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ABSTRACT.  Phytoplankton  were  collected  and  environmental  measurements  made  at  depths  of 0, 1, 3,5,7, 10,20 and 30 m at 3 h  intervals  through 
a  tidal  cycle  in  the  summer  in  Frobisher  Bay.  Light,  temperature,  salinity  and  nutrients  varied  vertically.  Concentration  of  chlorophyll a, species  com- 
position,  number  of  species  and  diversity  also  exhibited  a  pronounced  vertical  variation,  while  phytoplankton  cell  numbers  and  the  evenness  of  the 
species  distribution  was  uniform  through  the  water  column.  Phytoplankton  biomass  and  composition  changed  considerably  with  time.  However,  diel 
variations  in  species  diversity  and  evenness  were  minor  under  the  existing  environmental  conditions,  where  only  light  fluctuated  significantly.  The 
integrated  values  of  biomass,  nutrients  and  mean  temperature  and  salinity  showed  neither  significant  diel  nor  tidal  variations. 
Key  words:  arctic  phytoplankton,  biomass,  species  composition,  abundance,  diversity,  environmental  factors 

d S U M E .  En tte, on  a effectut des prtltvements de phytoplancton et  proctdt B des  mesures  environnementales 5 des  profondeurs de 0, 1, 3 ,  5 ,  7, 
10, 20 et  30 m, B des  intervalles de 3 h,  durant  un  cycle de marte, dans  la  baie  Frobisher. La lumitre, la  temptrature,  la salinitt et  les ClCments nutri- 
tifs  variaient  verticalement.  La  teneur en chlorophylle a,  la varittt des esptces, le  nombre  des  especes et la  diversitt  montraient  aussi  une  nette  varia- 
tion  verticale,  tandis  que  le  nombre de cellules de phytoplancton  et  l’uniformitk  de  la  distribution  des  especes ttaient les  m&mes  dans  toute  la  colonne 
d’eau. La biomasse  et  la  composition  du  phytoplancton  changeaient  considtrablement  en  fonction  du  temps.  Cependant,  les  variations nycthtmtrales 
dans  la  diversitt  et  l’uniformitt  des esptces  ttaient minimes  dans  les  conditions  ambiantes  du  moment, oti seule  la  lumiere  fluctuait  de  faqon  signi- 
ficative.  Les  valeurs inttgrtes de la  biomasse,  des  Bltments  nutritifs  ainsi  que de la temptrature  et  de la  salinitt moyennes  ne  montraient  pas de varia- 
tions  significatives,  qu’elles  soient nycthtmtrales ou dues 5 la marte. 
Mots clts: phytoplancton  arctique,  biomasse, varittt des esptces, abondance,  diversitt.  facteurs  environnementaux 

Traduit  pour  le  journal  par Ntsida Loyer. 

INTRODUCTION 

Phytoplankton biomass, distribution and species composition 
change continuously with variations in environmental temper- 
ature (Kamykowski, 1981), light (Nelson and Brand, 1979), 
nutrient availability (Cullen and Horrigan, 1981), grazing pres- 
sure  (Tiselius,  1988),  tide  and  water  movements  (Balch, 1981; 
Demers et al., 1986), seasons (Hsiao, 1980, 1988) and even 
with time of  day (Kana et al., 1985). Endogenous rhythms also 
affect the diel distribution patterns of phytoplankton (Sournia, 
1974). Diel rhythms in  nutrient  uptake (Whalen and Alexander, 
1984), chlorophyll synthesis (Owens et al., 1980), cell divi- 
sion (Nelson and Brand, 1979; Harding and Heinbokel, 1984) 
and  photosynthetic  assimilation  (Legendre et al., 1988; 
Vandevelde et al., 1989) are well documented for natural phy- 
toplankton populations, but relatively little is known of verti- 
cal changes in their composition (Reid et al., 1978; Venrick, 
1988). These biological and environmental variables have not 
been measured in arctic waters in relation to fluctuations in 
both tides and irradiance. The present study was undertaken to 
examine the influence of environmental factors on the vertical 
distribution of phytoplankton taxa and biomass in a shallow, 
cold and dynamic coastal environment during diel and lunar 
tidal cycles. 

MATERIALS  AND  METHODS 

Study Area 

Frobisher Bay is a semi-enclosed embayment in southeast 
Baffin  Island,  divided by islands  into a larger  outer and a 
smaller inner bay. Station 1 (63’42.8’N, 68’30.8W) (Fig. 1) is 
located in the latter and has a depth of 34-45 m, depending on 

t 

FIG. I .  Station  location  in  Frobisher  Bay. 

the tide. The bay  has typical semidiurnal tides with two high 
and two low waters (Fig. 2) in a lunar day of 24.84 h. The 
maximal tidal amplitude of 11 m results in a movement of 
some 17 km3 of water into and out of the inner bay during the 
period of a single large tide. The mean current to and from the 
inner bay is about 102.8 c m d  (Grainger, 1975). These rapidly 
exchanging waters are also subjected to large natural perturba- 
tion by wind, tidal mixing and river runoff from the nearby 
Sylvia Grinnell River. 
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FTG. 2. Schematic  of  a  semi-diurnal  tidal  cycle  in  Frobisher  Bay.  Vertical bars 
indicate  range of tidal  height;  horizontal  bars  indicate  time of day;  the  points 
at  the  vertical  and  horizontal bars on the  curve  indicate  the  data  collected  dur- 
ing  a  lunar  tidal  cycle. 

Sampling 

By careful scheduling of sampling, biomass and taxonomic 
composition of phytoplankton assemblage in Frobisher Bay, 
together with  basic oceanographic features, were obtained for 
approximately the same phase of the tide and time ( f l  h) of 
the day through a lunar tidal cycle in the summers of 1980-81 
(Fig. 2). 

Phytoplankton were collected at station 1 with a 5 L Van 
Dom sampler at depths of 0, 1, 3, 5, 7, 10, 20 and 30  m at 3  h 
intervals  through  floods and ebbs  during two summertime 
spring tides (30-31 July 1980 and 16-17 August 1981). Sub- 
samples for chlorophyll a,  species identification and enumera- 
tion were taken from the same water bottle. 

