,andchlorophylluconcentrationsrangedfrom3.4-l6.7mg~m~’;both 
increased over the study period. Mean productivity rates based  on particulate radiocarbon fixed  were from near zero to 2.95 mg Cm’.h-l. Dissolved 
organic radiocarbon concentrations were almost always higher than particulate radiocarbon concentrations, probably because of cell  rupture. Total 
(dissolved + particulate) productivityrates were up to 12.7 mg  C.m-’.h-’, withanoverall meanof4.4 mgC.m-‘.h-’ incontrol  samples. Productivity and 
productivity per unit chlorophyll increased during May  and decreased slightly by 1-2 June. 

Undisturbed, enclosed areas of  the under-ice surface were  treated  with  oil  on 23-24 May. Dispersed oil (Venezuela Lagomedio crude + Corexit 9527, 
BP CTD, or BP 1100 WD) was  in contact with  the  ice for 5 h, whereas  untreated oil and solidified oil (BP treatment) remained in the enclosures  for the 
duration of the study (12 days  post-treatment). Sampling was carried out in areas where oil contacted the ice and  moved  away or in areas near oil that 
remained in contact with the under-ice surface. Five hours after treatment, oil concentrations in the  water  within  the enclosures were similar (O. 15-0.28 
ppm) in untreated oil, solidified oil and control enclosures. In contrast, dispersed oil concentrations were 5.8-36.5 ppm. No adverse effects of any oil 
treatment on ice algae were detected in analyses of group composition, cell densities, chlomphylla concentrations, productivity, productivity/chlorophyll 
or ratios calculated to standardize for  light  effects. Untreated and solidified oil may  have stimulated ice algal growth and productivity near (but not in) the 
oiled areas. 
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&SUMÉ. Les données de contrôle sur le développement des algues glaciaires au cap Hatt, au  nord de l’île  Baffin, relevdes entre le 18 mai et  le 2 juin 
1982, ont été semblables àcelles obtenues dans d’autres dgions arctiques. Les algues glaciaires Wen t  en grande partie composées de diatomées pennées 
(80% des cellules au total), surtout de Nitzschiu grunowii (55%) et de N. frigida (15%). A plusieurs endroits et durant plusieurs périodes 
d’échantillonnage,lesdensitésdescellulesallaientde1,7à384,7 X lO7cellules~m~2,etlesconcentrationsdechlorophylleual1aientde3,4à16,7mg~m~2; 
ces deux densités ont augmenté au cours de la dude de I’étude. Les taux  moyens de productivitd  basds sur le radiocarbone fix6 sous forme de particules, 
allaient de prks de O à 2,95 mg  C.m-’.h”. Les concentrations de radiocarbone organique dissous dtaient presque toujours plus élevdes que celles du 
radiocarbone sous forme de particules, probablement à cause de la rupture cellulaire. La  somme des taux de productivit6 (dissous et sous forme  de 
particules) atteignait 12,7 mg C d . h ” ,  avec une  moyenne  géndrale de 4,4 mg Cm-’.h” dans les échantillons tdmoins. La productivité totale et  la 
productivité par unité de chlorophylle ont augmenté durant mai et avaient diminué légèrement au 1“ ou au 2 juin. 

Des endroits non perturbés et fermds de la surface de la glace immergQ ont ét6 trait& avec  du  p6trole les 23 et 24 mai. Du  @&ole dispersé (Lagomedio 
du Vénézuéla avec Corexit 9527, BP CTD ou BP 1100 WD) a B t 6  en contact avec la glace pendant 5 heurs, tandis que du p6trole non trait6 et du p6trole 
solidifié (traitement BP) sont restés dans ces zones  ferm6es  pendant  toute  la dur& de  I’étude, soit 12 jours aprks le traitement. Des Bchantillons ont été 
relevés dans des endroits ob le p6trole avait touché  la glace et s’était déplacb, et dans des endroits proches de là ob le p6trole était resté en contact avec la 
surface de la glace immergde. Cinq heures apds le traitement, les concentrations de  fitrole dans l’eau à l’intérieur des endroits ferm6s dtaient semblables 
(de0,1580,28p.p.m.)dansleszonesfe~Qsexpo~esau~~olenontrai~,aufi~olesolidifi~etdansleszonestémoins.Parcontre,lesconcentrations 
de fitrole dispersé étaient  de 5,8 à 36,5 p.p.m. Aucun effet négatif de l ’ u n  des traitements du  p6trole sur les algues glaciaires n’a été détect6 dans  les 
analyses de composition des groupes, de densités cellulaires, de concentrations de chlorophylle a,  de productivitd, de productivité par unité de 
chlorophylle, ou de rapports calculds pour normaliser les effets de la  lumibre. Les fitroles non  traité et solidifié pourraient avoir stimuld la croissance des 
algues glaciaires et leur productivité p&s des zones traitdes au phole,  mais  pas à l’int6rieur de celles-ci. 
Mots clés:  arctique, algues glaciaires, productivité, effets dus au p6trole, effets dus au  p6trole disperse,  effets dus au pbtrole solidifid, île Baffin 

Traduit pour le journal par Ndsida Loyer. 

INTRODUCTION 

In spring, a  dense growth or bloom of microalgae occurs on and 
in the soft  bottom layer of arctic sea ice. This algal  layer  begins 
to develop in  April  and the bloom  peaks in May, after which 
time increased radiation and selective absorption  by  plant  pig- 
ments cause the layer to disintegrate (Homer, 1976,  1977). 
Productivity  of  ice algae during the relatively  short  bloom in 
April  and  May can be quite high. The bloom has been  estimated 
to provide between 6 and 33% of  the  total  annual  primary 
production in  various arctic locations (Alexander, 1974; Homer 
et al., 1974; Welch  and Kalff, 1975). In addition, this  bloom  is 
important  because its production  occurs  before  there  is  signifi- 
cant  production  by planktonic and  benthic  algae  during  the  open 
water season (Apollonio, 1965). Thus, ice algal  production  is 
available to herbivores earlier in  the  season  than  is  planktonic 
production (Dunbar, 1968). This  availability is further enhanced 

by the concentration of ice algae on the  bottom of the  ice and, 
near the end of the bloom, by their occurrence as macroscopic 
“detrital” masses on the under-ice surface and  in the water 
column (Cross, 1982a). 

Reviews of early published research on under-ice  biota  in  the 
Arctic are given by Homer (1976, 1977). Most of the  more 
recent studies describe ice algal species composition  and  bio- 
mass; few document primary productivity. Few  studies  have 
used scuba techniques, which overcome many of the difficulties 
and  sources of error associated  with  sampling and carrying  out 
experiments on  the ice bottom. 

In the event of a subsea oil blowout  under seasonal ice cover, 
large quantities of oil are likely to accumulate in the under-ice 
habitat. During ice break-up  in late spring/early summer, oil 
from  a  marine oil spill or blowout  may be transported  under fast 
ice edges by currents. Various  chemical  countermeasures  are 
under consideration for oil spills in  ice-covered  waters.  Effects 
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of chemically  treated  and  untreated oil on  under-ice  biota  should 
be understood  before  countermeasures  are chosen. Productivity 
and biomass of phytoplankton  under oiled ice  have  been  reported 
(e.g., Adams 1975), and  effects of oil and dispersed oil on arctic 
phytoplankton  and  ice  algae  have  been  tested in laboratories 
(Hsiao, 1978; Van Baalen  and O'Donnell, 1984). To my knowl- 
edge, the  only  previous in situ study of oil effects on  ice  algae is 
that of Cross (1982b). That study, carried  out at Cape Hatt, 
Baffin Island, in  May  198 1, concerned  short-term effects of oil 
and dispersed oil on ice algal  productivity  and  associated 
variables. The results of that  study  were  used in designing  the 
present one, which  was  carried out at  the  same  location  in  May 
1982. 

