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ABSTRACT. The alpine periglacial areas  of  the  world  can be divided into three  distinctive landscape types dominated by one of the follow- 
ing: active rock glaciers,  active block streams, or gelifluction landforms.  These  also  correspond to distinct climates,  the  active rock glaciers 
occurring under cold, humid conditions;  the  active block streams in cold,  dry  climates; and gelifluction-dominated landforms occurring 
in warmer areas.  These have distinct ranges of mean annual temperature and precipitation, which can be used in interpreting climatic changes 
based on distribution  of fossil landforms. 
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RÉSUMÉ. On peut diviser les régions périglaciaires  alpines du globe  en  trois  types de paysages distincts,  dominés  par un des éléments 
suivants : glaciers rocheux actifs, coulées de pierres actives ou reliefs de gélifluxion. Ces éléments correspondent aussi àdes climats distincts, 
les glaciers rocheux existant dans des conditions de froid et d’humidité; les coulées de pierres actives sous des climats  froids et secs; et 
les reliefs de gélifluxion dans  des régions plus tempérées. Ces paysages ont des gammes  différentes de moyennes annuelles de températures 
et  de précipitations, qui peuvent servir à interpréter  les changements climatiques fondés sur la distribution des  reliefs  fossiles. 
Mots  clés : pergélisol alpin,  coulées de pierre,  glaciers  rocheux, gélifluxion 

Traduit  pour Arctic par Nésida Loyer. 

INTRODUCTION 

The major objective of the expeditions of the late Car1 Troll 
was to explore the  high  mountain areas of the world so as 
to  determine  the  variations  in  geomorphology  and  plant  cover 
in these regions. The result was a remarkable collection of 
descriptions (e.g.,  Troll, 1972), but these were never 
integrated into a worldwide system. 

The writer first visited the Alps in  1947  and has subse- 
quently  been fortunate to visit many more mountain  ranges 
in different parts of the world. After 45 years of  field work, 
it  has  become  apparent  that  there  may  be a general  worldwide 
zonation of  dominant landforms in mountainous permafrost 
regions, and  it  is the purpose of this paper to describe some 
of the evidence for this. 

During field  work  in  cold  mountain areas in various parts 
of the world, certain patterns of landforms have  become 
apparent. This conclusion has  been strengthened by recent 
publications by specialists  on  different  mountain  ranges.  The 
main problem with the literature has  been the dominance of 
works  on  certain  accessible  mountain ranges, e.g., the Alps, 
and  English-speaking workers’ inaccessibility  to  many  other 
critical areas of the world, namely, Russia, Siberia, Central 
Asia, the People’s Republic of China, and the Cordillera of 
South America. With increased access to these regions for 
Europeans and North Americans, and  with the increasing 
availability of literature on these areas in languages other 
than Russian, Chinese, etc., it is now  timely to attempt a 
zonation of the dominant alpine permafrost landforms. In 
this paper, examples are given of some  of  the  key  permafrost 
landforms from these  newly accessible regions as well as 
from those that are better known. 

DEFINITIONS 

Three main groups of landforms dominate the zonation. 
Unfortunately , the names  of  two  of the three groups have 

been under debate for a long time, so it  is  necessary to start 
with the definitions of the terms as used in this paper. 

The term “active block stream” is used to refer to lines 
of angular or subangular blocks (Fig. 1) descending down- 
slope as a stream (Washburn, 1973, 1979). The blocks have 
the same lithology as the underlying material, whether that 
be bedrock or a superficial deposit containing blocks. The 
blocks are apparently moved upwards and  ejected from the 
soi1 or broken from the bedrock by frost action (King  and 
Hirst, 1964; Joyce, 1950). There is little sign of rounding 
or chemical weathering, and  they  usually exhibit a sharp 
boundary  with the surrounding  deposits.  They  move at a rate 
of several centimetres per year (Romanovskii and Tyurin, 
1983) and the movement  may  be due to creep of thawed 
blocks over an icy base (Czudek  and Demek, 1972; 
Romanovskii  and Tyurin, 1983)  when the ice content in 
winter exceeds 50% by volume. Ice contents of up to 90% 
by volume in winter  have  been  reported by Romanovskii  and 
Tyurin (1983:1097) from southern Yakutia  and northern 
Transbaikalia. 