Biological  Measurements 

Chlorophyll a was analyzed by spectrophotometric tech- 
niques (Strickland and Parsons, 1972) and calculated using the 
Jeffrey and Humphrey (1975) equations. 

One hundred and twenty-five (125) mL of water containing 
natural  populations of phytoplankton  were  preserved with 
2.5 mL of  40% formaldehyde neutralized with calcium car- 
bonate. Samples were thoroughly shaken to suspend the cells 
and 10 mL subsamples were settled in a Zeiss phytoplankton 
sedimentation chamber for 24 h. The cells were enumerated in 
either an area equivalent to 89 microscopic fields or the entire 
chamber, with the aid of a Leitz inverted microscope (500 x). 
Subsamples of 35 mL were prepared using hydrogen peroxide 
oxidation  technique  (Swift,  1967)  for  permanent sl.ides of 
cleaned diatoms to facilitate species identification with  the aid 
of a  Leitz  phase-contrast  compound  microscope.  The  cells 
were identified to species when possible. The classification is 
in accordance with that followed by Silva (1980). The algal 
biomass was expressed as concentrations of cells as well as 
chlorophyll a. 

Environmental  Measurements 

Environmental measurements (seawater temperature, salin- 
ity, underwater irradiance and nutrients) were made concur- 
rently with phytoplankton collections. Seawater temperature 
was measured in the water bottle with a calibrated immersion 
thermometer. Salinity was determined with a Bissett-Berman 
model  6230  laboratory  salinometer.  Underwater  irradiance 
was measured with an Li-185 quantum/radiometer/photometer 
equipped with an Li-193  SB underwater spherical quantum 

sensor (Lambda Instrument Corporation, Lincoln, Nebraska). 
Nutrients (nitrate, phosphate and silicate) were analyzed by 
spectrophotometric  techniques  following  the  methods of Strick- 
land and Parsons (1972). Water samples for ammonia were 
preserved with phenol in the field and kept frozen until analy- 
sis by the method of Dal Pont et  al. (1974). 

Data  Analyses 

It is assumed that all the samples came from populations 
with identical variances. For those variables where a prelimi- 
nary examination of the data had shown deviation from nor- 
mality  and  heterogeneity of variance,  the  transformation 
log,,(X+l) was applied to the raw data before analysis was 
made (Ibanez, 1971). An analysis of variance. suggests that 
data sets from 1980 and 1981 were  not significantly different. 
Values of biological and environmental data were obtained by 
combining both  years with the means of four or more replicate 
samples. They were analyzed by multiway factorial analyses 
of variance (ANOVA). The Duncan's multiple-range test was 
used to test the significance of the factors being examined at a 
level of 0.05 using the SAS statistical package (SAS Institute, 
1988). The integrated values for light and nutrients and mean 
values for temperature and salinity of the water column were 
used to study diel and tidal effects on biomass and composi- 
tion. Factors found to vary significantly with depth were plot- 
ted against time and examined for vertical variation. 

Dominant species are defined as those with more than lo4 
ce1ls.L" and  occurring  in  at  least 10% of the  samples. 
Phytoplankton diversity was determined using the Shannon- 
Weaver  diversity (H') index  (Shannon and Weaver,  1949). 
The diversity of a community  depends on the  number of species 
and the evenness of species distribution. The evenness is then 
defined as J'= H'/log S, where H' is calculated diversity and S 
is the number of observed species (Pielou, 1975). 

RESULTS 

Underwater  Irradiance 

Mean photosynthetically active radiation (PAR, 400-700 
nm) was at a maximum of 192 pE.m-2d at the water surface 
and was attenuated with increasing depth to a minimum of 2 
p E 6 2 K 1  at a depth of 30  m (Fig. 3A). The inte rated PAR 
increased during the day to a peak of 2000 pE.m- 9 .s -1 durin 
the afternoon and decreased to a minimum of 0.1 pE.m -2 .s -5 
by midnight (Fig. 4A). The PAR  was not significantly affected 
by tides (p > 0.1). 

Seawater  Temperature 

Mean  water  temperature  at  the  surface  was  2.5"C  and 
decreased with depth (p < 0.001) to a minimum of - 0.4"C  at 
30  m (Fig. 3B). The temperature did not fluctuate significantly 
during the sampling period (p > O S ) ,  neither from low to  high 
tides (p > 0.1) nor from flood to ebb (p > 0.5) (Fig. 4B). 

Salinity 

During flood tide the salinity of surface water decreased 
from 32%0 to 24-26%0 at high tide (Fig. 3C), forming a density 
stratification  layer (Fig. 3D). During ebb tide the  surface  salinity 
gradually increased to 3  1 -32%0  at low tide (Fig. 3C). In deeper 
waters the salinity remained between 32 and 33%0 throughout 
the day (p > 0.1) and tidal cycle (p > 0.5) (Fig. 4C). 
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FIG. 3. Diel  and  vertical  variations  in  isopleths of A) photosynthetically  active 
radiation (pE.m-'.s"), B) temperature ("C), C) salinity (%o 1, and D) density 
(a) through  a  lunar  tidal  cycle. 

FTG. 5.  Diel  and  vertical  variations  in  isopleths of A) nitrate, B) phosphate, C) 
ammonia  and D) silicate  (mg-at.m")  through  a  lunar  tidal  cycle. 

USTERN S T A N I M U  TNE W 

FIG. 4. Diel  variations  in A) integrated  values of photosynthetically  active  radi- 
ation, B) mean  temperature  and C) mean  salinity of the  water  column (0-30 m) 
through  a  lunar  tidal  cycle.  Vertical  bars  indicate  standard  error. 

Nutrients 

Concentrations of both nitrate (p < 0.05) and  phosphate (p 
< 0.001) were  low  in  the  upper 5 m and  high  in deeper water, 
while  ammonia (p > 0.5)  and  silicate  (p > 0.05) were  distributed 
more  uniformly  throughout the water  column (Fig. 5A-D). 
There were  no significant variations in  any  of these nutrients 
(Fig. 6A-D) at  any  time of the  day (p > 0.1) or during a lunar 
tidal cycle (p > 0.5). 

