

G. R. GILCHRIST, M.sc., P.Eng. vice president

108

April 3, 1974

Government of Canada Public Works of Canada Ope Thornton Court Edmonton, Alberta

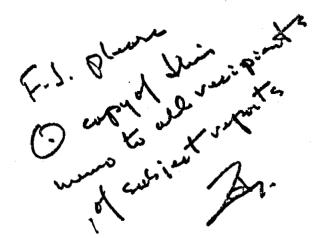
Attention: Mr. J.A. Brown, Regional Director

Gentlemen:

Subject: Geotechnical Evaluations - Oscar Creek Crossing - Elliot Creek Crossing

It has come to our attention that an incorrect symbol was used in geotechnical reports pertaining to bridge construction activities at the Oscar and Elliot Creek Crossings. These reports are designated Volumes XXI and XX, respectively. We request that the symbol N¹ on line 6 paragraph 2, subsection 2.2, Laboratory Testing, be changed to read F¹. Thus the corrected sentence should read (beginning on line 4):

'The system used retains the symbols V and N for visible and nonvisible ice, respectively, and the modifying symbols B and F for well bonded and poorly bonded non-visible ice respectively.^T


We trust the required corrections do not cause any inconvenience. Should you require corrected versions of both pages, please contact our Edmonton office and we will be pleased to undertake the necessary changes.

Very truly yours,

EBA Engineering Consultants Ltd.


G.R. Gilchrist, P. Eng.

GRG:1mh

11738 Kingsway Avenue, Edmonton, Alberta T5G 0X5 Phone (403) 453-3665

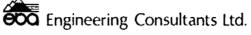
TABLE OF CONTENTS

1.	INTRODUCTION	1
н.	GEOTECHNICAL DATA AQUISITION	1
	2.1 Field Testing 2.2 Laboratory Testing	1 2
ш.	SITE CONDITIONS	3
	3.1 Surface Features and Geology 3.2 Subsurface Conditions	3
IV. ·	CONCLUSIONS AND RECOMMENDATIONS	5
	4.1 Foundation Types 4.2 Foundation Design	5 5
	4.2.1 End Bearing Piles 4.2.2 Friction Piles	6 8
	 4.3 Negative Skin Friction 4.4 Frost Heave of Piles 4.5 Subgrade Considerations on Center Line 4.6 Slope Stability Considerations 4.7 Drainage Considerations 4.8 Cement Type and Corrosion Considerations 4.9 Additional Studies 	10 11 13 16 17 17
v. (LIMITATIONS	19

REFERENCES

APPENDIX A

Drawing No. A-	1 -	Key Plan
Drawing No. A-	2 -	Site & Borehole Location Plan
Drawing No. A-	2a -	Terrain Legend
Drawing No. A-	3 -	Photograph
Drawings No. A-	4 -	Stratigraphic Section Along Center Line


APPENDIX B

Borehole Logs

APPENDIX C

Figures C-1 to C-6 -Drawing No. C-7 -

Grain Size Curves Summary of Laboratory Results

Page

INTRODUCTION

١.

In conjunction with a geotechnical engineering study carried out from Mile 725 to Mile 632 of the proposed Mackenzie Highway, several major river and stream crossings were investigated. The Elliot Creek Crossing, whose geographic location is shown on the Key Plan, Drawing No. A-1, Appendix A, is one such site investigated in detail. Details of the investigation, site conditions, geotechnical data and recommendations pertinent to the development of the creek crossing, are reported herein.

This work was carried out for the Government of Canada, Department of Public Works, and was authorized by Contract Number A10/73, File No. 9305~52-307.

II. GEOTECHNICAL DATA AQUISITION

2.1 Field Testing

The evaluation of subsurface conditions has been based on field data obtained from fourteen boreholes, drilled at the locations shown on Drawing No. A-2, Appendix A. Of the fourteen boreholes advanced, three were drilled as center line boreholes, in conjunction with the general route evaluation, and the remainder were located and drilled specifically to define subsurface conditions at the creek crossing.

The special boreholes consisted of Boreholes 659-S-1 to 659-S-11, inclusive. The three center line boreholes were designated Boreholes 659-C-2 to 659-C-4, inclusive. Detailed borehole logs are presented in consecutive order in Appendix B.

The center line boreholes were drilled with a Texoma Super Economatic power auger, fitted with a 12 inch diameter stub auger. All special boreholes were drilled with a track mounted Mayhew 500 rotary drill rig, using a continuous air return circulation system. Boreholes advanced with this

Engineering Consultants Ltd.

E-517

drill rig generally were 4-3/4 inches in diameter. Borehole penetration ranged from 5 feet to 43 feet, and averaged 21 feet in depth. Sampling consisted of representative bag samples, obtained at depths of $2\frac{1}{2}$ and 5 feet, and at depth intervals of about 5 feet, thereafter, to the bottom of each borehole. Undisturbed samples were not obtained at this site.

2.2 Laboratory Testing

Laboratory testing was carried out on the disturbed soil samples to determine the natural water content profile, Atterberg limits, grain size distribution, soluble sulphate concentration, and pH of the subsoil. The moisture content tests were undertaken in the field laboratory of EBA Engineering Consultants Ltd., while all other testing was confined to the EBA Edmonton laboratory. In addition to the laboratory testing outlined above, all samples were visually classified in both the EBA field and Edmonton laboratories. Soil classification was based on plasticity according to the extended Unified Classification System $(1)^*$ and on textural classification according to U.S. Engineers Department (2) textural classification triangle.

