
Figure 1.  Schematic cross section of peat plateau 
showing runoff through the saturated active layer along 
the impermeable permafrost boundary, into the 
surrounding fens and bogs 
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ABSTRACT 
A relationship between the runoff timing and basic geometric parameters for peat plateaus in the discontinuous 
permafrost zone of the Northwest Territories, Canada was developed.  Numerical simulations of idealized plateaus 
were used to develop the relationship and were compared to the runoff timing of irregular plateaus from the Scotty 
Creek basin, Northwest Territories. 
 
RÉSUMÉ 
Une relation entre le moment où les eaux de ruissellement et les paramètres de base géométrique pour 
plateaux de tourbe dans la zone de pergélisol discontinu des Territoires du Nord-Ouest, le Canada a été 
élaboré. Des simulations numériques de plateaux idéalisée ont été utilisés pour développer les relations et 
ont été comparés à la date du ruissellement des plateaux irréguliers du bassin Scotty Creek, TN-O 
 
 
 
1 INTRODUCTION 
 
Runoff generation in the discontinuous permafrost zone 
of the central Mackenzie River basin is largely dominated 
by subsurface runoff through the active layer of peat 
plateaus (Hayashi et al, 2004).  Recent studies by Wright 
et al (2009) have developed a quasi-three dimensional, 
coupled heat and water transfer model that is able to 
simulate seasonal frost table thaw and subsequent runoff 
generation for individual peat plateaus.  Although 
effective in simulating runoff generation for a single 
plateau, this model is computationally intensive and 
impractical for modeling the mosaic of peat plateaus that 
define the discontinuous permafrost zone.  Modeling the 
runoff generation from aggregated plateaus over an 
entire basin requires a relationship equating the runoff 
from a single plateau to easily obtained parameters. This 
paper develops a relationship between the modeled 
runoff generation from individual peat plateaus and basic 
plateau geometries using numerical simulation.  The 
relationship is developed by simulating runoff from a 
number of idealized plateaus, comparing the maximum 
height, depth to frost table, area, and perimeter to the 
time a given amount of water would drain into the 
surrounding bogs and fens.  Actual plateau geometries 
are simulated to validate the relationships.  By doing so, 
a relationship between the area, perimeter, and height of 
a plateau, and the runoff timing is developed. 

The zone of discontinuous permafrost in the wetland 
dominated northern boreal forest of Canada is a mosaic 
of peat plateaus underlain with permafrost, and bogs and 
fens that are seasonally frozen (Robinson, 2000).  Figure 
1 shows a schematic cross section of a peat plateau in 
the discontinuous permafrost zone, where the plateaus 
rise 1 to 2 meters above the surrounding bogs and fens, 

and support thriving black spruce forest.  The peat 
plateaus are composed of sphagnum moss and lichens, 
and are underlain by permafrost.  The frost table under 
these plateaus corresponds closely to the 0oC isotherm, 
which evolves annually to maximum depths of 0.5 to 1.0 
meters.  Hydrologically, the frost table acts as an 
impermeable boundary, similar to bedrock, so that all 
subsurface flow is through the thawed active layer (Woo, 
1986).  The bogs and fens surrounding the peat plateaus 
are also composed of peat in the upper layer, but are 
underlain by clay till mineral soil at depths of between 2 
and 3 meters, and are only seasonally frozen.  Runoff 
from the peat plateaus is either stored by isolated bogs, 
or routed through interconnected bogs and channel fens. 
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2 THEORY 
 
The Boussinesq equation can be used to describe 
subsurface flow and saturation along complex hillslopes 
(Troch et al, 2003).  Wright et al (2009) showed that flow 
through the active layer of peat plateaus can be 
simulated using the Boussinesq equation, assuming that 
the permafrost acts as an impermeable boundary and 
flow is predominantly through the saturated layer.  For a 
radially uniform peat plateau, the equations can be 
simplified into radial coordinates: 
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where h(r,t) is the height of the water table, ne is the 
drainable porosity, T(h) is the transmissivity of the 
saturated active layer, r is the radial distance from the 
plateau center, and t is time.  The change in height of the 
water table, h(r,t), for a complex hillslope can be defined 
in relation to the saturated thickness, y(r,t), and the 
height of the frost table, z(r), assuming that the frost 
table does not evolve within the time frame of a single 
drainage event (e.g. days): 
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Substituting h(r,t) from equation [1] with equation [2] 
gives an equation for solving the height of the saturated 
layer at any given time, which can be used for equating 
runoff volume: 
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From equation [3] it can be seen that the height of the 
saturated layer is dependent on the slope of the 
impermeable surface of frozen peat, z(r).  Figure 2 shows 
a transect of a plateau at Scotty Creek, with idealized 
plateau surfaces defined by a power function: 
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where zs(r) is the ground surface elevation with respect to 
the wetland water level, H is the height of the plateau at a 
radius of zero, R is the radius of the plateau, and p is a 
fitting parameter.  Figure 2 shows that p=1/4 provides a 
reasonable fit for the peat plateau.  A constant depth to 
the frost table, D, is assumed in this study, therefore, z(r) 
= zs(r) – D.  Using equation [4] with p=1/4 to represent 
the topography of the ground surface, zs(r), and creating 
the dimensionless form of equation [3], the 
dimensionless saturated thickness for an idealized 
permafrost plateau at any given time can be determined 
by equation [5]: 
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where Tr is the average transmissivity, which can be 
approximated by K0D, where K0 is the depth averaged 
hydraulic conductivity, and: 
 