Biomass 

The mean  concentrations of chlorophyll a were  significantly 
different vertically (p < 0.001)  and  were strongly influenced 
by both  time of day  (p < 0.05) and tidal height  (p < 0.05). 
They  increased with depth  to 20 m and  then  decreased  in  deeper 

water  (Fig. 7A).  Concentrations were  low during low tides and 
high  during  high  tides  and  reached a maximum at about 0900 h. 
Thereafter,  they  decreased  through the afternoon  and  night 
during  flood and ebb tides. In contrast, mean phytoplankton 
counts did  not  vary significantly with depth (p > 0.5)  or tidal 
height (p > 0.1) but  varied with time of day (p < 0.05). Abund- 
ance was greatest in the morning during high tide just before 
the ebb  and  lowest  during the ebb  tide  at  night  (Fig.  7B). 
Chlorophyll a and  cell  counts  (Fig. 8) integrated  over  the 
water column did  not fluctuate with  time of day (p > 0.5) or 
state of the tide (p > 0.5). 

Composition,  Abundance  and  Diversity 

A total of 146  phytoplankton  taxa were identified (Table 1). 
They  consisted of diatoms (centrics 27,  pennates  76),  dino- 
flagellates (13), green algae (12), chrysophytes  (1 l), euglen- 
oids  (4)  and  blue-green  algae  (3).  The  largest  numbers of 
species were from the genera Navicula (13,  Chaetoceros (12) 
and Nitzschia (9). The  occurrence of dominant species at vari- 
ous times of day, depths and tidal heights in a lunar tidal cycle 
are indicated by  an asterisk in Table 1. The  diatoms were  the 
most  abundant  group, consisting of 11 centrics and 8 pennates. 
The centric diatoms  comprised  5 species of Chaetoceros and 3 
species  each of Thalassiosira and Melosira, while  pennate 
diatoms  included 3 species of Nitzschia, 2  species of Coc- 
coneis and  one species each of Thalassiothrix,  Navicula and 
Fragillaria. Centric species usually occurred in  the  upper 10 
m  from afternoon through the  night until morning  during  the 
tide above median height. Pennates were  more  common  in  the 
deeper  waters  from  afternoon  to  midnight  during  the  tide 
below  median height. The  green  algae  were  represented by 
Carteria  cordiformis at the surface in the morning  and Chlamy- 
domonas pulsatilla near  the  bottom (30 m)  around  midnight. 
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FIG. 6.  Diel  variations  (mean k SE) in  integrated  values of A) ammonia, B) 
nitrate, C) phosphate  and D) silicate of the  water  column (0-30 m) through  a 
lunar tidal cycle. 
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FIG. 7. Diel  and  vertical  variations  in  isopleths of A) chlorophyll a ( m g ~ f ~ )  
and B) cell  number (x106 c e l l s d )  through  a  lunar  tidal  cycle. 

Both species dominated during median tide. The haptophyte, 
Coccolithus sp., bloomed in the lower layer of the water col- 
umn during low tide in the afternoon, while Emiliuniu huxleyi 
dominated in the  upper  layer  during  median  tide  at  night. 
Dinoflagellates, blue-green algae and euglenoids were never 
dominant. 
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FIG. 8. Diel  variations  (mean k SE) in  integrated  values of A) chlorophyll a and 
B) cell  numbers of the  water  column (0-30 m)  through  a  lunar  tidal  cycle. 

Phytoplankton composition was numerically dominated by 
diatoms,  while  dinoflagellates,  chrysophytes,  green  algae, 
euglenoids and blue-green algae were sparse (Fig. 9A-F). Cell 
density of diatoms (Fig. 9A) was generally one or two orders 
of magnitude greater than that of other groups (Fig. 9B-F). 
Among diatoms, centrics (Fig. 10A) were always more abun- 
dant than pennates (Fig. 10B) at all depths, times of day  and 
tidal  phases.  Centrics  had  the  highest  density  at  depths 
between 5 and 20 m in the morning at high tide just before the 
ebb, while pennates seemed not to vary in relation to the diel 
tidal  rhythm.  Dinoflagellates  (Fig.  9B)  at 10 m  and  green 
algae in the upper 5 m (Fig. 9C) had similar diel and tidal pat- 
terns as the centrics, but with 20-30 times lower cell density. 
Chrysophytes (Fig. 9D) had high cell density only between 10 
and 20 m in the  afternoon  during  low  tide.  Euglenoids  (Fig.  9E) 
were generally present in low numbers and aggregated in the 
upper 10 m. Their abundance did not significantly vary  with 
time or tides., Blue-green algae (Fig. 9F) were the least abun- 
dant of the phytoplankton groups. They did not exhibit any sig- 
nificant patterns except for some slight evidence of patchiness. 

Species diversity (Fig. 11) was significantly higher at the 
surface than in the deeper water (p < 0.05) but did not fluctu- 
ate  with  time of day (p > 0.1) or  with  tides (p > 0.5). The compo- 
nents of diversity, i.e., the number of species and the evenness, 
showed  a  relationship  between  the  distribution of species 
and the environment. The number of species (Fig. 12A) was 
significantly lower in the deeper waters (p < 0.005), while the 
evenness (Fig. 12B) was unaffected by depth (p > 0.05). 
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TABLE 1. Phytoplankton species and  their mean maximum  occurrence  in  samples  taken  during a lunar  tidal  cycle 

Abundance Tidal Sampling Abundance Tidal Sampling 
Density (%of Time** height depth Density (%of Time** height depth 

( ~ 1 0 ~ ~ e u s . ~ - ' )  sample) (EST) (m) (m) (~IO~cel1s.L") sample) (EST) (m) (m) 

Bacillariophyceae 
Centrales 

Cerataulus turqidus 
(Ehrenberg) 
Ehrenberg 

*Chaetoceros affinis 
Lauder 

*C. borealis J.W.  Bailey 
*C. decipiens Cleve 
C. decipiens f. 

singularis Gran 
C. difficilis Cleve 

*C.  furcellatus J.W. 
Bailey 

C. ingovianus 
Ostenfeld 

C. lauderi Ralfs 
C. septentrionalis 

C. socialis Lauder 
*C. tortissimus Gran 
C. wighami Brightwell 
Coscinodiscus 

Ehrenberg 
Cyclotella spp.  Kiitzing 
Ditylum brightwellii 

(T.  West)  Grunow 
Melosira sp. Agardh 
M. arctica (Ehrenberg) 

*M. distans (Ehrenberg) 

*M. islandica 0. Muller 
M. italica (Ehrenberg) 

*M. roseana Rabenhorst 
M. sulcata (Ehrenberg) 

Thalassiosira spp. 