Frozen ground was classified according to a modification of the NRC system for describing permafrost ⁽³⁾: The modification was necessary because the disturbed nature of the sample obtained did not permit full usage of the NRC system; especially in describing the form of excess ice. The system used retains the symbols V and N for visible and non-visible ice, respectively, and the modifying symbols B and **F** for well bonded and poorly bonded non-visible ice, respectively. Excess ice quantities were estimated from visual observations. The results of laboratory tests are presented on the borehole logs (Appendix B), where applicable, and on grain size distribution curves, Drawings No. C-1 to C-6, inclusive, Appendix C. Drawing No. C-7, Appendix C, presents a partial summary of laboratory results.

900 Engineering Consultants Ltd.

* Superscripted numers in parentheses refer to the List of References presented at the end of this report.

III. SITE CONDITIONS

3.1 Surface Features and Geology

The proposed Mackenzie Highway crosses Elliot Creek at Mile 659.3, approximately 27 miles north-west of Norman Wells. Drawing A-1, Appendix A, is a Key Plan of the Elliot Creek area and Drawing No. A-2, Appendix A, presents a detailed Site Plan. Plate No. 1, Drawing No. A-3, Appendix A, shows the crossing from the air in June 1973.

Elliot Creek drains a relatively small area extending north-east of Mount Thomas and Mount Morrow. Part of the former Elliot Creek watershed has probably been captured by the Hanna River and Oscar Creek. This may explain the existence of a deep gully, which is presently occupied by a relatively small stream. Because of the small watershed, the summer flow in Elliot Creek is expected to be limited. However, the base flow appears to be supplemented by groundwater seepage from the mountains nearby, hence a modest base flow may be maintained throughout the year.

Aerial photographic interpretation of the surficial geology of the immediate area of Elliot Creek Crossing, is shown on Drawing No. A-2, Appendix A. The surficial materials are believed to be alluvial meander plain and outwash deposits that have been reworked to some degree by slopewash action. A terrain legend, which describes the symbols used in the terrain analysis, is presented as Drawing No. A-2a, Appendix A.

3.2 Subsurface Conditions

Based on observations from the boreholes, a stratigraphic section along center line has been compiled and is presented as Drawing No. A-4, Appendix A. The generalized center line stratigraphy noted at the site is summarized in Table 3.2.1, following.

900 Engineering Consultants Ltd.

TABLE 3.2.1

STRATIGRAPHY AT ELLIOT CREEK CROSSING

MATERIAL	DESCRIPTION	APPROXIMATE DEPTH BELOW EXISTING GRADE (FT)	AVERAGE RANGE OF THICKNESS (FT)
PEAT	reddish brown, fibrous, some silt, V5%-20%	0 - 1	0 - 3
GRAVEL & SAND	fine to coarse grained, poorly graded, loose to dense, some silt and clay, medium brown, moisture content (M/C) 5% to 50% avg. 15%, NB to NF	1 - 9	2 - 13
CLAY	grey, medium plastic, silty, some sand and pebbles, M/C 18% to 34% avg. 25%, NB to V5%	9 - Depth of Penetratio	Not n Established

The following additional information, which may influence design or construction decisions, was also obtained during the field investigation.

1. The maximum depth of borehole penetration was 43 feet.

Unfrozen clay was noted in Boreholes 659-C-2 and
 659-S-3 below depths of 9 and 13 feet, respectively.

 A silt pocket was noted in Borehole 659-5-1 between the depths of 3 feet and 5 feet.

 Borehole 659-S-8 was terminated at a depth of 5 feet due to sloughing gravel.

5. No borehole information is available in the bottom of the creek channel to indicate the type and nature of underlying subsoil materials.

IV. CONCLUSIONS AND RECOMMENDATIONS

4.1 Foundation Types

At present, preference is given to pile foundation systems supported on bedrock. However, final selection of a foundation system should be determined in conjunction with economic and structural design considerations, as well as further detailed geotechnical analyses. The following foundation types are believed to be feasible for a bridge structure at the site.

1. Closed end pipe piles driven in pre-bored holes.

2. Driven steel H-piles

4.2 Foundation Design

A major factor affecting the design of pile foundations at Elliot Creek is the noted occurrence of unfrozen zones within the subsoil. Although frozen soil was logged in the vicinity of bridge abutments, the possibility of unfrozen subsoil beneath the river flood plain and channel renders pile design, based on soil adfreeze principles, hazardous. Consequently, it is considered that allowable pile bearing capacities must be determined on the basis of available end bearing support, and/or available skin friction support of existing subsoil material in the unfrozen state. In addition, the existence of frozen zones is considered to preclude the use of dynamic pile formulae as a rational approach to the determination of pile capacities. However, placement of piles through pile driving techniques will likely be the most expedient method of installation.

Because of a lack of data, with respect to soil strength and depth to a thaw stable bearing surface, pile designs presented herein are largely based on empirical data, and must be considered, only preliminary in nature. Confirmation of the design parameters presented herein through additional field and/or laboratory testing is considered necessary.

The recommended foundation types listed in Subsection 4.1, may be designed in accordance with the following preliminary design parameters. However, it is stressed that the following recommendations are presented without knowledge of final design highway grades, geometrics, or bridge design. Consequently, the recommendations presented may require reconsideration when these factors become known.