JX I Active rock xtrcarns, Kunlun Shan. China 
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These  landforms  must  be  clearly  differentiated  from “stone 
runs” (Geike, 1894; Anderson, 1906), which are streams 
of subrounded or rounded boulders lying on slopes. In  these 
cases, water has  removed the finer material from between 
the boulders and  has  aided in chemical  and  physical 
weathering of the blocks, increasing their roundness. These 
can  be  observed forming today - for example, at the Upper 
Glaciological  Station,  Tien  Shan,  near  Urumqi - from  sorted 
patterned ground and till. They differ from the deposits of 
blocky  “debris  flows”  in  the  bottoms  of  gullies by the  absence 
of finer material  in the deposit, the  absence  of lateral levees, 
the lack of  a  hollow  up-valley where the blocks came from, 
and the slow movement  that  mainly occurs in winter. They 
probably grade into certain kinds of “block slopes”, which 
are slopes greater than 10” (Washburn, 1979) mantled in 
blocks of rock. Some  of these slopes at maximum angle of 
rest of  material are called “talus slopes” and also show  slow 
downslope  movements (e.g., Luckman, 1988), but  the  nature 
of the movement is quite  different  (Loughran  and Loughran, 
1979; Gardner, 1979; Kotarba, 1984; Kotarba and 
Stromquist, 1984; Luckman, 1988; Perez, 1989, 1993). 
However, ongoing studies by the author and  his students on 
edaphically dry block slopes at Plateau Mountain, south- 
western Alberta, show similar processes occurring to those 
on active block streams. Active  block streams differ from 
the other landforms in always occurring in  cold climates in 
the active layer overlying permafrost. 

The term  “active  rock glacier” is  used  in  this  paper  to  refer 
to masses  of rock debris containing substantial quantities of 
interstitial ice and  moving  slowly downslope as a sheet. The 
rocks are matrix  supported in the ice, which  may  reach 60 % 
by volrme (Barsch, 1978). The movement is normally  most 
rapid  in  the centre, decreasing  towards  the  sides  and  terminus 
(Jackson  and  MacDonald, 1980; Gorbunov et al., 1992). This 
differential movement  causes  an  oversteepening  of  the front 
slope (Fig. 2). Movement is now  believed to be due to 
deformation and  flow  of the ice in the interior of the mass 
(Haeberli, 1985), sometimes  aided by zones of  high 
hydrostatic pressure (Giardino, 1983). Good examples of 
factors affecting  the  movement  of  rock  glaciers  will  be  found 
in Gorbunov et al. (1992). 

The third major group of landform comprises the 
“gelifluction” deposits. The original term used for flowage 
of saturated soil downslope over a relatively impermeable 
substrate was “solifluction” (Anderson, 1906). However, 
this could  include  flowage  over  an  unfrozen  clay layer, which 
can  occur  in  any  climate,  although  it  is  relatively  uncommon. 
Gelifluction  was  defined by  Baulig (1956:50-51) as flowage 
of wet, unfrozen  soil  downslope over a  frozen substrate. The 
latter may  be either seasonal or perennial frost (permafrost). 
It is therefore movement  of the upper layer of the superficial 
deposits that takes place, and the most extensive examples 
appear to be the deposits described as the “Kunlun Shan- 
type rock glacier” (Fig. 3) of Cui (1983). The front of  these 
features  has  a  low  slope  (Fig. 4) and  the  deposits  exhibit  small 
lobes on the surface due to soil flowage when  snow  melts 
(Fig. 5) .  Larger blocks act as braking blocks (Fig. 6), since 
the active layer in the main  mass  at  this site is rarely over 
50 cm thick. Thus blocks of rock more than 1 m  in diameter 
are permanently frozen into the ground, and the moving 
superficial material piles up behind them. The movement is 
also  indicated  by  elongation  upslope  of  the  roots and/or stems 
of the few plants growing on the landform (Fig. 7) in these 
areas of relatively rapid movement, where most  plant  spe- 
cies cannot survive. Braking  blocks are a  good indicator of 
gelifluction on a slope in cold climates. 
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Other landforms produced by gelifluction include geli- 
fluction lobes, sheets, benches, and streams (Washburn, 
1979:206). The gelifluction features of the Kunlun  Shan are 
examples of gelifluction sheets and streams. Turf-banked 
terraces  and  stone-banked  terraces  and  lobes  (Benedict, 1970, 
1976; Smith, 1987,  1988) are examples of the lobes and 
benches of Washburn. In extreme cases, gelifluction can 
smooth out large surfaces, producing altiplanation terraces 