Oestrup 

Dickie 

Kiitzing 

Kiitzing 

Kiitzing 

Cleve 
*T. decipiens (Grunow) 

E. Jorgensen 
*T. gravida Cleve 
*T. nordenskioeldii 

Cleve 
Pennales 

Achnanthes delicatula 
(Kiitzing)  Grunow 

A. kriegeri Krasske 
A.  marginulata Grunow 
Amphiprora spp. 

Ehrenberg 
A. concilians Cleve 
Amphora inelegans 

Cleve et Grove 
A. laevis var. 

laevissima 
(Gregory)  Cleve 

A. terroris Ehrenberg 
Cocconeis sp. 

Ehrenberg 
C. californica 

(Grunow)  Grunow 
*C. costata Gregory 
C. decipiens Cleve 

*C. distans Gregory 
C. pseudomarginata 

C. scutellum Ehrenberg 
Gregory 

3.6 

65.3 
29.0 
94.3 

21.8 
10.9 

90.7 

14.5 
1.1 

7.3 
0.1 

36.3 
43.5 

0.1 
10.9 

3.6 
10.9 

21.8 

21.8 
79.8 

7.3 
14.5 

0.4 

7.3 

72.5 
21.8 

87.0 

3.6 
21.8 
7.3 

3.6 
0.3 

3.6 

7.3 
7.3 

3.6 

3.6 
29.0 
0.1 

65.3 

3.6 
10.9 

1.8 

12.0 
10.8 
21.7 

8.3 
5.6 

15.3 

8.5 
0.8 

9.1 
0.1 

14.9 
7.4 

0.2 
3.5 

1.4 
3.7 

9.4 

10.2 
28.9 

3.6 
10.7 

0.6 

3.2 

17.2 
11.8 

14.7 

1.3 
7.9 
3.9 

1.8 
0.8 

1.6 

2.0 
3.5 

1.2 

1.4 
15.7 
0.1 

21.4 

1.9 
5.9 

1430  1.5 

0600 5.6 
0600 5.6 
0600 5.6 

2348 5.8 
2042  10.6 

0600  5.6 

1430  1.5 
0924  10.7 

1430 1.5 
1615 1.0 
2348 5.8 
06GO 5.6 

2142 11.0 
1730 6.0 

0310 1.1 
1430  1.5 

2042  10.6 

1730  6.0 
2042  10.6 

1730  6.0 
2348  5.8 

1315  5.8 

2042  10.6 

1140 5.8 
2348 5.8 

0600 5.6 

1430 1.5 
2042 10.6 
2348 5.8 

1430 1.5 
0706 5.2 

2042 10.6 

1430  1.5 
1430  1.5 

2042  10.6 

0310  1.1 
2348 5.8 
1830 5.6 
1730 6.0 

0310 1.1 
2348 5.8 

3 

10 
7 

10 

7 
10 

7 

0 
10 

7 
5 
1 
7 

5 
10 

7 
0 

10 

3 
7 

1 
10 

7 

0 

10 
5 

I 

20 
7 
5 

3 
20 

0 

0 
3 

3 

1 
5 
1 

20 

30 
30 

C. scutellum var. parva 
(Grunow)  Cleve 

C. thumensis Mayer 
Cylindrotheca closter- 

ium (Ehrenberg) 
Reimann  et  Lewin 

Cymbella affinis 
Kiitzing 

C. leptoceros 
(Ehrenberg)  Kiitzing 

Diploneis incurvata 
(Gregory)  Cleve 

D. smithii (Brkbisson) 
Cleve 

D. stroemi Hustedt 
Eunotia denticulata 

(Brkbisson) 
Rabenhorst 

E. exigua (Brkbisson) 
Cleve 

E. serra var. diadema 
(Ehrenberg)  Patrick 

E. veneris (Kiitzing) 
De Toni 

Fragilaria sp.  Lungbye 
F. construens 

(Ehrenberg)  Grunow 
F. islandica Grunow 

*F. pinnata Ehrenberg 
Gomphonema spp. 

Agardh 
Grammatophora 

serpentina (Ralfs) 
Ehrenberg 

Licmophora sp.  Agardh 
L. dalmatica (Kiitzing) 

Navicula Bory 
N .  agrestis Hustedt 
N .  capitata Ehrenberg 
N .  digitoradiata 

(Gregory)  Ralfs 
N.forcipata Greville 
N .  gelida Grunow 
N .  granii (E. 