4.2.1 End Bearing Piles

It is considered that the only positive method of foundation support that will permit relatively high loads, without excessive settlements at the Elliot Creek Crossing, is an end bearing pile system achieving support on bedrock existing beneath the site. However, due to equipment limitations the maximum depth of drill penetration was 43 feet, with bedrock not being encountered.

Based on a review of bedrock geology of the area, it is believed that shale bedrock of Upper to Middle Devonian Age (4) may be expected at an unknown depth below the approximate abutment locations of the proposed bridge crossing. It is recommended that consideration be given to the use of steel end bearing piles for bridge foundation support. However, determination of bedrock depth and properties at the location of bridge abutments and piers is a necessary prerequisite to the determination of a final design pile capacity.

A Engineering Consultants Ltd.

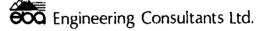
For preliminary design purposes, it is believed that consideration should be given to the use of closed end pipe piles to provide end bearing support in bedrock. It is recommended that piles with a minimum nominal diameter of 12 inches and a minimum weight of 65 pounds per foot be used. The design length of the piles must be confirmed on the basis of additional field drilling, however pile lengths of 100± feet may be necessary.

Installation of pipe piles will require the use of both drilling and pile driving equipment. It is recommended that the piles be installed in pre-bored holes having a diameter of about 95% of the pile diameter, to permit a snug fit. The pile holes should be prebored at least 5 to 10 feet into the bedrock and the piles should be driven to at least the full prebored depth. A minimum driving energy of 24,000 foot pounds is recommended. Steel H-piles are presently believed to be less feasible, as preboring would result in loss of lateral support, and installation without preboring to the estimated depth is anticipated to meet with high resistance. Confirmation of this, however, could be achieved through the driving of test H-piles at the site.

A preliminary design load capacity of about 170 kips may be used for the foregoing recommended pipe pile section, if the piles can be driven to 'refusal' in bedrock. It is considered that 'refusal' will constitute a penetration of less than 0.1 inch per blow, measured over the last foot of driving with the recommended pile driving energy. It is recommended that pile driving records be kept for all piles, for immediate review by he geotechnical consultant. A pile load test is also recommended prior to, or at the outset of pile installation to confirm the load carrying capacity of the piles and permit a correlation to the driving records.

۴.

4.2.2 Friction Piles


Based on available geotechnical information at the Elliot Creek Crossing, it is believed that a significant probability exists for the successful installation of piles at the site, achieving their load carrying capacity primarily through skin friction between pile and embedding soil. However, the present lack of specific information, with respect to the strength of the insitu soils in an unfrozen condition, permits only a preliminary estimate of the load carrying capacity of friction pile types.

Confirmation of the suitability of friction piles, presentation of more detailed pile designs, and more precise estimates of pile capacities can only be made if additional more detailed geotechnical information of subsurface deposits is obtained at the site.

The following pile design parameters may be used for preliminary design and estimating purposes, with the final design to be confirmed on the basis of field installation records and load testing.

a. Driven Steel H-Piles

As a guide to the establishment of a preliminary pile design, it is recommended that standard H-piles 70 feet in length (about 10 feet of fill assumed at abutments), with a minimum nominal size of 12 inches by 12 inches, and a minimum weight of 53 pounds per foot (CBP124), be considered for preliminary design purposes. It is believed that the suggested pile section can be driven, with an energy of 24,000 foot pounds to the full length of the pile. It is believed that piles driven to these specifications will permit an allowable static design load of 60 kips to be used. Although preboring is not

۴,

E-517

considered necessary for the installation of steel H-piles, through permanently frozen ground at this site, it may be necessary in hard seasonally frozen ground and thick granular fills to ensure the alignment of the driven pile section. This will be particularly true if very long sections are to be driven.

It is essential that the bridge approach fill be placed to final grade, before preboring and pile driving, in order to prevent damage to the piles and to ensure working room for proper compaction of the fill. This sequence of construction will limit negative skin friction load on the piles. On site inspection and supervision of the driving of test piles, or the initial piles of the foundation system, is considered absolutely necessary in order to establish the final design bearing capacity. It is also considered essential that a pile driving record be maintained for all piles. The driving record of all piles should be reviewed by the geotechnical consultant, as is practical, to ensure the design intention is being realized.

Ь.

Prebored Driven Closed End Steel Pipe Piles

Closed end steel pipe piles, installed in prebored holes, may also be considered for foundation support. The prebored hole size should be 85 to 90 percent of the outside pile diameter to ensure a 'snug' fit, and should extend the full length of the intended pile penetration. It is essential that the bridge approach fill be placed , to final grade before pre-boring and pile driving, in in order to prevent damage to the piles and ensure working room for proper compaction of the fill. This sequence of

construction will limit negative skin friction loads on the piles.

For preliminary design purposes, it is recommended that closed end pipe piles with a minimum length of 70 feet (about 10 feet of fill assumed at abutments), and a minimum weight of 40 pounds per foot be considered. The suggested pile section should be driven, with an energy of 24,000 foot pounds to the full length of the pile. It is believed that piles driven to these specifications will permit an allowable static design load of 45 kips to be used. Driven piles must penetrate to at least the full pre-bored depth. As for steel H-piles, inspection of the driving of test piles, or the first few piles of the foundation system, is considered absolutely necessary to confirm or alter the design bearing capacity. It is also considered essential that a driving record be maintained for all piles for immediate review by the geotechnical consultant.