In this study, I attempted to create realistic  scenarios  for  the 
impingement  of oil onto the  under-ice  surface: low concentra- 
tions  of  dispersed oil contacting the  ice  for  a  short  period of time, 
and untreated  oil  and  solidified oil remaining in place on the 
under-ice surface. The productivity  studies  described  here 
address the effects of oil, solidified oil and  dispersed oil (three 
different chemical dispersants) on  ice  algal  productivity,  bio- 
mass, density and group composition. By using  spatial and 
temporal controls I  examined  the  initial  impact  on and subse- 
quent recovery of under-ice  algae  subjected to a single applica- 
tion of these treatments. 

The papers  in  this  volume  report  results of the  Baffin  Island 
Oil Spill (BIOS) Project, which  provided  administrative and 
logistic support for the  present  study (see Acknowledgements). 
The  BIOS Project assessed  the  use of chemical  dispersants  on  an 
oil slick in  arctic  nearshore  waters by comparing  the fate and 
effects of dispersed oil with  those  resulting  from  the  option of 
allowing the untreated oil slick to contact  the  beach and be 
removed  by  natural processes. The effectiveness of various 
shoreline cleanup techniques  was also evaluated in separate 
study areas. Sergy and  Blackall (1987) summarize  the rationale, 
design  and overall results of  the  BIOS  Project. 

METHODS 

Field Procedures 

Field studies were carried out during 14 May-2  June  1982 
from  the BIOS (Baffin Island  Oil Spill) Project base camp 
located at Cape Hatt, Baffin  Island  (72'27'N,  79'51'W). The 
study area consisted of a  shallow  embayment  (Bay  13) in 
Ragged Channel, some  3 km to the north of the  BIOS  Project 
study  bays (Fig. 1). All  under-ice  sampling  and  experimental 
work  was carried out by scuba divers working  through  a  hole in 
the ice over a  water depth of 10 m  and  about  200  m  from  shore. 

Under-ice  algae  were  treated in  situ with  crude oil (Venezuela 
Lagomedio), solidified oil (BP  treatment;  see  McGibbon et al.,  
1982), oil dispersed with  three different chemical  dispersants 
(Corexit 9527, BP  1100  WD  and  BP  CTD) and no oil (control). 
Each  treatment  was  applied to the under-ice surface within 
buoyant  plexiglass enclosures 1.2 m  in  diameter  and 30 cm  in 
depth (365 I in volume). High-density  foam collars held the 
enclosures  in contact with the under-ice  surface. There were  two 
enclosures for each of the six  treatments;  one  set of six  enclo- 
sures was established under the ice at each of two  locations 
(Locations  1  and  2) separated by approximately 30 m. 

Each oil-treated enclosure received 36.5 ml of oil, for  a 
nominal concentration of  100  ppm if the oil was  evenly dis- 
persed. Oil and dispersants (10:  1  ratio)  were  mixed  with  seawa- 
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RG. I .  BIOS site  at  Cape  Hatt, northern Baffii Island (72"27'N, 79"51'W), 
showing  the  location of the  study bay. 

ter in9 1 air-pressurized fiieextinguishers. Dispersed oil, untreated 
oil and  water (control and  solidified oil treatments)  were  intro- 
duced from the extinguishers into  the enclosures. In this  way, 
any disturbance of the under-ice surface that  resulted  from  the 
use of f i e  extinguishers was  similar for all treatments. Solidi- 
fied oil was  prepared at the surface, transferred to a  polyethylene 
bag  and  passively  introduced  into  the enclosure after  the  control 
injection of  water. The bottom  of each enclosure was covered by 
polyethylene sheeting only during the application of treatments. 
Dispersed oil was contained within  the  enclosures for a  period of 
4-5  h  and  then the bottom sheet was  removed; control, oil and 
solidified oil enclosures remained  covered  during  the  release of 
the dispersed oil to avoid cross-contamination, and  then  covers 
were removed. During the exposure period, water  within  the 
dispersed oil enclosures appeared  very murky, whereas  that in 
the other enclosures appeared clear. Untreated  oil  and  Solidified 
oil remained in localized areas (less than  10% of the  under-ice 
surface) within  the  enclosures  throughout  the  study (diver 
observations). Just before  the covers were  removed  from  enclo- 
sures, water samples from each enclosure were  collected  in 50 
ml polypropylene syringes and  frozen for hydrocarbon analysis. 

Sampling  was carried out  within  the  enclosures  during five 
periods, each consisting of  2  d: 18-19,21-22,26-27 and 28-29 
May  and 1-2 June. Treatments were  applied  on  23-34  May. In 
each of these 2  d periods, Locations  1  and  2  were  sampled  (or 
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treated) on the first and second day respectively. In  untreated 
and solidified oil enclosures, sampling was  carried  out  within 
the enclosures, but  not directly in  the oiled areas, which  covered 
less than  10% of the ice within  the enclosures. It  is  reasonable to 
assume  that  most biological processes  would  cease  directly 
above a  pool  of oil or a  mass  of  chemically  solidified oil, and 
hence  the  areas  sampled  were areas where  oil  contacted  the ice, 
but  moved away, or areas in near  proximity to untreated or 
solidified oil. 

Productivity  of  under-ice  algae was determined by a  modifi- 
cation of the standard 14C light and  dark bottle technique 
(Strickland and Parsons, 1972). The “bottles” in this  case  were 
cylindrical plexiglass chambers with  diameter  10 cm and  length 
15.3 cm (volume = 1202 cc). The chambers, which  were  open 
at one end, were  inserted  about  1-2 cm into  the  soft  bottom  layer 
of ice  within  the enclosures, and  14C-sodium  bicarbonate  (New 
England  Nuclear Corp. ) with  a  specific  activity of 53 mCi.mmo  1-I 
was injected to yield  a final concentration of 75.9 pCi.1”. 
Incubations began  between  1100  and  1200  h  and  continued for 
2-2.5 h. At the  end of the incubation periods, entrapped  ice was 
severed at the  tops of the chambers, the  chambers  were  capped 
and 1 ml of formaldehyde solution  (37%  w/w)  was  injected  into 
each. This use of formalin likely caused cell rupture, the  effects 
of which are discussed in  a later section. Incubation  chambers 
were  returned to the field laboratory  within 1-2 h after the 
incubation  period  and  processed  within  8 h. 

During each sampling period, three  replicate light chambers 
and one dark chamber were  used to incubate  ice (+ water) 
samples in each enclosure. Because each treatment  was  applied 
to two enclosures, there was  a total of six light and  two  dark 
chambers for each of the six  treatments  (48  samples)  in  each  of 
the five 2  d sampling periods. To determine  the  contribution of 
algae in  the  water to the above ice ( + water) incubations, water 
samples were  also  collected  immediately  beneath  the  ice  within 
the enclosures. One light and one dark chamber  were  incubated 
for each treatment  (12  samples)  in  each  period.  Separate  sam- 
ples  of ice (+ water)  were  collected  in  the same way  and 
returned  immediately to the field laboratory for the  determina- 
tion of salinity, alkalinity and  ambient  inorganic  nutrient  con- 
centrations. Salinity and alkalinity were  measured immediately, 
and nutrient samples were  preserved  with 1 or 2  drops of 
chloroform (samples for phosphate  and  ammonium  analyses) or 
2 drops of concentrated sulphuric acid  (samples for nitrate- 
nitrite analysis) before freezing. 