J0rgensen)  Gran 
N .  humerosa Brkbisson 
N .  imperfecta Cleve 
N .  kariana Grunow 
N .  peregrina 

GNnOW 

(Ehrenberg)  Kiitzing 
*N. radiosa var. tenella 

(Brkbisson)  Cleve  et 
Moller 

N .  salinarum Grunow 
N .  transitans var. derasa 

(Grunow)  Cleve 
N. valida Cleve et 

Grunow 
Nitzschia spp.  Hassall 

*N.  angularis var. affinis 
(Grunow)  Grunow 

* N .  angustata Grunow 
* N .  cylindrus (Grunow) 

Hasle 
N .  frigida Grunow 
N. frustulum (Kiitzing) 

Grunow 

0.1 
7.3 

10.9 

18.1 

29.0 

0.2 

3.6 
3.6 

3.6 

7.3 

7.3 

32.6 
3.6 

7.3 
2.1 

21.8 

3.6 

0.1 
0.1 

0.1 
3.6 

14.5 
3.6 

7.3 
0.1 
7.3 

39.9 
3.6 

29.0 
3.6 

21.8 

32.6 
10.9 

0.1 

32.6 
3.6 

21.8 
47.2 

54.4 
21.8 

7.3 

0.1 
3.0 

5.5 

4.4 

7.9 

0.4 

0.4 
1.5 

2.0 

3.5 

4.4 

8.9 
1.3 

3.6 
1.7 

10.9 

1.8 

0.2 
0.1 

0.2 
2.1 
7.3 
3.0 

2.1 
0.2 
3.6 

9.6 
1 .o 
8.5 
0.8 

7.1 

11.0 
6.3 

0.6 

6.0 
1.2 

12.0 
11.2 

17.9 
7.3 

4.4 

0414 1.0 
0600 5.6 

0310 1.1 

0600 5.6 

0600 5.6 

1315 5.8 

0600 5.6 
2348  5.8 

1430 1.5 

1730 6.0 

1730 6.0 

0600 5.6 
1430  1.5 

1430 1.5 
0924 10.7 
1430 1.5 

1430  1.5 

0048 6.0 
1830 5.6 

0414 1.0 
1730 6.0 
0600 5.6 
1430 1.5 

1430 1.5 
1315 5.8 
1730 6.0 

1500  1.2 
0600 5.6 

1140 5.8 

1730 6.0 

0600 . 5.6 

1430  1.5 
1730  6.0 

0924  10.7 

0600  5.6 
1430 1.5 

1430 1.5 
1315 5.8 

1730 6.0 
1430 1.5 

1730 6.0 

3 '  
1 

3 

20 

5 

0 

1 
1 

1 

7 

5 

5 
20 

10 
20 
5 

3 

1 
1 

0 
30 
3 

30 

10 
3 
1 

20 
5 
7 

20 

20 

0 
0 

1 

10 
0 

1 
10 

20 
0 

5 
(continued) 
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TABLE 1 .  (Continued) 

Abundance  Tidal Sampling Abundance Tidal Sampling 
Density (%of Time** height depth Density (%of Time** height depth 

( ~ 1 0 ~  ce1ls.L") .sample) (EST) (m) (m) ( x ~ ~ ~ c e ~ l s ~ " )  sample) @ST) (m) (m) 

N .  hungarica Grunow 
N .  seriata Cleve 
N .  sigma (Kiitzing) 

Wm.  Smith 
Opephora martyi 

Hkribaud 
Pinnularia sp. 

Ehrenberg 
P. interrupta f. biceps 

(Gregory)  Cleve 
P. quadratarea var. 

stubergii (Cleve) 
Cleve 

P. viridis (Nitzsch) 
Ehrenberg 

Plagiogramma 
staurophorum 
(Gregory)  Heiberg 

Pleurosigma angulatum 
(Quekett) Wm. Smith 

P. stuxbergii Cleve  et 
Grunow 

Rhabdonema arcuatum 
(Lyngbye)  Kiitzing 

R. minutum Kiitzing 
Stauroneis quadripedis 

(Cleve-Euler) 
Hendey 

Synedra spp. 
Ehrenberg 

S. tabulata (Agardh) 
Kutzing 

S. tabulata var. parva 
(Kutzing)  Hustedt 

Tabellaria spp. 
Ehrenberg 

Thalassionema 
nitzschioides 
(Grunow) Van 
Heurck 

*Thalassiothrix spp. 
Cleve et Grunow 

Chlorophyceae 
*Carteria cordiformis 

(Carter)  Dill 
Chlamydomonas 

marina Cohn 

Wohlenweber 
*C. pulsatilla 

Closterium sp.  Nitzsch 
C. Eineatum Ehrenberg 
Cosmarium sp.  Corda 
Oocysris sp.  Naegeli 
Pediastrum sp. Meyen 
Spirogyra inflata 

(Vanch.)  Kiitzing 
Staurastrum sp. Meyen 
S. megacanthum 

Lundell 

7.3 
0.3 

0.6 

21.8 

0.1 

0.1 

3.6 

3.6 

0.1 

0.1 

3.6 

0.6 
0.1 

21.8 

7.3 

11.1 

7.3 

7.3 

3.6 

36.3 

32.6 

3.6 

36.3 
0.1 
0.2 
0.1 
0.1 
3.6 

3.6 
0.1 

0.1 

2.1  1430  1.5 
0.3 0414  1.0 

1.0  1530  1.1 

7.8  2042  10.6 

0.1  0048  6.0 

0.1  1315  5.8 

0.9 0600 5.6 

1.4 0310 1.1 

0.2 1530 1.0 

0.2 1315 5.8 

1.1 1430 1.5 

1.0 1615 1.0 
0.3  1830  5.6 

5.0  1140  5.8 

2.6  2042  10.6 

6.9  0048  6.0 

4.0  1430  1.5 

3.5  1730  6.0 

1.5 2348 5.8 

35.7 1430 1.1 

10.6 0600 5.6 

1.2 1500 1.3 

20.0 2348 5.8 
0.2 0414 1.0 
0.2 1615 1.0 
0.1 1315 5.8 
0.2 0924 10.7 
1.6 2042 10.6 

0.9 1500 1.2 
0.9 0048 6.0 

0.2 0414 1.0 

10 
3 

3 

5 

10 

30 

1 

20 

0 

10 

0 

1 
10 

20 

5 

30 

1 

7 

1 

30 

3 

0 

30 
0 

10 
7 
5 
0 

10 
0 

1 

Trochiscia multispinosa 
(Moebius) 
Lemmermann 

Chrysophyceae 
Dinobryon spp. 

Ehrenberg 
D. balticum (Schutt) 

Lemmermann 
Isochrysis sp.  Parke 
Ophiocytium sp. 