4.3 Negative Skin Friction

The effect of negative skin friction, on individual piles and pile groups, will be dependent upon the occurrence and magnitude of both consolidation settlement and thaw settlement within the fill surrounding the piles and the natural subgrade soils. At the crossing site, it is considered that the near surface sand and gravel layer is relatively thaw stable but all silty clay materials, noted below an average depth of 9 feet from existing ground surface, are thaw unstable. Consequently, significant negative skin friction effects can be anticipated on foundation elements within these materials if thawing occurs. Substantial skin friction effects will also be mobilized in any road grade fill surrounding piles if loss of subgrade support occurs.

E-517.

To limit the amount of thawing of the subgrade, the loss of subgrade support, and the magnitude of negative skin friction, fills should be placed during the winter season. In order to further limit potential negative skin friction, due to settlement of the fill itself, it is recommended that fills be placed to final grade and pre-boring and installation of piles be carried out through the fill. The maximum time interval, which is consistent with the construction schedule, should be allowed between these two phases of construction.

It is extremely difficult to accurately predict the anticipated total magnitude of negative skin friction loads, on any pile or pile group that may be installed at the subject site. Negative skin friction develops due to the downdrag effect of the soil around the pile as it thaws and consolidates. Table 4.3.1 presents suggested values ⁽⁵⁾ for negative skin friction in typical soils. At the Elliot Creek Crossing the thickness of fill placed and method of placement will significantly effect the depth and rate of thaw wherever the soil is presently frozen. However, for preliminary design purposes and an assumed depth of abutment fill of about 10 feet, it is believed that about 5 feet of thaw may take place in the natural subgrade which will contribute to negative skin friction. This estimate assumes that the fill is placed during the winter on a frozen subgrade.

4.4 Frost Heave of Piles

Frost heaving of piles can occur as the active layer freezes each winter. During the cold winter months, the surface soils freeze and bond to the pile at low temperatures. In soils containing silt and clay, this shallow surface adfreeze, if accompanied by ice lens formation, exerts a heaving force on the pile which must be resisted by the dead load on the pile, the available adfreeze bond in the permafrost, and/or pile skin friction within unfrozen soil zones in which the pile is embedded.

TABLE 4.3.1

NEGATIVE SKIN FRICTION OF UNFROZEN SOIL FOR PILE DESIGN (After Woodward Lundgren And Associates, 1971) (5)

DESCRIPTION OF SOIL CATEGORIES

DESIGN NEGATIVE SKIN FRICTION

Clean sands and gravels with little or no silt or clay. Typically: GW, GP, SW, SP

Silty or clayey sand and gravel mixtures with considerable amounts of silt and clay. Typically: GM, SM, GC, SC, SF

Moderately plastic to highly plastic inorganic clays. Typically: CL, CH

Non-plastic to slightly plastic inorganic silts and lean clays. Typically: ML, MH

Organic silts and clays. Typically: OL, OH

 $P_{s} = 30d (X^{2} + 2HX)*$

700 PSF

800 PSF

350 PSF

150 PSF

* Load developed on that portion of a pile embedded in a granular stratum.

Ps	=	Load developed, lbs.
d	=	Diameter of pile, ft.
Н	=	Depth of overburden to top of granular stratum, ft.
X	=	Length of pile embedded in granular stratum, ft.

In order to prevent pile heave, it is necessary to check the pile design to ensure that the available resisting forces provide an adequate factor of safety against seasonal frost heaving. In general it has been found that a slightly deeper pile embeddment is the most feasible means of overcoming undesirable frost heaving stresses, if they exceed the sum of the total resisting forces divided by the factor of safety. Suggested design stresses for general permafrost soils are presented in Table 4.4.1 ⁽⁵⁾ and may be used for preliminary design purposes.

4.5 Subgrade Considerations on Center Line

As indicated in Table 3.2.1, the stratigraphy on center line, on both sides of Elliot Creek, is similar. A thin organic cover, averaging about 1 foot in thickness (ranging from 0 to 3 feet), was noted at several borehole locations. Generally, 2 to 13 feet of gravel and sand underlays the organic cover and overlies an unestablished depth of silty clay. Estimated visual excess ice contents are generally low, with the exception of near surface organic layers. Moisture contents are moderate and it is expected that firm conditions will probably exist in unfrozen soils during the summer season. However, a winter construction program is advocated to limit undesirable disturbance to the sub-grade thermal regime.

Although no shear strength data for unfrozen soil at the site is available, qualitative evaluation of the shear strength of the various strata can be made from visual observations, ice content estimates, moisture content profiles and classification test results. Based on these factors, it is concluded that on thawing, medium dense, moderate to good shear strength conditions will exist in the gravel and sand layer and low to moderate shear strength will exist in the silty clay.

ec

C Engineering Consultants Ltd.

Design Adfreeze Bond

TABLE 4.4.1

SOIL ADFREEZE BOND STRENGTH FOR FROZEN PILE DESIGN (After Woodward Lundgren And Associates, 1971) (5)

Desi	gn Category	Applicable	Criteria	Stress, for Frost Heaving Soils (PSF)
		Segregated lce Condition	Water Content of Soil %	
I	-above average soil-ice condition	No visible ice, (<1%)	15 15 - 40	5000 4000
11	-average soil-ice condition	Little visible ice, (1 - 10%)	15 15 - 40	4000 2000
.111	-below average soil-ice condition	Occasional visible ice, (11 - 20%)	15 15 - 40	2000 1500
IV	-poor soil-ice condition	Some visible ice, (21 - 35%)	40 15 - 40	1350 1350
V	-very poor soil- ice condition	Considerable visible ice,	40	900
		(>35%)	Апу	700

Applies only for soils containing 5% or more of silt or clay size particles.