Light  was  measured  with  an  underwater  irradiometer  (Kahlsico 
model 268 WA3 10) below  the layer of ice algae  and  above  the 
algal layer (after scraping this layer away)  in each enclosure at 
the beginning of each incubation. Measurements above and 
below the ice algal layer were  averaged for subsequent  calcula- 
tions. Simultaneous measurements above the ice  were  made 
with  a surface cell so that  percent  transmission  through  the ice 
could  be calculated. A  recording  pyranometer  (Kipp  and Zonen, 
model CM-6) located  2 km away  recorded  incoming  radiation 
(W.m-2) during the study period. In situ radiation  was  calcu- 
lated as the amount of surface radiation  during the incubation 
period (W-h-m-2) multiplied  by  percent  transmission. 

Laboratory  Procedures 

Field Laboratory: Actual  sample  volumes  from  incubation 
chambers varied to a  maximum of 1350 ml and  were  sometimes 
very  low because a  few chambers leaked during transport  to  the 
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laboratory. There was, however, no way  in  which one sample 
could  have  contaminated another. Because  incubations  were 
carried  out in situ, leakage of  I4C from  the  chambers  during 
incubations likely was minimal. Data  from  chambers  where 
actual  volume  was < 1  100 ml(26 of  240  ice samples; 13 of 60 
water samples) were not  included in the analyses. The nominal 
chamber volume of 1200 ml was  used  in  calculations for all 
chambers. Ice in samples from incubation  chambers  was  allowed 
to melt at room temperature. Samples  were  then  stirred  thor- 
oughly  and  subsampled for particulate  radiocarbon (100 ml), 
dissolved organic radiocarbon (40 ml), chlorophyll a (50 ml) 
and density/species (400 ml) determinations. Particulate  radio- 
carbon and chlorophyll subsamples  were filtered through 
0.45 pm Metricel cellulose triacetate filters  (Gelman Sciences, 
Inc.) under  a  vacuum  pressure  of  200 mm Hg;  dissolved  organic 
radiocarbon subsamples were  filtered  through 0.45  pm silver 
filters (Selas Corp.) under  a  vacuum  pressure of 120 mm Hg. 
The use of two different vacuum pressures introduced error that 
is discussed briefly  in  a later section. After  particulate  radiocar- 
bon  subsamples  were filtered, the filters were  rinsed  twice  with 
15 ml filtered seawater and  placed  in  1 ml Cellusolve  (BDH 
Chemicals Canada Ltd.) in 20 ml borosilicate  glass  scintillation 
vials  (New  England Nuclear Corp.). After the filters dissolved, 
10 ml Aquasol  (New  England  Nuclear Corp.) was added and  the 
vials  were capped tightly. For dissolved organic radiocarbon 
subsamples, the first 20 ml filtrate was discarded, and  the  second 
20 ml filtrate was frozen in scintillation vials. For  chlorophyll 
subsamples, a few drops of magnesium carbonate suspension 
were  added at the  end  of filtration. The filters were  folded in 
half, placed individually in glassine envelopes and frozen in 
plastic bags containing silica gel. Subsamples for taxonomic 
work  were  preserved  in  3% formalin. 

Carbonate alkalinity was calculated according to the  methods 
of Strickland and  Parsons (1972). A Fisher Accumet pH meter 
(model 630, accuracy f 0.02 pH)  was  used to measure pH, and 
salinity  was calculated from Knudsen tables using  temperature 
and specific gravity  measurements  obtained  with  a  hydrometer 
(Fisher, 1.000-1.070). 

Permanent Laboratory: All  measurements of nutrient and 
chlorophyll a concentrations and  all  radiometric  procedures 
including the preparation of  stock  solutions  were  conducted at 
the Arctic Biological Station, Ste-Anne-de-Bellevue,  Quebec. I 
Orthophosphate (PO,) and  nitrate  (NO3)  concentrations  were 
determinedonthawedsamplesusingaTechniconAuto-Analyzer 
11 continuous flow system and  Technicon  analysis  procedures 
described in  Bunch et al. (1985). Ammonia  (NH3)  concentra- 
tions were determined according to the  procedures  of  Dal  Pont 
et al. (1974). Chlorophyll a was  measured by  the  spectrophoto- 
metric procedure described in Strickland and  Parsons  (1972) 
using the equation of Jeffrey and  Humphrey (1975). To deter- 
mine productivity, 14C radioactivity was  measured  using  a 
Nuclear Chicago Isocap 300 scintillation counter.  Dissolved 
organic radiocarbon samples were  prepared for scintillation 
counting by acidification of a 10 ml portion of 20 ml filtrate to 
pH 2 and removal of H14C03  in  a gas stream (N2, 30 min). The 
sample was  then  added to  10 ml Aquasol  (New  England  Nuclear 
Corp.)  and the resulting gel was  counted as above. Counting 
inefficiencies were  corrected  by  using  the  channel  ratios  method. 

Microalgae (subsamples of 5 ml) were  identified  and  enumer- 
ated  using  the inverted microscope  method  with  magnifications 
to 625X. Normally, 2.5-10%  of the settling chamber was 
scanned for abundant species and 50% was  scanned for others. 
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Numbers of ice algae  enumerated  were  converted to cells.1". 
Each diatom, dinoflagellate and Dinobryon cell  was  counted as 
an individual, whereas each colony  (except for Dinobryon) and 
filament of other groups was counted as one individual. 
Microalgae were  identified to species  whenever  possible. 

Oil concentrations were  measured by ultraviolet  fluorescence 
(UV/F) analysis using  a Turner Designs Fluorometer. Prior to 
analysis, each frozen  water  sample  was thawed, placed in a 125 
ml separatory funnel and  extracted  twice  with 10 ml hexane.  The 
hexane extract was dried over anhydrous Na2S04 and combined 
with  a  third 10 ml hexane  that  had  been  used to extract  any 
remaining oil from  the  empty 50 ml polypropylene  syringe  used 
to collect the  sample. 

Data  Analysis and  Study Design 

Data  were  analyzed  with  two-  and  three-factor  analyses of 
variance (ANOVA), usingthe SAS  general linear models  (GLM) 
program (Helwig and Council, 1979). Variables analyzed 
included productivity, chlorophyll a ,  microalgal  densities and 
ratios  of productivity to chlorophyll a ,  chlorophyll a to percent 
transmission  and  productivity to in situ light. 