Nageli 
Synura uvella 

Ehrenberg 
Cryptophyceae 

Parke 
Cyanophyceae 

Hemiselmis rufescens 

Anabaena sp. 
St.  Vincent 

Lyngbya aestuarii 
(Mert)  Liebman 

Spirulina sp.  Turpin 

Distephanus speculum 
(Ehrenberg)  Haeckel 

Ceratium spp.  Schrank 
Dinophysis acuminata 

Dictyochophyceae 

Dinophyceae 

Claparkde  et 
Lachmann 

Paulsen 
Glenodinium danicum 

Goniaula spp.  Diesing 
G. monilata Howell 
Peridinium spp. 

Ehrenberg 
P. Cerasus Paulsen 
P. diabolus Cleve 
Prorocentrurn spp. 

P. micans Ehrenberg 
P. rampii Soumia 
Protoperidinium 

punctulatum 
(Paulsen)  Balech 

Ehrenberg 

Euglenophyceae 
Euglena spp. 

Ehrenberg 
E .  deses Ehrenberg 
E. schmitzii Gojdics 
E .  viridis Ehrenberg 

*Coccolithus Schwarz 
*Emiliania huleyi 

(Lohmann) Hay 
et Mohler 

Phaeocystis pouchetii 
(Hariot)  Lagerheim 

Haptophyceae 

4.0 

7.0 

0.1 
0.1 

7.3 

0.6 

0.1 

0.1 

0.1 
0.1 

7.3 

3.6 

0.2 

3.6 
0.5 
0.4 

3.6 
3.6 
5.5 

0.1 
0.3 

18.1 

0.1 

3.6 
7.3 
0.1 
0.6 

170.5 

29.0 

0.3 

6.4 

9.5 

0.1 
0.1 

2.4 

2.0 

0.1 

0.1 

0.2 
0.2 

7.1 

1.2 

0.2 

1.8 
0.5 
0.6 

2.0 
2.1 
7.4 

0.1 
0.2 
7.5 

0.1 

1.6 
1.9 
0.1 
0.8 

62.7 

11.1 

0.8 

2142  11.0 

1830 5.6 

1830 5.6 
0924  10.7 

1430  1.5 

1830  5.6 

0924  10.7 

2142  11.0 

1315  5.8 
2142  11.0 

1430  1.5 

1430  1.5 

1615 1.0 

1430 1.5 
0048 6.0 
2142 11.0 

1430 1.5 
0600 5.6 
1830 5.6 

0048 6.0 
0924 10.7 
2348 5.8 

0924  10.7 

2042 10.6 
1140 5.8 
0924 10.7 
1615 1.0 

1430  1.5 

2348 5.8 

0706 5.2 

1 

1 

1 
7 

0 

3 

7 

20 

3 
1 

30 

0 

10 

3 
10 
1 

1 
7 
1 

7 
10 
1 

10 

0 
3 
7 
5 

20 

7 

20 

**Time of maximal  cell  division  occurred in a  lunar  tidal  cycle. 
*Dominant  species. 

DISCUSSION 
groups dividing according to their preferred division time at 

The phytoplankton community in Frobisher Bay varies in specific depths during different tidal states or during the day 
its taxonomic composition at different times of day  and tidal or night, as shown in Table 1. Nelson  and Brand (1970) found 
phases.  This  is  probably  a  result of the  various  taxonomic that the majority of diatom species divided primarily in the 



b 
W 
0 

10 - 

20 - 

30 - 

4TOMS 

EASTERN  STANDARD  TIME [h) 

I I I I , , I , , , , , , , , , , , , , ,  
15 18 21  24 03 06 09 12 15 

' E  

J / / i  i 
DINOFLAGELLATES 

/ 

L 
- F  

FROBISHER  BAY  PHYTOPLANKTON I 333 

'C 

FIG. 9. Diel  and  vertical  distribution of A)  diatoms,  B)  dinoflagellates, C) green  algae, D) chrysophytes,  E)  euglenoids  and  F)  blue-green  algae (x106 cellsM3) - - 
through a lunar  tidal  cycle. 

dark.  Lewin  and Rao (1975)  showed  that  small  groups of 
diatoms  preferrentially  divided  in  the  light.  However, Wil- 
liamson (1980) demonstrated that some marine diatoms did 
not have preferred times for cell division. Cell division in both 
Chlorophyceae and Euglenophyceae were generally confined 
to the dark (Pirson and Lorenzen, 1966), while the peak cell 
division in the green flagellate Dunaliella tertiolecta occurred 
at the end of the light period (Eppley and Coatsworth, 1966). 
Chrysophytes  clearly  divided  preferentially  at  night  (Chis- 
holm, 1981). In dinoflagellates, Ceratium division stages were 
usually restricted to late night-early morning hours (Weiler, 
1980), while division of Dinophysis  fortii extended through 
the entire  day, with the maximum frequency of paired cells 
occurring soon after  sunrise  (Weiler and Chisholm, 1976). 

EASTERN  STANDARD  TIME [hl 

FIG. IO. Diel  and  vertical  distribution of A)  centric  and  B)  pennate  diatoms 
( ~ 1 0 ~  cell~.rn-~) through a lunar  tidal  cycle. 

Sournia (1974), while indicating that the weight of evidence 
supported nighttime divisions by most phytoplankton, stressed 
that random variations could occur in areas where tides are 
prevalent. Later, Chisholm (1981) found that cell division of 
phytoplankton peaked at almost any hour of the day, depend- 
ing on species and environmental conditions. 

Tides have a doubly beneficial effect in upper Frobisher 
Bay. They not only flush in freshwater and nutrients from the 
nearby Sylvia Grinnell River during flooding but also generate 
an upward mixing, particularly when ebbing. A short period of 
stratified water occurred only near the surface during flood 
tides. The waters were subsequently mixed by the alternating 
tidal  cycles  in  addition  to  other  mixing  processes, such as 
wind and convection  (Demers et  al., 1987).  These  signifi- 
cantly affect physical, chemical and biological dynamics of 
marine coastal environment. 