A lack of detailed information, with regard to ice contents, and a need for sophisticated testing and detailed computer analyses, makes it impossible to accurately predict thaw settlement of fill on frozen materials with excess ice contents. Therefore, only qualitative estimates of thaw settlement can be made at this time. Based on visual estimates of excess ice content it is believed that total thaw settlements of average road grade fills (about 6 feet thick), of about 0.5 to 1.5 feet can be expected for winter construction, and 1.0 to 2.0 feet for summer construction. This estimate assumes thawing of the upper 5 to 10 feet of subgrade soils, but does not take into account normal consolidation settlement of the unfrozen subgrade soils due to the surcharge effects of the road bed fill. In the case of peat soils, normal consolidation settlement can easily reach 50 percent of the original thickness of the deposit; and can, as with thaw settlement, occur fairly rapidly.

It is considered that the conventional northern construction practice of placing fill material directly on the organic subgrade is desirable at this site. Fills for bridge approaches should be constructed with allowance being made for the occurrence of thaw subsidence, if sufficient thickness of fill is not placed to preserve the frozen sub-grade. Allowance for expected subsidence can be made by either providing extra fill to compensate for the anticipated settlement, or to upgrade as subsidence occurs, or both. A 6 foot thickness of granular fill material (non-plastic) is considered to be the minimum depth for road grade construction on underlying frozen subgrade materials at Elliot Creek Crossing. Local fine grained materials, such as silty clay, are not considered suitable for abutment or approach fills. The thickness of road grade material required to prevent degradation of the permafrost can only be predicted after detailed theoretical analysis, which is considered to be beyond the scope of this investigation. It is believed that fill placement should be carried out during the late winter period

to minimize thermal disturbance, and possible damage to the existing ground cover and slopes by construction equipment. Snow clearing should be carried out prior to all fill placement. Placement of the fill should be undertaken by end dumping with subsequent spreading by dozing equipment. A minimum initial lift thickness of 2 feet is suggested. Depending on construction completion schedules, placement of fills may be staged for several seasons or carried to completion as construction progresses.

It was not possible to drill through the ice into the creek bed. Therefore, the extent and characteristics of the creek bed gravel could not be determined. However, it is believed that gravel underlies the entire flood plain and grades into the subsurface gravel, noted in the boreholes. It is difficult to estimate the maximum depth of scour, but the presence of gravel indicates that high stream velocities occur at peak runoff and significant depths of scour may occur.

4.6 Slope Stability Considerations

No evidence of recent slope instability was detected on either valley wall, in the immediate vicinity of the proposed crossing. The slope gradient along center line ranges from about 2 to 13 degrees (about 3 to 23 percent grade). Cursory slope stability calculations, using implied shear strength values for thawed materials and the surveyed slope configuration, indicate an adequate factor of safety with respect to slope stability. Consequently, it is believed that approach fills can be constructed on the proposed alignment in comparative safety with respect to natural slope stability. However, it is recommended that excessive fill thickness be avoided near the crest of the slopes. In addition, cutting or excavating of slope material is not recommended and desired grades should be achieved solely through the placement of fill.

E-51Z

It is considered that rip-rap protection of the existing defined creek channel, upstream and downstream of the bridge crossing, may be necessary to protect the stability of approach fills. Bridge abutments should be set as far back from the present creek channel banks as is practicable. Fine grained fills should not be used for subgrade construction on the flood plain as they are easily eroded.

4.7 Drainage Considerations

Approach fills will concentrate runoff water along the upslope side of fills. Therefore, it is considered essential that considerable effort and care be given to minimizing erosion on the slope parallel to the fill. Every effort should be made to preserve the vegetal lining of all designed water courses and wherever this is impossible, coarse gravel should be used as channel lining. Transverse flow breakers should be provided at frequent intervals to reduce the rate of runoff along the fill and thereby reduce the potential for erosion by running water. Spacing of flow breakers will become apparent in the field when drainage courses and gradients become accurately defined. Ponding of water adjacent to fills should be discouraged as ponded water will act as a heat source for rapid degradation of permafrost. It will also tend to reduce the shear strength of the subgrade soil and road grade fill, unless the road grade is very granular.

4.8

Cement Type and Corrosion Considerations

A representative sample from the crossing area was tested to determine the soluble sulphate concentration and soil acidity. The soluble sulphate concentration determined rates as considerable and the pH indicates a slightly acidic condition. Therefore, it is recommended that the use of Type V Sulphate Resistant Cement be considered, for preliminary design "purposes, for all concrete in contact with the natural soil. Confirmation

600 Engineering Consultants Ltd.

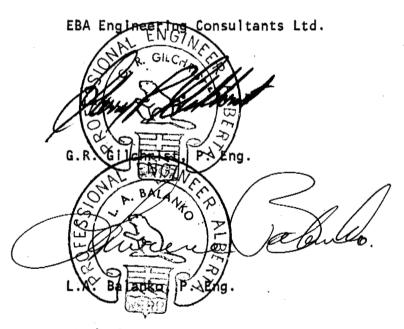
soll sulphate analyses can be performed prior to construction. A minimum '28 day' compressive strength of 3000 pounds per square inch is recommended for all concrete forming foundation elements.