To determine whether oil had an effect, temporal  changes in 
the  six enclosures and  two locations were  compared  using  three- 
factor (period, treatment, location) ANOVA,  but  significant 
three-way interactions necessitated the use  of  two-factor (period, 
treatment) ANOVA for each of  the  two  locations. In statistical 
terms, a significant interaction between  spatial  and  temporal 
effects indicated a possible oil effect (see Green, 1979). Such  an 
interaction would occur when  temporal  change in the  variable(s) 
was inconsistent among the enclosures, each of which  received  a 
different oil treatment  (including no oil). Because factors other 
than the treatment (e.g., snow cover) could  also  lead to signifi- 
cant interaction effects, it was  necessary to examine  the data 
(e.g., to compare oil treatments with  the controls) in order to 
make conclusions about oil effects. Because each  treatment was 
replicated in a separate location (see Hurlbert, 1984), a  compari- 
son of results in the  two locations was also used  in  evaluating 
possible oil effects. I 

General information on the biology of the study  area  can be 
found  in  Snow et al. (1987). The under-ice surface was  smooth 
and relatively flat, with  shallow  hummocks  and  ridges. Ice 
thickness  was 135 cm at the entry hole. Snow depths on 3 June 
1982were9.8 f s.d. 1.7cm(n = 14)and 18.2 * 7.4cm(n = 30) 
in Locations 1 and 2 respectively. The site was  selected  within , Bay13on7May,withlowandevensnowdepth(-10cm)and10 
m  water depth as the criteria. Differences  in  snow cover between 
locations were the result of  high winds, snowfall  and drifting 
snow on 12 and 13 May;  snow cover was  higher  and  more 
variable over Location 2, which  was  in  the lee of  two  tents 
during  the  period  of  high  winds. The amount  of light penetrating 
the  snow  and ice during the experiments varied  both  spatially 
(primarily because of variable  snow cover) and  temporally. 
Temporal variation, within  and  among days, resulted  from 
changes in cloud conditions and  in solar elevation. In situ 
radiation during incubations varied  among  enclosures  and peri- 
ods by almost an order of  magnitude. 

Salinity of ice (+ water) samples ranged from 30.1-32.4%0; 
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no consistent differences were  apparent  among  days (18 May- 
1 June). Snow melt began  near  the  end of May, but no obvious 
effects were  observed  under the ice. Ambient  (pre-incubation) 
nutrient samples were collected in duplicate on1 8,19,27 and 28 
May  and 1 June. Phosphate concentrations were 1.25-1.90 
pmol.l", nitrate concentrations were 3.04-10.23 pmol.1"  and 
ammonia concentrations were 0.65-2.47 pmol.1". 

Phytoplankton Biomass and Productivity 

Biomass (as estimated by chlorophyll a concentration)  and 
productivity  were  very  low in the  water  immediately  beneath  the 
ice. Mean concentration of chlorophyll a in control water 
samples was 1.93 f s.d. 3.14 mg.m-3 (n = 24). The mean 
concentration of algal cells in  near-ice  water  was 1.3 2 0.7 X lo4 
cells.1" (n = 17), and dominance was  shared  by  pennate 
diatoms (48%) and microflagellates (45%). After  correction for 
dilution (sampled  ice depth = 1-2 cm; chamber  depth = 15 cm), 
algal concentrations per unit  volume  were  lower  in  the  water 
than  in the ice by 2-3 orders of  magnitude. Thus, algae  in  control 
ice ( + water) samples can be assumed to be almost  entirely 
from  the ice. 

Productivity  in the near-ice water  was also low; indeed, after 
dark 14C uptake was  subtracted from light 14C fixation, net 
productivity  values for most  water  samples  were slightly nega- 
tive. The mean uptake rate of  radiocarbon in dark  chambers was 
0.29 5 0.26 mg C.m-3-h" (n = 11 controls), and  the  mean  net 
productivity rate (light minus dark) was 4.0002 5 0.2885 mg 
C-m-3.h" (n = 13 controls). There was no significant difference 
(P>0.5) between light and dark radiocarbon  uptake  (paired  t-test 
on scintillation counts for nine  pairs  of  chambers;  t = 0.20, 
P>0.5). Thus, productivity in  control  ice ( + water)  samples  can 
be assumed to be entirely from the ice. 

Ice Algal Composition and Distribution 

Major groups of microalgae  were  enumerated  in  a  total  of 174 
ice ( + water) samples (including 83 controls), and  species  were 
identified  and  counted in 72 of these samples (32 controls). In 
contrast with samples of near-ice water,  samples  containing  the 
bottom 1-2 cm layer of ice were  overwhelmingly  dominated by 
pennate diatoms (89% of  algal  cells in 83 control samples).  A 
total of 59 species or varieties of  microalgae  was identified, and 
at least another 17 distinct but  unidentified  species  were found. 
Of the 76 species, 61 were  pennate diatoms (Table 1). 

Nitzschia grunowii was the dominant  species  in 30 of 32 
control samples and constituted an average of 54.8% of total 
algal numbers in those samples. Nitzschiafiigida was  dominant 
in 2 samples and  ranked second in most of the  remainder of the 
32 samples. It constituted an average of 15.2% of total cells in 
32 control samples. 

Microalgae were relatively evenly distributed on a  small  scale 
(i.e., within the 1.2 m2 enclosures); the standard deviation was 
usually  much less than the mean  (Table 2). Spatial variation on a 
larger scale (among enclosures separated by - 1-20 m) and  tempo- 
ral variation (among 5 sampling periods within  the  period 18 
May-2 June 1982) were  considerable: total microalgal  densities 
in control samples ranged from 1.7 to 384.7 X lo7 cells.m-2 
(Table 2). In general, cell densities increased  throughout  the 
study period. 

Ice Algal Biomass 

The distribution of chlorophyll a in the bottom layer of ice, 
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TABLE 1 .  Genera  and species of microalgae  found in diver-collected 
ice coresa from Cape  Hatt,  Baffin  Island, during 18 May-2 June 1982b 

Bacillariophyceae 

Chaetoceros' 
Centrales' 

C .  compressus Lauder 
C .  karianus Grunow  in Cleve 

C .  septentrionalis Ostrup 
C .  simplex Ostenfeld 

et Grunow 

Coscinodiscus' 
Melosira' 

M. arctica (Ehrenberg) 
Dickie in  Pritchard 

T. nordenskioldii Cleve 
Thalassiosira' 

Pennales' 
Achnanthes 

Amphiprora' 
A. taeniata Grunow 

A.  concilians Cleve 
A .  gigantea var. 

septentrionalis (Grunow  in 
Cleve et Grunow) Cleve 

A. kjellmanii Cleve 
A .  palludosa Wm.  Smith 

A .  laevis var. laevissima 
(Gregory)  Cleve 

A. proteus Gregory 

C .  closterium (Ehrenberg) 

Amphora' 

Cylindrotheca 

Reimann et Lewin 
Diploneis 

D .  litoralis Cleve 
D .  litoralis var. arctica Cleve 
D .  litoralis var. clathrata 

(Ostrup) Cleve 

G .  exiguum Kiitzing 
Gomphonema' 

Licmophora' 
Navicula' 

N .  algida Grunow 
N .  cancellata Donkin 
N .  crassirostris Grunow in 

Cleve et Grunow 
N. digitoradiata (Gregory) 

Ralfs 
N .  directa (Wm.  Smith)  Ralfs 
N .  gastrum (Ehrenberg) 

N. gelida Grunow 
N. membranacea Cleve 
N. novadicipiens Hustedt 
N .  pelagica Cleve 
N. ryncocephala Kiitzing 
N. salinarum Grunow 
N. spicula (Hickie)  Cleve 
N. transitans Cleve 
N. fransitansvar. incudiformis 

(Grunow  in Cleve)  Cleve 

Kiitzing 

N .  trigonocephala Cleve 
N .  valida Cleve and  Grunow 
N. valida var. minuta Cleve 

N. angularis Wm.  Smith 
N .  brebissonii var. borealis 

N.  cylindrus Hade 
N. delicatissima Cleve 
N .  dissipata (Kiitzing) 

N. distans Gregory 
N. frigida Grunow 
N .  grunowii Hade 
N .  hybrida Grunow  in Cleve 

N. laevissima Grunow  in 

N .  lecointei Van  Heurck 
N .  linearis (Agardh)  Wm. 