The  fluctuations  in  temperature,  salinity  and  nutrients 
accompanying the tidal cycle involve more gradual transitions 
than do those of the day-night light cycle. Superimposed on 
these  gradual  transitions  are  large-amplitude,  short-period 
oscillations in the form of waves. These can alter phytoplank- 
ton chlorophyll concentrations and cell numbers through inter- 
nal tides (Haury et  al., 1983; Lande and Yentsch, 1988), wind 
waves (Iverson et  al., 1974; Demers et  al., 1987), wind-driven 
surface currents (Harris and Trimbee, 1986), river-driven cur- 
rents  (Litaker et al., 1987)  or  horizontal  tidal  advection 
(Cloern et al., 1989). All these mixing processes occurred and 
were strong enough to break down the vertical stratification at 
the study site in Frobisher Bay. Diel variations in the abun- 
dance and distribution could also be reduced by tidally driven 
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FIG. 12. Diel  and  vertical  variations  in  the A) numbers  of  species  and B) even- 
ness  through  a lunar tidal  cycle. 

turbulence. Moreover, Hsiao (1985) found that cell division 
rates of phytoplankton in the same area were mostly > 24 h 
division. Species succession did not occur within a tidal cycle 
during summer. These were coupled with rapid mixing of the 
water and  low zooplankton grazing. Phytoplankton cells were 
thus uniformly distributed through the water column by the 
alternation of flood and ebb tides accompanied by intense ver- 
tical and horizontal mixing. 

This intense tidal mixing resuspends sediments, which not 
only resuspend cells but also replenish nutrients into the water 
column (Demers et  al., 1987). These conditions may be more 
favorable to the growth and photosynthesis of centric diatoms 
that have a predominantly planktonic and photoautotrophic 
mode of existence in such environments (Hsiao et al., 1977; 
Turpin and Harrison, 1979) and exhibited maximal numbers in 
the morning during high tide just before ebbing. In contrast, 
pennate diatoms are predominantly benthic species and have 

heterotrophic capabilities both in the light and the dark (Helle- 
bust and Lewin,  1977). They did not show any correlation 
with tidal rhythm. The  other groups of phytoplankton were 
always less abundant than diatoms except for the haptophyte 
Coccolithus sp., whose cells aggregated at 20 m in the morn- 
ing during high tide and dissipated by the afternoon ebbing 
tide. The green algae and dinoflagellates occurred in patches 
respectively at 5 and 10  m in the morning during the same 
tidal conditions with the centric diatoms. They seemed to pre- 
fer abundant light and were located in the upper layers of the 
water column. It has been reported that small-sized diatoms 
dominate in the  well-mixed  waters  (Pingree et al., 1978; 
Levasseur et al., 1984), some large diatoms and microflagel- 
lates  dominate in well-stratified waters (Wangersky,  1977; 
Levasseur et al., 1984) and dinoflagellates are more abundant 
at fronts between well-mixed water and more stable offshore 
water (Holligan, 1978) or during intervening minor spring and 
neap tides (Balch, 1981). However, Wangersky (1977) argued 
that  diatom  growth  depended  on  the  renewal of inorganic 
nutrients through tidal mixing, whereas dinoflagellates and 
microflagellates only became dominant when  the major source 
of nutrients was regenerated in situ by the degradation of dis- 
solved organic compounds by bacteria. Therefore, tidal mixing 
not only affects environmental conditions but also influences 
the growth,  spatial  distribution and community structure of 
phytoplankton in the mixed layer. 

The  vertical  distribution of a  phytoplankton  assemblage 
was not only largely determined by the dynamics of the for- 
mation of seasonal thermocline (Kiefer and Kremer, 1981) but 
also associated with water column stability (Ignatiades, 1979). 
The depth of maximum phytoplankton production was found 
when the vertical stability reached a maximum as a thick ther- 
mohalocline formed (Vandevelde et al., 1987). In the physical 
dynamics of shallow Frobisher Bay, the taxonomic composi- 
tion in the water column is probably strongly influenced by 
species that originated from the nearby Sylvia Grinnell River, 
the sea ice microalgae and/or the resuspension of bottom sedi- 
ment. The change in species composition and diversity within 
the water column can probably be explained by difference in 
sinking rates (Gabric and Parslow, 1989), selective grazing 
(Daro, 1988) and behavioral responses to environmental con- 
ditions  (Venrick,  1988),  particularly  to  photoadaptation 
(Falkowski, 1983). None of the taxa was confined to a single 
depth but some had a depth preference. The centric diatoms, 
such as the dominant species of Chaetoceros,  Melosira and 
Thalassiosira, dominated in the upper 10 m,  while the pennate 
diatoms Cocconeis  distans,  Nitzschia  cylindrus and Thalas- 
siothrix sp.  dominated  in  deeper  water.  All  these  diatoms  inhabit 
unstable environments and are predominant in tidally mixed 
coastal waters rather than in relatively stable sea ice habitats 
(Hsiao, 1980). The green alga Carteria  cordiformis occurred 
in  highest  density  near  the  surface,  while  another  chloro- 
phycean, Chlamydomonas Pulsatilla, bloomed near the bottom 
of the  water  column.  The  haptophyte Emiliania  huxleyi 
dominated at 7 m, representing 11% of the population, while 
Caccolithus sp.,  representing  63%,  bloomed  at 20 m.  The 
blue-green algae, dinoflagellates and euglenoids were particu- 
larly distributed in the upper water layers. 