(Eakin, 1916:77-82), equiplanation terraces (Cairnes, 
1912:344-348), and  goletz  terraces (Jorrk,  1933), all of  which 
are now  usually called cryoplanation terraces (Bryan, 
1946:639-640). ,These  gently  sloping surfaces cut across the 
bedrock structure and it is argued that they are developed 
by gelifluction,  since  gelifluction  deposits  form a veneer  over 
bedrock (Fig. 8), often  with  patterned ground or ice  wedges 
developed  on  them (Fig. 9). Gelifluction lobes may occur 
on their surfaces, as on the west side of the Mackenzie 
Mountains, Yukon Territory (Fig. 10). French and Harry 
(1992) argue that  it remains to be proven that cryoplanation 
terraces in unglaciated terrain are formed under the present 
climate (e.g., those in Fig. 8), but  some  cases  can  be  found 
where they are present on Late Wisconsinan till (Fig. 11) 
in central Alaska. These must  have  been formed during the 
Holocene. 

Where  the  frost  is deep but  seasonal,  gelifluction  produces 
ploughing blocks, and these can also occur where there is 
a deep  active  layer over permafrost, for example,  at  Marmot 
Basin, Jasper, Alberta. The moisture is supplied  by  melting 
snow  and the heavy rocks tend to move downslope faster 
than the surrounding sediments (see Gorbunov, 1991). 

Gelifluction occurs on most  slopes  with  medium- to fine- 
grained material present in areas of freezing ground. It can 
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occur  on  rock  glaciers if there  is  fine-grained  material  present 
in the matrix on the surface of the landform, such as in the 
rock  glaciers in the  PreCordillera of Argentina  near  Mendoza 
(Fig. 2), and in these cases results in the presence of braking 
blocks as the  finer  unfrozen  material  flows  downslope, over- 
riding  the  large  blocks still frozen  in  the  underlying  permafrost. 

Gelifluction is a slow surface phenomenon, in contrast to 
rapid, catastrophic flows such as debris flows and detach- 
ment  failures  or  active  layer  detachment  flows  and  skin  flows 
(see Hughes, 1972; McRoberts and Morgenstern, 1974; 
Harris et al . ,  1988). All these other processes result in a 
hollow where the material came from and a cone-shaped 
undulating accumulation area. These are local phenomena 
and rarely dominate the landscape, but are often found in 
association with gelifluction. Similarly, the retrogressive 
thaw-flow slides and retrogressive thaw slumps consist of 
various  combinations of catastrophic  slides  and debris flows, 
together with gelifluction, but the slides and debris flows 
dominate the resulting landforms (Mackay, 1966; Rampton 
and Mackay, 1971; Hughes, 1972; McRoberts and 
Morgenstern, 1974; Washburn, 1979; Harris and Gustafson, 
1988, 1993). Since  these are caused primarily by  highly  ice- 
rich  permafrost,  they are more  important  as  local  phenomena 
than as major worldwide processes. 

The degree of activity of both  block streams and rock 
glaciers may be gauged  by the  absence  of  lichens  and  vascular 
vegetation  (Figs. 3,5,6) .  Measurements of the  rates  of  move- 
ment on  the surface of the main bodies of either landform 
are essential  to prove this activity, however, since the lower 
parts of some active rock glaciers may be covered in forest 
(Blumstengel  and Harris, 1988). The margins of active rock 
glaciers may  show negligible movement  (Jackson  and 
MacDonald, 1980), and the front of the rock glacier may 
continue to reduce its oversteepened slope long after move- 
ment in the main  mass  has ceased. 

ZONATION OF THE  DOMINANT  ALPINE 
PERMAFROST  LANDFORMS 

Geographical  Distribution 

Figure 12 shows the distribution of the mountain areas 
dominated by each of these three basic groups of landforms. 
Active  block streams are best  developed  in Siberia 
(Romanovskii and Tyurin, 1974, 1983) and in the Urals 
(Romanbvskii and Tyurin, 1986). They  have also been  seen 
by the writer in the Kunlun Shan in  China  and in the 
Richardson Range in northwest Canada. 