 

 
D

y
y =

*
 

R

r
r =

*
 

τ

t
t =

*
 

DK

Rne

0

2

=τ  

 [6a] [6b] [6c] [6d] 
 

 
Equation [5] indicates that, if the average transmissivity 
is the same for all peat plateaus, runoff generation in 
dimensionless form is dependent only on a 
dimensionless variable H/D, referred to as γ.  Therefore, 
a relationship between γ and the runoff generation from 
an ideal plateau should exist, as the dimensionless 
radius, r*, will be consistent for all radially uniform 
plateaus.  Defining runoff generation in terms of timing, 
the dimensionless time for a given volume of water to 
runoff of a plateau should only be a function of γ (t*(γ)), 
so that the actual time for a given volume of water to 
drain, t, can be determined by equation [6c] if the 
function t*(γ) and τ are known. 

The variables for calculating τ have been determined 
through previous studies in the Scotty Creek research 
basin.  Quinton et al (2008) showed that the hydraulic 

Figure 2.  Idealized plateau cross-section using a power 
function (Equation [4]) and different fitting parameters. 
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conductivity, K, decreases with depth (see Figure 3), with 
a lower envelope of 1.6 x 10-5 (m s-2) and an upper 
envelope of 4.2 x 10-3 (m s-2), transitioning at a depth of 
0.15 m.  Ko is determined by the harmonic mean of K 
over the saturated thickness, D.  A drainable porosity of 
ne=0.15 was used as a reasonable value for peat 
material. 

 The equivalent radius, R, of non-ideal plateaus is 
required in equation [6d] to solve for τ.  The hydraulic 
radius (Rhyd) is a measure of the area of a polygon in 
relation to its perimeter, which can be equated to a 
similar circle: 
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where A is the area of the plateau, and P is the 
perimeter.  The hydraulic radius is expected to 
approximate the flow length of an irregular plateau. 

The application of the hydraulic radius for determining 
the equivalent radius of irregular plateaus can be tested 
by numerically modeling symmetric star shaped 
plateaus.  The shape of a star shaped plateau is 
represented by a cosine function: 
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where R(θ) is the radius of the plateau at a given angle, θ 
is the rotational angle, R0 is the maximum radius of the 
plateau, and b and n are constants defining the shape of 
the star (see Figure 4).  The plateau profile, defined by 
equation [4], and the irregular plateau radius, defined by 

equation [8], can be used to develop irregular shaped 
plateaus with varying hydraulic radii.  The 
appropriateness of using the hydraulic radius as an 
equivalent plateau radius can be tested by numerically 
modeling the irregular shaped plateaus, using the 
simulated results to solve for R in equation [6d], and 
comparing them to the hydraulic radius. 
 
 
3 METHODS 
 
3.1 Site Description 
 
The plateaus replicated in numerical modeling are from 
the Scotty Creek Basin (61o18'N, 121o18'W; 285 m 
above sea level) within the Mackenzie River Basin of the 
Northwest Territories, Canada.  The plateaus in this area 
rise between 0.5 to 1.5 meters above the surrounding 
unfrozen bogs and fens, and are highly irregular in 
geometry.  The maximum depth to the frost table varies 
between 0.2 meters during the spring thaw and 0.75 
meters at the end of the summer (Wright et al. 2009).  
This corresponds to a minimum γ  of 2 and a maximum γ 
of 10, if the thawed layer is completely saturated.  A 
digital elevation map of the area (Figure 5) was de-
trended by subtracting a linear trend from the elevation of 
each grid cell (1 m by 1 m) to delineate the area, 
perimeter and height of eight plateaus. 