Smith 
N .  longissima (Brebisson  in 

Kiitzing) Grunow 
N .  seriata Cleve 
N .  sigma (Kiitzing) 

Wm. Smith 

P .  ambiqua Cleve 
P .  quadratarea (Schmidt) 

Cleve 
P .  quadratarea,var. 

bicontracta (Ostrup)  Heiden 
in  Schmidt et al. 

P .  quadratarea var. 
constricta (Ostrup)  Heiden 
in  Schmidt et al. 

Nitzschia' 

Grunow  in Cleve et Moller 

Grunow 

et Grunow 

Cleve et Moller 

Pinnularia' 

Pleurosigma" 
P .  angulatum (Quekett) 

P .  elongatum Wm. Smith 

S. inconspicua var. baculus 

Wm.  Smith 

Stenoneis 

(Cleve in Cleve et Moller) 
Cleve 

Chlorophyceae 
Carteria' 

Chrysophyceae 
Dinobryon 

D .  balticum (Schuett) 
Lemmermann 

Dinophyceae" 
Gymnodiniwn' 
Peridiniumc 
Prorocenfrum' 

Euglenophyceaec 
Euglena' 

Craspedophyceae' 

"72  cores 10 cm in  diameter,  including 2-3 cm of ice and 12-13  cm of water. 
bIncludes  both  pre- and post-spill  sampling  periods. 
'Taxa for  which  unidentified  cells or colonies were  found. 

like cell densities, was  relatively  even  on  a  small scale (Table 2). 
Variation  among locations and periods was also relatively low, 
unlike data on cell densities. Mean chlorophyll a concentrations 
in control enclosures varied  from 3.4 to 16.7 mg.m-2; single 
sample minimum  and  maximum  values  were 0.64 and  23.20 
mg.m-2 respectively. Mean chlorophyll concentrations in con- 
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trol  samples  increased  progressively  throughout  the  study  period, 
from 9.1 ? 3.3 mg.mS2 (n = 42) on 18-19 May to 15.7 k 
3.0 mg.m-2 (n = 7) on  1-2 June. 

Ice Algal Productivity 

Ice  algal  productivity  rates  reported  herein  are  based on 
differences between light and  dark  incubation  chambers in the 
amount  of particulate radiocarbon  (POC)  retained on 0.45 Frn 
cellulose triacetate filters. Dissolved  organic  radiocarbon  (DOC) 
that  passed  through  the filters was also measured  in  a  total of  87 
samples  from  three of the five sampling periods. The  amount of 
dissolved  radiocarbon in the filtrate was  up to 4.5 X greater  than 
the  amount of particulate radiocarbon  retained  on  the filter, and 
in  only  1  of  87 samples did  POC  exceed  DOC.  This  was  likely 
because  the  formalin  used to terminate  incubations  caused  cell 
rupture (see Discussion). Total  productivity  (POC + DOC) 
was, therefore, considerably higher  than  the  rates  reported in  the 
following section, viz., from 0.2 to 12.7 mg C.m-2.h".  Even 
these values likely underestimate  total productivity, because  a 
lower vacuum pressure was  used  in  DOC  than  in  POC filtration. 
Because fewer measurements of  DOC  were  taken (87 vs.  167 
samples for POC), the following results concern  only  particu- 
late carbon productivity. Conclusions  should also apply  to 
dissolved organic carbon  (and  total) productivity, however, 
because  dissolved  and particulate carbon  productivity  rates 
were strongly correlated (r = 0.90; n = 87; P<O.001). 

All incubations were  carried out around noon for 2-2.5 h 
periods. Sky conditions varied  during  incubation  periods and 
from day to day, and the resultant  daily  values of surface light 
during incubations ranged from 13 000 to 20 000 watt-h.m'2. 
The amount of light reaching the bottom  of  the  ice  was much 
more variable; percent  transmission  through  the  ice  and snow, 
measured  within each enclosure, varied  from 0.11 to 0.77%. 
This spatial variability  was likely the  result of variable  snow 
cover. Snow depths, measured at the  surface in the  estimated 
locations of  the  under-ice enclosures, were  from 8.5 to 30.6 cm. 
The estimated amount of light reaching  each  enclosure  during 
each incubation is given  in Table 2. These  values  varied over an 
order of magnitude, from 12.2 to 121.7 watt-h.m-2. 

Ice algal  productivity  increased  with  increasing light over the 
range  of conditions encountered (Fig. 2).  There  was no evi- 
dence of photosynthetic inhibition at the  highest  light  levels 
(approximately  120 watt-h.m-2 in a 2.25 h period). Productivity 
rates  were  near zero at the lowest light levels  (approximately 20 
watt-h.m-2; Fig. 2). 

Productivity  of  ice algae varied  considerably  among  locations 
(enclosures)  and  periods:  mean  productivity  rates  in  controls 
were from near  zero to 2.95 mg C.m-2.h" (Table 2). The 
lowest  productivity  rates  were  obtained  from  enclosures  with  the 
lowest  recorded light values, e.g., the  "oil"  enclosure at Loca- 
tion l and the "BP 1100 WD + oil"  enclosure at Location  2 
(Table 2). Productivity in control samples  increased  progres- 
sively from 18-19 May (0.85 r 0.75 mg C-m-2.h"; n = 31) to 
28-29  May (2.48 k 0.38 mg C.m-2.h";  n = 5) and decreased 
slightly  by  1-2 June to  2.13 r0.36 mg  C.m".h" (n = 5). 
Increased productivity was  likely  related to increased  chloro- 
phyll a concentrations; however, productivity per unit chloro- 
phyll  in control samples also increased  progressively  from  18-  19 
May to 28-29 May (0.08 to 0.19 mg C-mg Chl  a".h")  and 
decreased  by  1-2 June (0.14 mg  Camg Chl  a".h"). 
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TABLE  2.  Under-ice  productivity,  chlorophyll a, microalgal  density  and in situ light  data  measured  in  all  sampling  periods  at  Cape  Hatt,  Baffin 
Island,  during 18 May-2  June  1982;"  productivity,  chlorophyll u and  microalgal  density  in  ice (+ water)  samples are assumed  to be almost 
entirely  attributable  to  the  ice  fraction (see text) 

Treatment 
Solidified  BP  CTD  BP  1100 WD Corexit  9527 

Variable  Period  Location Control Oilb oilb + oilb + oilb + oilb 
Productivity Re- 1  1 1.502 0.18  (3) 0.05 (1) 0.212 0.05 (3)  2.142 0.60 (2) 1.082 0.19  (3) 0.302 0.04  (3) 

(mg C,m-2.h-i)  2 1.502 0.86(2)  0.822 0.23  (3) 0.332 0.09 (2) 0.162 0.10  (3) 0.112 0.07  (3) 1.892 0.34  (3) 
Re-2 1 

L 

Post- 1 
2 
1 

Post-2  1 
2 

Post-3  1 
2 

Chlorophyll (I Re-  1  1 
(mg.m-z) 2 

Pre-2  1 
L 

Post-  1  1 
L 

Post-2 1 
2 

Post-3 
2 
1 

Microalgae Re- 1  1 
(cellsm-2 X 10')  2 

Pre-2  1 
L 

Post- 1  1 
L 

Post-2  1 
2 

Post-3  1 
2 

1.922 0.54  (3) 
2.952 1.61  (3) 
1.782 0.77  (3) 
2.11 2 0.53  (3) 
2.582 0.50 (3) 
2.332 0.07  (2) 
2.092 0.00  (2) 
2.162 0.51  (3) 