Rock glaciers are widespread in the Alps (Capello, 1947; 
Evin, 1983; Haeberli, 1991), in the Cordillera of western 
Canada  and  Alaska  (Capps, 1910; Wahrhaftig  and Cox, 1959; 
Luckman  and Crockett, 1978; Kershaw, 1978; Ellis and 
Calkin, 1980), in Argentina (Catalano, 1926; Marangunic, 
1976; Corte, 1976, 1985; Igarzabal, 1983), and in isolated 
localities through Eastern Europe and the Middle East 
(Grotzbach, 1965; Schweizer, 1972; Gobadzhishvili, 1978). 
They also occur in the high  mountains  of the Tien Shan 
(Palgov, 1948; Gorbunov, 1983; Titkov, 1985; Gorbunov 
et al., 1992) and on the north slope of the Hindu Kush in 
Afghanistan  and India (Rathjens, 1978; Mayewski et al.,  
198 1) .  

Gelifluction  landforms  dominate  elsewhere.  They are found 
in  the Cordillera of North America wherever permafrost is 
present,  from  Kananaskis,  Alberta,  southwards  to  about 20 "S 
in  the  Andes  of  South  America (Troll, 1947; Schubert, 1969; 
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Graf, 1984; Pkrez, 1985,  1988;  Francou, 1988; Smith, 1988). 
The  gelifluction  zone is also found in East  Africa  (Sparrow, 
1967;  Hastenrath  and  Wilkinson,  1973) and through most 
of the belt between the  Pyrenees and southeast  Siberia, 
including Iran,  Tibet, central China,  Korea, and  Japan (e.g., 
Zhigarev, 1967). 

DISCUSSION 

Relationship of Xhese Features to Climate 

Figure  13  shows the results of plotting the data for mean 
annual  air  temperature  and mean annual  precipitation  for 
typical weather stations in the landscapes  dominated by each 
of the  three  landscape  types. Each occupies  a  discrete  zone 
on the graph  and there is  remarkably little overlap. Notc that 
the  zones of distribution are merely  pickcd out by drawing 
lines around the data points for all the weather stations where 
a particular landform  dominates the landscape. No statistical 
manipulation has been performed.  Part of the source  data 
is listed in Table 1. 

The  overlap that does  occur is probably due  to  a  combi- 
nation  of five factors. First, the measurements  of precipitation 

are not particularly accurate.  There is little problem  in  meas- 
uring  rainfall, but over half the precipitation is in the  form 
of  snowfalls. Snowfall is notoriously difficult to  measure 
(Harris,  1972, 1973) and  there is the additional problem that 
it  can  be redistributed by wind.  Second,  there is a consider- 
able difference in the effect of a given  amount of precipitation 
on coarse-grained soils, such as sands, and fine-grained soils, 
such as silts  and  clays.  Third, many  of the weather stations 
arc located  on valley floor sites as opposed to the mountain 
peaks.  Fourth,  the  decision  as  to which  of the  three land- 
forms is dominant in the landscape is  not truly quantitative. 
Last,  to  form block streams or rock  glaciers,  suitable  rock 
materials must be  present. With more  data,  the  degree of 
overlap should become  apparent, and an overlap may occur 
between gelifluction and  block  stream-dominated landscapes. 

Nonethelcss,  somc  broad relationships can be recognized. 
The landscapes of the  warmer  periglacial  climates are 
dominated  by gelifluction and debris  flows. Rock glaciers 
are the characteristic landforms  of  landscapes in colder, wetter 
climates,  whereas  active block streams are the outstanding 
landscape  features in cold,  dry  climates. At the same  time 
there are zones  of  overlap  around the field  dominated by rock 
glaciers in Figure  13. 

0 500 1000 1500 

Mean Annual Precipitation ( mm ) 
FIG. 13. Distribution of climatic parameters (mean annual air temperature and mean annual precipitation) for mountain landscapes dominated by active 
block streams, active rock glaciers, and active gelifluction dcposits. Examples of typical  data are found in Table 1 
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TABLE 1. Typical climatic data for  the  three  types of mountain permafrost  landscapes 

Dominant  landforms 
in the  landscapc  Locarion 
Rock glaciers  Tungsten, N.W.T.* -5.7  645  AES,  1982:53 

Mean  annual air Mean  annual 
temperature ("C) precipitation (mmj References 

Columbia  Iccfields, Alberta -2. I 930 
Tsischu, N.W.T." 