For steel pipe piles, extending above grade or above the ground water level, corrosion protection may be achieved by painting or encasement with concrete. In this instance, the protective coating should extend to a minimum distance of 2 feet below final grade or minimum anticipated low water level, whichever is deeper. In the case of pipe piles, protective coating should be provided on the interior of the pipes to prevent possible corrosion. If practical, this may be achieved through filling of the piles with concrete.

4.9 Additional Studies

In order to more accurately assess such factors as insitu shear strength, thaw subsidence, and slope stability, it is desirable to obtain additional detailed geotechnical information at the site. Such items as acquisition of representative undisturbed samples of the various soil types, a thorough study of existing local slopes, refined field and laboratory tests to determine shear strength and thaw subsidence factors, and a refined theoretical analysis of these factors, constitute the additional detailed geotechnical information that is considered to be desirable.

In addition to the desirability of obtaining further detailed geotechnical information, it is recommended that consideration be given to establishment of a series of closely supervised and documented pile driving and pile load tests. Although preferable, these tests need not be carried out at actual bridge crossing sites, but may be carried out in areas and materials that would be representative of general foundation conditions at most of the proposed bridge sites. Such tests would provide valuable design data on , which the design of future pile foundation systems could be established.


eoo Engineering Consultants Ltd.

۷. LIMITATIONS

The foregoing recommendations have been prepared based on our knowledge of existing conditions at Elliot Creek and the proposed highway crossing. This knowledge has been derived from visual, physical and analytical considerations of existing soil and slope conditions, which were obtained from our field investigation. The findings and comments presented are believed to accurately reflect conditions as they are known to exist.

Due to the general nature of the study reported herein, the findings cannot be considered to be a comprehensive assessment of slope and foundation conditions at the crossing. Should conditions be encountered, other than described herein, the geotechnical consultant should be contacted so that recommendations may be evaluated in light of new findings.

Respectfully Submitted,

GRG/tmf

BOO Engineering Consultants Ltd.

REFERENCES

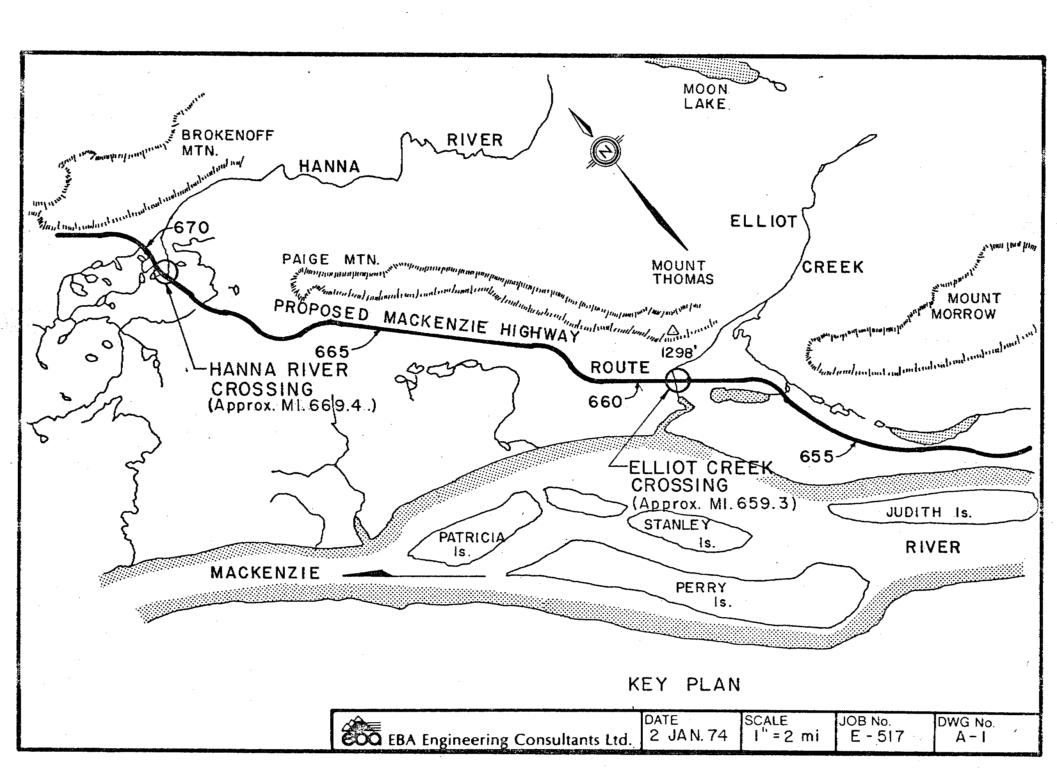
Yong, R.N. and Warkentin, B.P., 1966: Introduction to Soil Behavior. The MacMillan Company, New York.

Means, R.E. and Parcher, J.V., 1963: Physical Properties of Soils. Charles E. Merrill Books Inc., Columbus, Ohio.

Pihlainen, J.A., and Johnston, G.H. 1963: Guide to Field Description of Permafrost. NRC Tech. Mem. 79.

Hume, G.S. 1953: The Lower Mackenzie River Area, Northwest Territories and Yukon, Geol. Survey Canadian Mem. 273.