 
 
3.2 Runoff Simulation 
 
The relationships for t*(γ) and R were determined 
numerically using the Simple Fill and Spill Hydrology 
(SFASH) model that solves the Boussinesq equation on 
a two-dimensional model domain, using a finite 
difference spatial discretization and implicit time scheme 
with a transmissivity that is dependant on the height of 
the water table (Wright et al, 2009).  The model 
simulates the flow and storage of water on a peat plateau 
having an arbitrary geometry and elevation distribution.  
Grid discretizations of 1 m were used, and the depth to 
frost table, D, was constant in both time and space for 
this study. 

The plateaus were set as initially saturated, and were 

(a) n=4 (b)  n=16 
Figure 4. Irregular shaped plateaus using equation [8] 
to determine the radius in polar coordinates. 
 
 
 

Figure 3. Depth dependant hydraulic conductivity 
for peat plateaus (after Quinton et al., 2008). 
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drained without recharge until steady state was reached.  
The time until 80% of the water by volume had drained 
was taken as t80 (or t*80 in dimensionless time, see 
Equation [6c]) and used as an indicator of the 
hydrological response of the plateau.  The dimensionless 
Boussinesq equation (Equation [5]) indicates that for an 
idealized circular plateau, t*80 should be a function of γ 

only.  The simulations were used to determine the t*80(γ) 
function, and examine if the same hydrological response 
would occur for plateaus having more complex 
geometries. 
 
 
4 RESULTS 
 
4.1 Simulation of Hypothetical Plateaus 
 
To determine the t*80(γ) function, circular plateaus with a 
radius (R0) of 10 and 20 meters were used with heights 
of 1 and 2 meters, and γ  values of between 2 and 20.  
Both a constant K and a depth variable K were used 
during simulation.  Only a quarter of each plateau was 

modeled for computational efficiency, as the flow was 
radially symmetric.  The ground surface elevation was 
prescribed by equation [4], and the depth to frost table, 
D, was determined from H and γ.  Simulation results 
using different combinations of parameters showed that 
t*80(γ) can be represented by a power function for both 
constant K and depth variable K: 
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where the best fit values of the fitting parameters were a 
= 0.88 and b = -0.96 for simulations with depth-variable 
K, and a = 0.60 and b = -1.03 for simulations with 
constant K (see Figure 6).  The high correlation 
coefficient for the best fit line (R2 = 0.991 for depth-
variable and 0.999 for constant conductivity simulations) 
provides reasonable confidence in Equation [9], although 
the extents are not well confined.  Therefore, the 
relationship should only be applied within the simulated 
bounds (γ = 2 to 20). 

For a circular plateau having an arbitrary value of γ, 
the relationship between R and t80 is determined by 
equations [9], [6c], and [6d].  We us this relation to define 
a hydrologically equivalent radius (Req) for non-circular 
plateaus using t80 determined by numerical simulation: 
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This is expected to be a better indicator of the 
hydrological response of plateaus than Rhyd (equation 
[7]), which is purely based on area and perimeter, so that 
the appropriateness of Rhyd can be tested. 

To find a relationship between Req and Rhyd for non-
circular plateaus, a number of plateaus defined by 
Equation [8] (see Figure 4) were modeled with γ values 
between 2 and 20, and b and n values between 0.7 to 0.9 
and 4 to 16 respectively.  The results for depth-variable K 
simulations show that Req is greater than Rhyd (see Figure 
7) for smaller hydraulic radii (Rhyd < 12 m), but equates 
closely to Rhyd at large hydraulic radii.  Similar results 

Figure 6. Detrended digital elevation map for part of the 
Scotty Creek basin, showing delineated plateaus.
Brighter areas have higher elevation (plateaus) than 
darker areas (wetlands). 

Figure 5.  The dimensionless time until 80% of water 
from a saturated plateau drains in relation to Hi, 
including the best fit line and correlation coefficient. 
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were obtained for constant K simulations (data not 
shown).  This suggests that for plateaus with a relatively 
large hydraulic radius, Req (and subsequently R) can be 
approximated by Rhyd. 