AES, n.d. ,  x 4 7  

Macmillan Pass, Yukon -7.0  650 Wahl e! al., 1987 
U. Glaciological  Station, -5.3 

Dawson City, Yukon -5.1 306 ABS, 1982:s 
Spitsbergen -1.5  to  -4.8 400 Liestel,  1976:9; Salvigsen and 

Elgersma,  1985:148 
Brooks  Range,  Alaska -14.0  400-700  Ellis and Calkin,  1980 
Swiss Alps -4.0  1000-2600 Haeberli et a / . ,  1992 
French Alps -2.0 to -4.0 800 Haeherli et ol,, 1992 
Central Andes (35"s) -2.0 400-800 Corte, 1985 
E. slope,  Central Andes (33"s)  -2.0  to  -10.0  >950 Corte, 19x5 
Sunshine  ski area, Alberta -6.9 > 1000 Harris, 1989 
Parkin, Yukon -6.4  473 Wahl Pt  a / . ,  IY87 

-8.3  c.600  AES, 1Y82:SI 

Tien Shan, Xinjiang 
430 Shi Yafcng  and Zhang 

Xiangson, 1984:Y 

Gelifluction  Kunlun Shan, Qinghai 
Kluanc Lake, Yukon" 
Haines Junction, Yukon* 
Burwash Landing, Yukon* 
Niwot Ridge,  Colorado 
Aishihik, Yukon* 
Pink Mountain, B.C.* 
Muncho Lake, KC.* 
Kapp Linne, Spitsbergen 
Central Andes (33"s) 
Marmot Basin, Jasper, Alberta 

Block Streams Fenghou Shan, Qinghai 
Kunlun  Shan summit, Qinghai 
Verkhoyansk,  Siberia" 
Aklavik, N.W.T.* 
Yakutsk,  Siberia" 
Capc  Chelyuskin,  Siberia 
Bulun,  Siberia* 
Shingle  Point, Yukon* 
Komakuk  Beach,  Yukon* 

*Denotcs a valley-floor  weather station. 

-5.5 
-2.7 
-3.2 
-4.4 
-3.3 
-4.4 
-0.5 
-0.7 
-4.6 

-0.2 to -4.3 
-1.8 

-6,s 
-6.0 

-16.0 
-8.9 

-11.1 
-13.8 
-13.8 
-14.5 
-11.4 

Relationships of the Features to Latitude,  Altitude, 
and Aspect 

The three periglacial landscape  zones as defined  by climate 
show  a  marked  latitudinal,  altitudinal, and  aspect zonation. 
The  gelifluction  landscapes tend to dominate  at  the  lower 
latitudes, whereas active rock glaciers and  block streams  are 
found in more  polar  situations.  Within  a  given mountain 
range,  there is often  a  substantial  change in climatic  condi- 
tions with altitude and  aspect.  This can often cause  a  change 
in the  dominant  major zonal landform  from  one  part  of  the 
mountain  chain to  another. Good examples of this are found 
in the Kunlun  Shan and  Fenghou  Shan,  along  the  Qinghai- 
Xizang  highway, where gelifluction landforms are dominant 
at altitudes below 5000 m. Above  this  elevation  and begin- 
ning on southwest-facing slopes,  block  slopes  appear  and 
quickly  replace  the  gelifluction  landforms. 

The  same situation occurs in North  America. In the  south- 
central  portion  of  the  Cordillera  of the United States,  rock 
glaciers tend to occur at high altitudes  where the moisture 
regime is sufficiently humid to form interstitial ice, whereas 
gelifluction  forms  are  dominant  elsewhere in this  region. In 
southwestern Alberta, active rock glaciers occur from Jasper 

320 
224 
292 
30 1 

c ,700 
256 

459 
534 

400 
400-800 

600 

Cui Zhijiu,  1983 
AES,  1982: 10 
AES,  1982:8 
AES,  1982:3 
Benedict,  1070 
AES, 1982: I 
AES, n.d., b:176 
AES, n.d., b:147 
Akerrnan, 1980 
Cortc, 1985 
Harris, 1989 

50  Guo Dongxin PT al., 1993 
320  Guo Dongxin et al . ,  1993 
I27  Critchfield,  1966:396 
226 ABS, 1982: I8 
348 Koeppe and De Long, 1958:331 
96 Koeppe  and  De Long, 1958:330 

226 Koeppe  and  De Long,  1958:330 
214 Wahl et a / . ,  1987 
136 AES, 1982: 1 1  

northwards, but south of  Banff National  Park  these are 
replaced by gelifluction forms. On Sheep  Mountain, Kluane 
Lake,  Yukon Territory, active block  streams  appear on south- 
facing  slopes,  while  gelifluction  forms  occur  on west-  and 
northwest-facing  slopes.  On the east-facing  slope,  a rock 
glacier is found  (Johnson, 1973), and others  occur  at  wetter 
sites with a southwest  aspect  at  lower  elevations  on  the  east 
side of the Slims  River  (Blumstengel  and Harris, 1988). This 
is because  Sheep  Mountain  has  a  climate that approximates 
the  intersection of the  three  boundaries  on  Figure  13.  Thus 
substantial  changes in microenvironment  can  cause  changes 
in the major zonal permafrost  landforms within a  given 
mountain range. 