10.832 1.65  (4) 
12.802 2.41  (3) 
11.662 2.72  (3) 
13.362 1.94  (4) 
15.642 1.78  (4) 
12.042 2.36  (4) 
14.602 2.56  (4) 
13.312 0.13  (2) 
16.672  1.92  (3) 
14.992  3.76  (4) 

157.472  54.39  (4) 
103.962  29.16  (3) 
270.562130.33  (2) 
332.782  68.84 (2) 
249.682130.96  (4) 
237.112  64.51  (4) 
365.272  9.37  (2) 
384.712  83.81  (2) 
254.372  15.07  (3) 
280.222  13.65  (4) 

4 .082  0.05 (3) 
0.952 0.52  (3) 
0.192 0.03 (3) 
1.902 0.38  (3) 
0.302 0.03  (3) 
2.182  0.48  (3) 
0.382 0.06  (2) 
1.792  0.03  (2) 

11.312  0.86  (4) 
3.352 0.58 (2) 

10.932  1.29  (4) 
6.232 5.32  (4) 

14.182  1.55  (4) 
6.472 1.20  (4) 

10.932  2.38  (4) 
13.672  2.37  (4) 
10.672  1.42  (3) 
13.012  1.75  (3) 

105.852  32.24  (4) 
9.212 5.20  (2) 

121.692  12.24  (2) 
1.652  0.68  (2) 

268.512  79.21  (4) 
15.942  2.32  (4) 

255.492  10.23  (2) 
113.442  76.33  (2) 

205.11 2 34.07  (3) 
169.842  35.17  (3) 

0.162 0.20  (2) 
0.702 0.29  (2) 
1.292 0.53  (3) 
1.522 0.46  (3) 
1.462 0.48  (3) 
1.642 0.55 (3) 
1.552 0.48  (3) 
1.122 0.24  (3) 

10.852 4.61  (2) 
6.042 0.70  (4) 

6.952 2.45  (3) 
9.732 2.08  (3) 

14.982 4.02  (3) 
14.492 1.36  (3) 
16.292 3.30  (4) 
13.952 1.63  (4) 
20.182  2.39  (4) 
15.102  4.71  (4) 

44.312  20.14  (4) 
77.002  37.00  (3) 

20.31  (1) 
72.502  16.42  (2) 

215.872  83.41  (3) 
171.212  26.98  (3) 
261.602  18.00  (2) 
205.192  2.16  (2) 
359.562  78.67  (4) 
322.802116.94  (4) 

0.882 0.25  (3) 
1.822 0.26  (2) 

1.162 0.44  (3) 
1.282 0.39  (3) 
2.102 0.11  (3) 
1.532  0.45  (3) 
1.852  0.38  (3) 
1.312  0.29  (3) 

11.662  2.74  (3) 
6.822 4.14  (4) 

10.242  0.28  (2) 
10.502 0.61  (3) 
13.762  1.47  (4) 
10.772 0.96 (3) 
11.642 1.35  (3) 
9.702 1.32  (3) 

11.382  0.39  (3) 
9.092 1.78  (3) 

167.342  70.13  (3) 
47.152 36.17  (4) 

246.02  (1) 
126.88  (1) 

245.132  71.14  (4) 
146.302  30.31  (3) 

267.40  (1) 
111.602  30.82  (2) 
246.172  47.04  (3) 
167.822  51.76  (3) 

4.052 0.03 (3) 
1.472 0.24 (3) 

1.202 0.29 (3) 
0.092 0.07 (3) 

-0.002 0.04 (3) 
1.572 0.36 (3) 

0.072 0.03 (2) 
1.382 0.25 (3) 

10.152 1.34 (4) 
5.782 0.43 (4) 

10.852 0.50 (3) 
3.912 2.74 (3) 

15.262 1.41 (4) 
5.322 2.50 (4) 

13.472 3.20 (4) 
4.252 1.81 (4) 

13.072 2.82 (4) 
5.982 3.09 (3) 

100.762 63.47 (4) 
21.292 7.18 (4) 

317.912 97.06 (2) 
11.762 13.75 (2) 

205.302 55.65 (4) 
21.792 12.68 (4) 

228.002 26.06 (2) 
20.552 11.42 (2) 

236.992 82.82 (4) 
51.342 41.42 (3) 

0.492 0.08 (3) 
1.382  0.31  (3) 
1.112 0.49  (3) 
0.942 0.37  (3) 
2.212 0.15  (3) 
1.982  0.38 (3) 

2.11 2 0.42  (3) 
1.392 0.16  (3) 

11.662  1.55  (4) 
7.652 2.57  (4) 

11.442 5.31  (4) 
13.982 2.14  (4) 
12.10+  2.27  (4) 
12.792  1.96  (4) 
12.192  1.68  (4) 
10.682  1.46  (4) 
11.812  4.65  (4) 
10.722  2.25  (4) 

176.552  68.56  (4) 
57.802  31.41  (4) 

240.522  68.55  (2) 
56.642  56.41  (2) 

156.492  42.90  (4) 
169.182  34.96  (4) 

238.182  56.31  (2) 
175.962  59.04  (2) 

229.502  5.18  (4) 
185.782  36.85  (4) 

Light' Re- 1  1 - 
(Watt-hm.*) 

- - - 
2 

Re-2  1 86.10  21.50  34.28  75.41  59.26  36.49 
2  117.59  86.10  47.29  73.32  17.31  64.03 

Post-1  1  108.41  24.40  23.01  82.15  56.82  84.13 
2  106.67  79.25  49.39  71.81  14.29  67.63 

Post-2  1  82.85  22.89  36.95  96.45  51.71  62.75 
2  103.30  65.30  57.29  61.01  12.20  77.16 

Post-3  1  80.53  20.45  34.74  72.97  38.81  53.57 
2  121.66  72.39  56.47  61.59  16.97  90.40 

- - 
- - - - - - 

I "Data  are  expressed as mean +SD with  n in parentheses. 
bunweathered  Lagomedio  crude oil. 
"Surface  radiation  multiplied by percent  transmission (see text). 

Oil  Effects untreated oil was  overgrown by ice  within 2 d of treatment 
(diver observations). Ice growth was also apparent  around  the 

Oil treatments were applied  on 23-24 May, and oil concentra- plexiglass enclosures and  around  polyethylene  syringes left on 
tions  in  the  water  within the enclosures were  measured  about 5 h the  under-ice surface. 
after treatment application. Oil  concentrations  in the water at Communi0  Structure: There was no evidence that  the group 
that time are shown  in Table 3. Dispersed oil in  concentrations composition of  ice  microalgae  was  affected  by  any oil treatment 
from 5.8 to 36.5 ppm (as measured  by  ultraviolet  fluorescence) duringthe 12d of post-treatment sampling. Duringpre-treatment 
was contained within enclosures beneath  the  ice for approxi- sampling (18, 19 May)  in all enclosures and during  post- 
mately 5 h  and  then released. In contrast, oil  concentrations  in treatment sampling in control enclosures pennate  diatoms  con- 
the  water  within enclosures containing oil and  solidified oil, stituted 87.0-93.7% and microflagellates 5.9-12.7% of total  ice 
measured 5 h after treatment, were similar to control  values;  in algal cells in each enclosure (n = 2-4 samples  per  enclosure). 
these cases, most of the fluorescence was  derived from the During  post-treatment sampling (26, 27 May  and 1,2 June) in 
polypropylene syringes used to collect samples.  Oil  and  solidi- experimental enclosures, the  corresponding  percentages  were 
fied oil remained  in the enclosures on the  under-ice surface 85.0-95.5% for pennate diatoms and 3.7-14.0% for micro- 
during the 12 d  post-treatment  sampling period; the  solidified oil flagellates. 
mass  remained  on the under-ice surface, whereas the pool of Density, Biomass andProductivity : Most  interactions  between 



W.E. CROSS 

TABLE 4 .  Results  of  analysis of variance  for  standing  stocks  and 
productivity of under-ice  algae  at  Cape  Hatt,  northern  Baffin  Island, 
during 18 May-2  June 1982a 

Source of  Variation 
Period by Degrees  of 

Variable  Location  Period  Treatment  treatment  freedomb 

I 

. .  