Substituting Rhyd for R in Equation [6d], the runoff 
timing from peat plateaus can be approximated by 
equations [6c], [6d], [7], and [9]: 
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The effectiveness of equation [11] was tested by 
comparing the numerically simulated t80 from actual 
plateaus from the Scotty Creek basin (see Figure 5) to 
the t80 predicted from equation [11].  For plateaus that 
were larger than a single model domain, the plateau was 
divided along flow boundaries, and the bounding 
elevations raised so that no flow would cross the flow 
divide.  The simulated cumulative storage was then 
combined for all segments of the plateau to simulate the 
t80 of the aggregated plateau.  The results show that the 
majority of simulated plateaus had a predicted t80 similar 
to the simulated t80 (see Figure 8), with three distinct 
outliers. 

 
 

5 DISCUSSION 

The simulations show that runoff timing from irregular 
peat plateaus can be approximated using basic 
geometric properties.  From the radial, dimensionless 
Boussinesq equation (equation [5]) it was expected that 
there would be a relationship between runoff timing and 
the plateau height to depth ratio (γ).  From numerical 
simulation it was found that this relation took the form of 

a power function for both a constant K0, and a depth 
variable K0 (see Figure 6 and equation [9]). 

The consistently faster drainage time associated with 
the constant K0 (see Figure 6) is due to a constant K 
value that was larger than any of the averaged depth 
variable K0.  For the depth variable K0, small γ values 
result in two distinct subpopulations for t*80, with the 
upper values corresponding to a height of 1 m and the 
lower values corresponding to a height of 2 m.  For small 
γ values, the difference in D (and subsequently on the 
harmonic mean of K, see Figure 3) between the plateaus 
with heights of 1 m and 2 m causes variation in the 
calculated runoff timing, t*.  This suggests that the use of 
the harmonic mean for determining K0 is likely 
inappropriate, and further work should be done on 
determining a better K averaging method. 

The equivalent plateau radius from equation [10], Req, 
converges to the hydraulic radius, Rhyd, (see Figure 8) so 
that the radius of irregular plateaus can be approximated 

Figure 9. Histogram showing the distribution of 
hydraulic radii for plateaus within the Scotty Creek 
basin 

Figure 7.  Predicted radius in relation to the 
hydraulic radius for different γ values, showing a 
direct relation at large Rhyd. 

Figure 8.  Predicted runoff in relation to the actual 
simulated runoff for various plateaus from the 
Scotty Creek basin. 

‘a 

‘b 
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by the hydraulic radius for plateaus with a large Rhyd (>12 
m).  In the Scotty Creek research basin, the majority of 
plateaus are larger than this threshold, averaging 
between 15 and 50 meter (see Figure 9), so the use of 
Rhyd in modeling the aggregate of peat plateaus in the 
Scotty Creek basin is deemed appropriate. 

The runoff timing from actual peat plateau 
simulations was predicted using equation [11] with 
reasonable success (see Figure 8).  The predictions that 
deviate considerably from the simulated timing had 
actual plateau flow lengths that deviated from those 
predicted by the geometrically based hydraulic radius.  
For the predicted runoff timings that were smaller than 
the actual timing (see Figure 8, points ‘a and Figure 5, 
PLT1 and PLT4), the flow direction was largely north-
westerly rather than in a radial direction.  Subsequently, 
the actual flow length was longer than that predicted by 
the plateau hydraulic radius, and by equation [11], the 
actual runoff timing was longer than the predicted timing.  
For the predicted runoff timings larger than the actual 
timing (see Figure 8, point ‘b and Figure 5, PLT7), 
internal storage in isolated bogs reduced the area of the 
plateau draining into the surrounding bogs and fens, so 
that the area of the plateau generating runoff was 
significantly reduced.  The small area around the edges 
of the plateau generating runoff into the surrounding 
bogs and fens have a smaller flow length than that 
predicted by the hydraulic radius, causing the actual 
runoff timing to be smaller than that predicted using 
equation [11].  Future efforts will need to develop a more 
appropriate method of determining the equivelent plateau 
radius, accounting for non-radial flow and internal 
storage. 
 
 
6 CONCLUSION 
 
This paper developed a relationship between plateau 
geometries and runoff timing.  Using the dimensionless 
Boussinesq equation, the runoff timing from plateaus is 
dependent on the height and depth of a plateau.  Using 
this relationship, along with the hydraulic radius to 
approximate plateau radius, the runoff timing from 
irregularly shaped plateaus can be calculated.  Future 
efforts developing a better averaging technique for 
hydraulic conductivity and a more appropriate equivalent 
radius approximation are required for application of these 
methods over an entire basin.  By combining the 
equations for runoff timing from individual plateaus 
developed in this study with a routing algorithm for 
moving runoff throughout the basin, the hydrological 
response of an aggregate of peat plateaus in the 
discontinuous permafrost zone could be determined.   
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