Woodward - Lundgren and Associates 1971: Results of Pile and Anchor Installation and Load Tests, and Recommended Design Procedures. Trans Alaska Pipeline System (Unpublished).


1.


2.

3.

4.

۴.

AMP (SL) Mackenzle Highway NOTE T.B.M. Nail set in tree 12 W of & Hub DP.W. Sto. 3452+00 DWG.: Site and Borehole A-2 Location Plan for ELLIOT CREEK Crossing SHT.No.:

TERRAIN LEGEND

Symbol	Terraln Type	Physiographic Features	Materials Description
АМР	Alluvial Mean- der Plain (Mackenzie River Meander Plain)	Flat plain often with sand dunes on it	Sands and silty sands stratified or channel deposits
AMP-2	Alluvial Mean- der Plain (excluding the Mackenzie River Plain)	Flood plains filling bottom of the stream or river valley	Fine silt, sand or gravel as channel deposits
OW	Outwash Plains	Tabular bodies	Sand and/or gravel

Topstratum Phases (Associated with Terrain Types)

SL

or Deltas

Slopewash of solifluction features. Topstratum of ice-rich poorly sorted silty clay and silty sand to gravel.

Complexes are shown as combinations of two terrain types with or without phases that pertain to the parent type.

Terrain symbols are modified from Canadian Gas Arctic Study Limited Terrain Study for this area.

Drawing No. A - 2a

eoo Engineering Consultants Ltd.

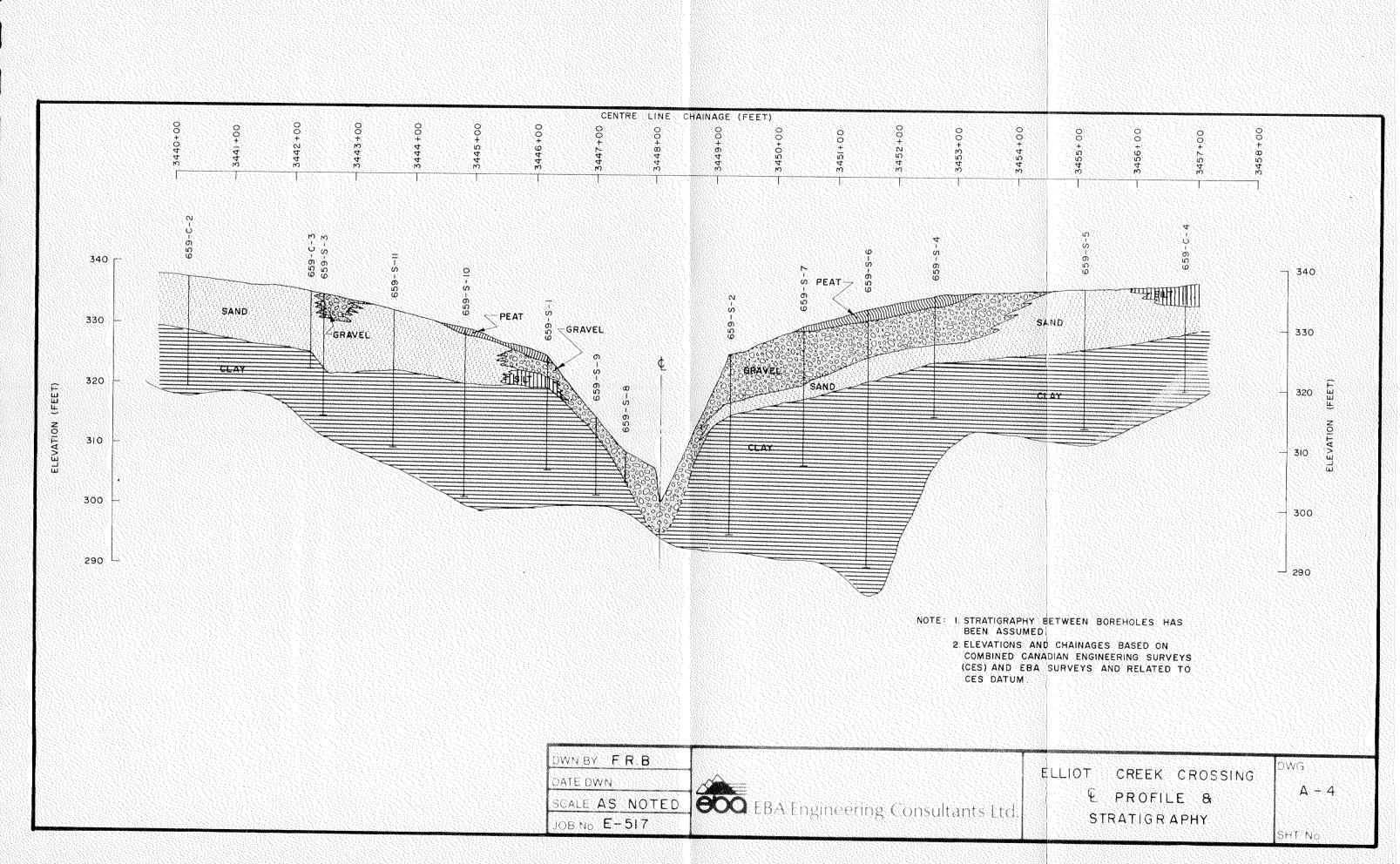


PLATE No. 1

General view of the proposed highway crossing at Elliot Creek. North is to the right of the plate. (June, 1973)

Drawing No. A - 3

E.W.Brooker & Associates Ltd.