. .  
e .  

I * .  

Productivity (P) 

Chlorophyll a (B) 

Algal  density (D) 

P/B 

PILight' 

P/B/Light' 

BIPercent 
transmission' 

DIPercent 
transmissionC 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

1 
2 

1 
2 

16.46 *** 45.75 *** 3.25 *** 
7.01 *** 33.68 *** 2.38 ** 

17.98 *** 11.78 *** 2.56 ** 
2.69 * 33.58 *** 1.47 ns 

19.72 *** 17.77 *** 2.39 ** 
19.42 *** 35.90 *** 4.26 *** 
8.49 *** 34.24 *** 3.19 *** 
8.43 *** 38.75 *** 3.01 *** 

23.60 *** 15.55 *** 5.77 *** 
8.71 *** 22.34 *** 1.45 ns 

14.02 *** 9.80 *** 6.07 *** 
14.15 *** 20.40 *** 3.01 ** 

1.13 ns 14.35 *** 2.48 ** 
4.81 ** 26.05 *** 1.07 ns 

8.11 *** 13.27 *** 4.11 *** 
2.65 ns 9.52 *** 2.95 ** 

4,5,20/53 
4,5,20/54 
4,5,20/76 
4,5,20/75 
4,5,20/56 
4,5,20/58 
4,5,20/52 
4,5,20/52 
3,5,15/44 
3,5,15/44 
3,5,15/43 
3,5,15/43 

3,5,15/61 
3,5,15/60 

3,5,15/41 
3,5,15/42 

!; 
1 

10 30 50 70 90 110 

In Situ Light (Watt-h.rn-') 

FIG. 2. Ice  algal  productivity  (mg  Cm-'.h") vs. in situ light ( w a t t - h d )  at  Cape 
Hatt,  northern  Baffin Island, during 18 May-2  June 1982. Each  point  is  the 
productivity  rate  calculated for one  control  incubation;  one  light  measurement 
was  made for each  set of 2 or 3 productivity  rates. 

TABLE 3. Oil  concentrations  (average  of  two  samples)  from  each 
under-ice  enclosure  at  Cape  Hatt,  northern  Baffin  Island,  measured 
5 h after  treatment  application  on 23-24 May 1982 

Treatment 
Oil concentration  (ppm) 

Location 1 Location 2 

Control 
Oil 
Solidified oil 
BP  CTD + oil 
BP 1 1 0 0  WD + oil 
Corexit 9527 + oil 

0.24 
0.19 
0.15 
5.80 

15.50 
14.50 

0.28 
0.22 
0.15 
6.70 

26.50 
36.50 

period  and  treatment factors in  two-factor ANOVAs were 
significant (13 of 16 cases; Table 4). In these cases, the  signifi- 
cant  interaction terms mean  that  period-to-period  variation  was 
not consistent among treatments, indicating the  possibility of an 
oil effect (Green, 1979). However, other factors besides the 
treatment  could also lead to significant  interaction terms. 

To determine whether the significant  interactions  were attrib- 
utable to the two enclosures with  very  low  levels  of  light  and 
productivity, these enclosures (treatments) were  excluded  from 
the analyses. Results  were  very similar to those  shown in Table 
4. Hence, the significance of period-by-treatment  interactions 
(Table 4) was  not attributable to effects of  low-light  conditions. 

Because interactions might result from  factors other than oil 
treatments, I examined  whether  the  period-to-period  variability 

bDegrees of freedom  shown are numerator df for  period,  treatment and  period- 
by-treatment interaction, followed by denominator df. 

'All analyses  including  light or percent  transmission  exclude  data  from  Period 1 ,  
where  percent  transmission  data  were not recorded. 

among treatments was consistent with  expected oil effects. 
Expected oil effects would include (1) marked  deleterious 
effects of oil relative to controls, (2) immediate effects in 
dispersed oil treatments, followed by recovery, (3) delayed 
effects in oil or solidified oil treatments and (4) effects in 
dispersed oil treatments that  were consistent with  measured oil 
levels - i.e., least in BP CTD;  more  pronounced  in  Location  2 
than  Location  1 for Corexit 9527  and BP 1100  WD.  Inspection 
of the data (Fig. 3) showed little evidence for any  of  these 
expected oil effects. 

There were no marked deleterious effects of  any  oil  treatment 
on any of the variables. As previously  mentioned,  these  results 
apply to areas where  untreated or chemically  dispersed  oil 
contacted the ice and  then  moved  away or areas  near  untreated 
or solidified oil that  remained in contact with  the  under-ice 
surface. Decreases  in some or all variables  from  the  immediate 
pre-spill to immediate  post-spill  periods  were evident in some 
enclosures (e.g., Corexit + oil, Location 2), but these were  also 
evident in the control. There were no marked  immediate  effects 
of dispersed oil treatments, nor  was there any evidence of 
recovery  in later post-spill periods. Differences  among  disper- 
sants or between locations were  not  consistent  with  differences 
in measured oil concentrations. 

Inspection of the data for oil and  solidified oil treatments 
indicated the possibility  of  a  stimulatory effect of these  treat- 
ments on the  biomass  and  productivity of under-ice  algae. 
Overall, productivity  and standing stocks in control  samples 
increasedduring the study period. Progressive  (period-to-period) 
increases in  biological variables, however, were  not  common  in 
any enclosure except the solidified oil and, to a lesser extent, 
untreated oil enclosures. This progressive  increase  was  not 
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clearly  related  to  increases  in light, particularly in the  case of the 
solidified oil treatment. In  some  other enclosures, increases  in 
biomass or productivity  occurred  between  the  pre-spill  sampling 
periods, but  rarely  were  those  increases  sustained  throughout  the 
post-spill sampling period. Differences  among  enclosures  (treat- 
ments) in the  nature of the  increases also may have  been  related 
to  snow conditions and, in particular, changes in  snow  depth  that 
occurred  immediately  before  the  study period. 