The  vertical  distribution of phytoplankton  diversity  in 
Frobisher Bay  was  highest (2.6) in the surface layer and gradu- 
ally  decreased with depth  and  became  lowest  (1.9)  during 
blooming.  This was largely  due  to  in-flowing  freshwater, 



which  brought  in  more  species  from  the  nearby  Sylvia 
Grinnell River and formed the thermohalocline. These led  to 
active growth of the population in the mixed water, with a bet- 
ter nutrient balance and other physical conditions, and thus a 
decrease in diversity. Low diversity usually resulted from spa- 
tial or temporal predominance of a few species and unequal 
relative abundance. The diversity did not exhibit significant 
diel or tidal changes. Margalef (1977) pointed out that low 
diversity is associated with high primary producer/herbivore 
ratio and considered productivity usually inversely related to 
diversity in less productive waters. Diversity of phytoplankton 
was usually between 1 and 2.5 in coastal waters (Margalef, 
1978),  being  especially  low  in  blooming  populations 
(Raymont, 1980) and physically stressed ecosystems such as 
in polar regions (Odum, 1971) and estuarine (Hulburt, 1963) 
and upwelling areas (Margalef, 1978). Values from 3.5 to 4.5 
were  most frequently measured in the oceanic areas (Margalef, 
1978). Values might approach 5 in open tropical oceanic envi- 
ronments, where phytoplankton have low productivity with a 
large number of species. However, species diversity might be 
increased for most unstable environments (Reed, 1978) and 
later stages of succession (Ignatiades, 1969). It is clearly shown 
that diversity values were very closely related to species num- 
bers, while evenness values were unimprtant in determining 
species diversity. 

The concentrations of chlorophyll a varied from species to 
species in the populations depending on the biomass present 
and  the  conditions  under  which  they  are  growing.  They 
showed a diel periodicity, highest during the morning ebb tide 
and lowest during afternoon flood tide, based on the volume 
measurement of sample,  but  not  on  an  areal  basis,  in  the pres- 
ent study. This is probably because of the uniform phytoplank- 
ton density in the water column. However, chlorophyll content 
per cell was maximal at mid-day and minimal at night (Wood 
and Corcoran, 1966). Other workers described diurnal varia- 
tions in chlorophyll contents ranging from an early morning 
minimum and afternoon maximum (Whitledge and Wirick, 
1983) to the reverse, a peak in the early morning to the lowest 
level in the afternoon (Shimada, 1958), as well as no obvious 
diel  pattern  (Kawarada  and  Sano,  1968).  These  findings 
appear to  be inconsistent and contradictory because of the dif- 
ferences in parameters measured and experimental procedures 
employed. Sournia (1974) concluded that the chlorophyll con- 
tent of phytoplankton was subjected to a diel periodicity, inde- 
pendent of grazing, cell division and vertical migration. The 
main influence on the diel periodicity of the cellular chloro- 
phyll content is  obviously light. Natural changes in irradiance 
play a dominating role not only in photosynthesis, but also in 
inducing other circadian processes such as respiration, nutrient 
uptake and cell division (Soeder, 1965). Other factors such as 
temperature, nutrient availability, water column stability and 
taxonomic  composition  would  also  modify  the  periodicity 
(Owens et aZ., 1980; Legendre et al., 1982). 

The vertical distribution of chlorophyll a was characterized 
by a maximum in the  thermohalocline  and  nitracline  in 
Frobisher Bay at 20 m, while it was independent of phyto- 
plankton cell density. This maximum was also located at depth 
where irradiance was about 3%  of the sea surface. It coincides 
with the finding of Cullen and Eppley (1981) that the chloro- 
phyll  maximum  layers  were  generally  located  at a depth 
between 1 and  6% light levels in the vicinity of the nitracline. 
Chlorophyll a synthesis may stop or photodegradation occur 
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near the surface at  noon on bright days (Steemann Nielsen and 
Jorgensen, 1962), while it may  be increased in the amount per 
cell as a result of shade adaptation to low ambient light levels 
(Bienfang et al., 1983). Steele and Yentsch (1960) explained 
that some phytoplankters can control their vertical position 
and produce a chlorophyll maximum layer in the thermocline 
by decreased sinking rates at the pycnocline as the cells enter 
into the low-light and nutrient-rich waters found at the base of 
the euphotic zone. The concentrations of nitrate and phosphate 
in the  water column were stratified, while ammonia and sili- 
cate were homogenous. These may  be attributed to the results 
from a combination of preferential nutrient uptake by phyto- 
plankton, differential growth rates of the algal populations and 
nutrient  regeneration  rates  in  a  turbulent  environment. In 
Frobisher Bay diatoms constitute the dominant phytoplankton. 
They particularly require silicon for  their  cell  division and 
growth. Silicon concentration in seawater was minimum dur- 
ing the night, when  most of diatoms divided, while the other 
nutrients were  not significantly different at any time or phase 
during  a tidal cycle. Lewin et al. (1966) found that silicon 
uptake by the diatom cells  is restricted to a relatively short 
period following cytokinesis, when cell wall synthesis occurs. 
This  bulk  requirement  is  distinct  from  the  requirement of 
nitrogen and phosphorus for other essential metabolic events 
that precede cell wall synthesis. Silicon was also regenerated 
at a low rate compared with nitrogen and phosphorus (Dug- 
dale, 1972). Ammonia could be rapidly and directly utilized 
by marine phytoplankton (Glibert and Goldman, 1981). 

In conclusion, the vertical distribution of phytoplankton in 
Frobisher Bay is a time-varying property influenced by physi- 
cal  (light,  temperature, salinity and tidal mixing), chemical 
(nutrients) and biological (grazing and sinking rates) factors. 
These factors interact to produce a constant vertical profile of 
cell abundances. The time scale of these changes is probably 
controlled by the stability of the environment and the major 
groups of cell division. These cells respond according to the 
intensity and persistence of vertical mixing, since the light his- 
tory of the cells is known to influence the photosynthesis-irra- 
diance  relationship by altering  chlorophyll/carbon  ratios 
(Marra and Heinemann,  1982;  Falkowski,  1984;  Langdon, 
1988). At low  light  levels they can  develop  physiological 
adaptation by changes in sinking rate and cellular chlorophyll 
concentration in creating a subsurface chlorophyll maximum 
at, the base of the euphotic zone and associate with the thermo- 
halocline and nitracline. Their diversity is closely correlated 
with the number of species but decreased with increasing both 
the  depth  and the concentrations of nitrate and phosphate. 
Moreover, specific differences in sinking rate and in the abil- 
ity to maintain themselves within the mixed layers may pro- 
foundly influence species composition, which is of paramount 
importance to the production of higher trophic levels in the 
marine ecosystems. 
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