Re Edaphic Factor 
One of the  major  modifiers of the  effects of climate on 

landforms  and  plants is the  nature of the  soil.  Harris (1989) 
showed that the  different  landforms in the Plateau  Mountain 
area compared  with those in the Banff-Jasper  parks in south- 
west Alberta  appear  to be correlated with the  edaphic effects 
of  the  soil, specifically its drainage  and  moisture-holding 
capacity. The climate change  from  Jasper to Plateau  Mountain 
is small, but the soils are different. At  Marmot Basin, Jasper, 
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the  soils  havc a higher  clay  and  silt  content and hold  moisture 
better, whereas those at  Plateau Mountain contain primarily 
rock,  sand, and coarse  silt over  fissured,  porous limestone 
bedrock. The change from the rock-glacier-dominated land- 
scapes in the mountain parks to  the block fields at Plateau 
Mountain appears  to be the result of these edaphic  factors, 
and similar  examples  can be found clsewhere, for example 
in the  Ogilvie Mountains at Engineer  Creek  at km 217, 
Dempster Highway (Harris et al., 1983:79). 

CONCLUSIONS 

This zonation is important because it may enable gcomor- 
phologists to  determine  the nature of  the local climate on 
the  basis  of  which  landforms arc present in alpine permafrost 
areas.  Once such a zonation  can be firmly established, it  will 
become  possible to look  at  the  distribution  of  these  landforms 
in the recent geological past and interpret their presence or 
absence in terms of  past climates. Obviously  this  has tremen- 
dous  application  in  identifying  and  understanding  past  climatic 
changes in the  alpine areas. Thus, where  inactive  rock  glaciers 
occur in  an area dominated  by  active  gelifluction forms today, 
e.g., in the higher mountains of Arizona and New Mexico 
(Barsch and Updike, 1971; Blagbrough and Farkas, 1968), 
the  climate must have been  colder but moist at some  time 
in the past. If these landforms can be dated, this will provide 
the age of the climate under which they formed. 

The alpine zone of the mountain areas of the world are 
dominated  by  three  distinctive  landscape types, namely,  active 
rock glaciers, active block streams, and gelifluction land- 
forms. Landscapes  dominated by rock  glaciers are best  known 
to English-speaking geomorphologists, being found in 
western Canada, Alaska, the Alps,  the central Andes,  the 
Ticn  Shan, and the Hindu Kush. Active block streams are 
widespread in the  Urals,  Siberia,  the northern slopes of the 
Tibetan Plateau, and northeast Yukon Territory.  The active 
gelifluction landscapes occupy most of the rest  of the moun- 
tains, espccially at low latitudes and  in maritime areas. 

When the climatic data for typical  weather  stations at these 
sites are plotted on a graph of mean annual air temperature 
(MAAT) and mean annual precipitation, they  fall in discrete 
zones  separated by limited areas of overlap. Gelifluction  and 
debris flows  are dominant in dry climates where the MAAT 
exceeds -ST, but  give way to  rock  glaciers  in  moist  climates 
at a MAAT  below about - 1°C. There is a limited overlap 
between active block streams and rock-glacier-dominated 
landscapes between a MAAT  of -5°C at 350 mm precipi- 
tation  and a MAAT of - 16°C at 480 mm,  the  active block 
streams  occurring  under  cold,  dry climates. 

Two recapitulations of the climatic sequence occur: latitu- 
dinally and with altitude. In both cases, the climatic changes 
produce conditions favouring different dominant landforms 
with  latitudinal or altitudinal  changes.  Thus  rock  glaciers may 
occur at the summits of mountains in otherwise  arid areas, 
such as  in  the Tien Shan.  Locally,  the edaphic factor of soil 
moisture-holding capacity and drainage may cause modifi- 
cations to the pattern, as in southwestern  Alberta. 

Correct identification of  the  landforms is essential; for 
instance, the  “Kunlun Shan-type rock glacier” is actually 

a massive gclifluction deposit, while block streams must be 
carefully differentiated from stone runs. Care must also be 
taken to  prove whether landforms such as rock glaciers  are 
truly active. 
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