DISCUSSION 

The ice algal bloom at Cape  Hatt  in May 1982 was typical  of 
those  reported elsewhere under  arctic  landfast ice, including  that 
at Cape Hatt  in  May 1981 (Cross, 1982b). Similarities  between 
this and previous studies are evident in data for density, biomass 
and productivity, both in near-ice  water (cf. Alexander et al., 
1974; Cross, 1982a,b; Grainger and Hsiao, 1982) and  in the 
bottom layer of ice (cf. Apollonio, 1965;  Clasby et al., 1973; 
Dunbar  and Acreman, 1980; Hsiao, 1980; Cross, 1982a,b). 
Differences  among locations or years  are few: considerably 
higher ice algal  biomasses  have  been  reported previously, likely 
because  of differences in snow  cover  (Alexander et al., 1974; 
Cross, 1982a), and the timing of the  spring  bloom  can  be 
variable. The bloom  apparently  began to decline  earlier at 
Barrow, Alaska, in 1972 (Clasby et al., 1973) and  possibly at 
Cape  Hatt  in 1982 (present study)  than  at  Cape  Hatt in 1981 
(Cross, 1982b). Overall, the similarities in  ice  algal  abundance 
and  productivity  among locations and  years indicate that  results 
of the  present  study  concerning oil effects on ice  algae  under 
landfast ice can be applied to most other arctic  locations. 

The high concentrations of dissolved  organic  radiocarbon 
(DOC)  measured in the present  study (up to 4.5 X particulate 
organic carbon) were  unexpected.  On average, DOC accounted 
for  71%  of  total  (dissolved + particulate) production.  This 
percentage is near the upper  end of the range of values  pre- 
viously  reported in coastal and  oceanic  waters (see Sharp, 1977, 
for a review; Smith et al., 1977; Lancelot, 1979;  Larsson  and 
Hagstrom, 1979, 1982; Mague et al., 1980; Sellner, 1981; 
Wolter, 1982; Jensen, 1983). Possible  sources of the  dissolved 
organic carbon include active release of photosynthetic  products 
by healthy algae (e.g., Fogg, 1977)  and  lysis of plant  cells 
through various means (see Cole et al., 1982). In  the  present 
study, cell rupture during filtration was  avoided by the  use  of 
small (20 ml) sample volumes  and  low (< 120 mm Hg)  vacuum 
pressures (see Mague et al., 1980), but  cells may have  leaked 
contents into the medium  when  formaldehyde  was  added to the 
incubation chambers (see Silver and Davoll, 1978). 

Regardless of the mechanism of  DOC release, however, 
dissolved organic radiocarbon  present  in  the  medium  was  origi- 
nally fixed by algae and  must  be  included  in our estimates of 
productivity. Thus mean  ice  algal  productivity (particulate + 
dissolved) was 4.40 ? 3.68 mg  C.m-'.h" (n = 41 control  sam- 
ples) over the range of light levels studied  at  Cape  Hatt in  May 
1982. The highest  roductivity rate measured (single sample) 
was 12.7 mg C.mfh". Even  higher  productivity rates would 
be expectedinareas where, unlike  the  present  study area, ice  algal 
biomass  was  very  high (e.g., Pond  Inlet  in  1979; Cross, 1982a). 

No adverse effects of oil on under-ice  algal density, biomass 
or productivity  were  detected for the specific oil spill  scenarios 
addressed  by  the  present study. These  results are in conflict  with 
the rather large body  of literature on effects of oil on other  types 
of microalgae. Cell death or inhibition of growth or photosyn- 
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thesis  has  been  reported for unialgal  cultures  grown in the 
laboratory (Dunstan et al., 1975; Hsiao, 1978;  Mahoney and 
Haskin, 1980; Karydis, 1982; Plstgaardetal., 1984; Van  Baalen 
and O'Donnell, 1984;  Hegseth  and  Plstgaard, 1985), for  natural 
phytoplankton  communities  (Gordon and Prouse, 1973;  Shiels 
etal., 1973; Hsiaoetal., 1978; Trudel, 1978) and forplanktonic 
or benthic  microalgae  in  controlled  ecosystem  experiments 
(Skjoldal et al., 1982; Throndsen, 1982; Dah1 et al., 1983; 
Parsons et al., 1984; Farke et al., 1985a,b). Many  of  these 
studies have  found differential sensitivity  among species, lead- 
ing  some authors to suggest that  in  natural  communities  such 
differences would  lead to effects on community structure, 
succession  and trophic relationships (Shiels et al., 1973;  Dun- 
stanetal., 1975;Hsiao, 1978;Hsiaoetal.,  1978).Inrecentfield 
experiments, such changes have  been  observed  (Parsons et d l . ,  
1976; Lee and Takahashi, 1977; Throndsen, 1982;  Vargo etal., 
1982;  Parsons et al., 1984). No  such effect on  ice  algal  commu- 
nity structure (i.e., dominant  species or ratios of diatoms  to 
flagellates) was observed in the  present study. 

The lack of adverse  effects of dispersed oil on  ice  algae  at 
Cape  Hatt may be  related to the 2 d recovery  period  between 
exposure  and  the  first  post-exposure sampling. Relatively  high 
concentrations of dispersed  oil (up to 37 ppm) contacted  the  ice 
for  only 5 h. Most  previous  reports of adverse effects of oil on 
microalgae  are  based on longer  exposure periods, ranging  from 
days in laboratory or in situ incubations to weeks or months in 
controlled  ecosystem experiments. A few  previous studies have 
indicated  that  short (2-8 h) exposures to oil can  inhibit  microalgal 
photosynthesis  at  concentrations  as  low as 0.1 ppm (Trudel, 
1978), although  threshold  concentrations  were  more often 1-  100 
ppm(Hsiaoetal.,  1978;Vandermeulenetal., 1979;Kusk, 1981; 
Karydis , 1982). In  all of those experiments, however, productiv- 
ity was measured  immediately  following exposure, whereas a 
2 d recovery  period  preceded  the first measurements  in  this 
study. In  previous studies, inhibitory effects of oil on microalgae 
have  been  transitory  (Mahoney  and Haskin, 1980), with  recov- 
ery  periods on the  order of days. Recovery  was evident less than 
2 d following  1-3 d exposures of diatoms to 7 or 14 ppm  Ekofisk 
crude oil (Plstgaard et al., 1984), and  following 6 d of  repeated 
exposure (twice daily) of intertidal  microalgae to 2-4  ppm 
chemically or mechanically  dispersed crude oil (Farke et al., 
1985a). It is not  known  if any  adverse effects on ice algae 
occurred  at  Cape  Hatt  during  the 2 d following exposure to oil. 

The only  possible effect of oil  detected in this study was 
stimulation of  ice  algal  growth  and  productivity  in enclosures 
treated  with  solidified  oil and untreated oil. Very  low oil concen- 
trations may have  been  present  in  the  water  within these 
enclosures  during  the post-treatment period; oil concentrations 
in this  water  immediately  after  treatment application were 
similar to those in control enclosures, but no measurements of 
oil concentrations  were  made after that time. Stimulation of 
growth or photosynthesis  in  microalgae  exposed  to  low (ppb) 
concentrations of oil has  been a common result in  many  previ- 
ous studies. Where  stimulation  has  been  observed  in  unialgal 
cultures (Dunstan et al., 1975;  Prouse et al., 1976; Hsiao, 1978; 
Nunes  and  Benville,  1979;  Mahoney  and Haskin, 1980; Karydis, 
1982), it can be concluded  that  stimulation  was a direct effect. 
During in situ experiments  and  accidental oil spills, on the other 
hand, apparent  growth  stimulation  may  have  been an indirect 
resultofreducedgrazing (Lhnergren, 1978; Bakke  and Johnsen, 
1979;  Elmgren et al., 1980; Johansson, 1980; Vargo et al., 
1982). At Cape Hatt, densities of meiofaunal copepods, poly- 
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