	E.V	V. E	RO	OK	ER	8	AS:	SOCIATE	S LT	D.	DRILL	НС		R	ΈP	OR	Γ4			DE	PAF	RTN	ENT	OF	Ρι	JBL		NO	RKS	, CAN	ADA	
OWI	N: ΔI	R	FIEL	DΕ							O NO: A22774			Сни				+ 25					MA	CKE	NZ	IE.	HIC	<u>SH</u>	NAY			
CXC	. G	RG	TEC	H		JK	RIG	Texoma			DRAINAGE: FO			uth			ETA	TION	Bla	ck S	pruce		l OFF Birch	SET	E. F		37.3	.		TEST	HOLE	
				7						l e		T	T			1									UN- S			, 	<u> </u>		r	r
EF			LER.	1 1 1 1 1 1 1	, B	soi	ir r	ESCRIPTION		Rou Bou		-		= WA'	TED	CONT	ENT	101 1						AN	LYS	IS		2	7	MILE	B,C,S	NUMBER
DEPTH (FEET)	MPL	SAMPLE TYPE	RECOVER	PENETRATION RESISTANCE	SYM					5 S N	ICE DESCRIPTION	EFTI		= ICE	CO	NTEN	сат т (%	176 1 5 OF	SAM	PIF		11 / 111 F 1		CLAY	5	SAND	GRAVEL	ENSI	DRY DENSITY (P.C.F.)	659	Ċ	2
1.5	S S	18	*	PENE	UNIFI SOIL S					LIMITS FROZEN		اة ٣	1			LAST								ರ	siLT	SA	GRA		100 74			
										25					20		<u> </u>	60)	LIQU LIM 80	IT	100	100+	%	%	%	%		5	R	EMARKS	
						SAN) -	Med. Brow	'n				L														Γ					
2					SW		-	Gravelly Loose				2																i i				
	1	\square						Some silt a	nd Clav			1 *	Q]							
		ŀ					-	Well Grad	ed .	F	.		\square		†								·									
	2	K							-	F	NF	4	<u> </u>	┣—		┼──┤		-+	-+	-+			·								- 1	
	2				-		•		•				<u> </u>	 \		┼─┤			\rightarrow					(1	1)	56	33					
6												6	┢──	++		┨──┤														l I		
													 	\		┝																
.8											8		 	1	L					_												1
												1			1																	1
10	3	$ \square$				CLAY	-	Grey Med. Plasti				10						- F														
	-						-	Med. Plasti	city						ĨĬ										!						. .	
12-					сі			Wet									- †															
					<u> </u>						Unfrozen	12-	<u> </u>	<u> </u>		┼──┼			-													
						· .				U.	Unfrozen					<u> </u>										•						· · ·
14-										·		14-				┨──┤								ĺ								
														<u> </u>								_								·	-	
16			Ī				x 1					16	<u> </u>	<u> </u>		┠								•								
				ĺ					·																•							
18	4	식										18-																				
						END (OF I	IOLE 18'							Ŭ				T													
20	·				- I																											
	ł											20-					-+		-													
														<u>├</u> ─-		┝╼┼	-+		-+	-+-		-+		Į					i 1			
22-												22		┼──┤							- <u> </u> -								i			
		1				•								┼──┤		┝──╋								· · [
24												24		┟──┥		 	-+															
																					ł			[- 1	ł						

٩.

								1						T		<u></u>	0	000		ALTAIT			<u></u>	0 1		21/0	0411	104				
E	E. W	. B	RO	OK	ER			OCIATES			DRILL									DE	.PAr	~ I N		CKE	NZ	IE		VUF SHV	VAY	, CAN	ADA	
DWN			FIEL	DEN	NG:			DRILLED18/ Texoma			O NO: A2277 DRAINAGE: O								5				OFF & Birch	SET	ELE		335.				HOLE	
			120	<u> </u>		<u></u>	10	lexoma	[301	T		7000	10 -	JULI	·!	VEG		1011	DIC	JCK	Spru	ce c	DIFCH	GRA	IN- S	IZE						
1==			/ERY	TION	FIED SYMBOL	SOIL	DF	SCRIPTION		OF	ICE DESCRIPTION	±c	0	= WAT	ER C	CONT	ENT	(%)	OF DI	RY N	WEIGH	IT)		ANA	LYSI	s		SITY	SITY	MILE	B,C,S	NUMBER
DEPTH (FEET)	SAMPLE NUMBER	MPLE YPE	% RECOVER	ETRA	UNIFIED	00.0					DESCRIPTION	FEET	۵		004	TEN	r 10/		SAM	PLE	VOL		ł	CLAY	SILT	SAND	GRAVEL	C F V	DEN C.F.)	мі L E 359	С	3
	SA NU	SA	*	PEN	S 2 C		i.			LIMITS FROZEN				2	Ρί 1 0	ASTIC	·	60		LIQU	HD HT	100) 100+	0,	%		%	¥ET CP.	ΥR0 9		EMARKS	
						SAND	-	Gravelly				1	1		Ĩ	Ī	T	Ť		Ť		Ť										
2				-			-	Med. Brow	'n			2]								
[]	1	\leq			SP		_	Dense Poorly Gra	ded			–		9]								
4							-	Trace of Si	It and			4		1																		
	2	\leftarrow						Clay			· · ·		ļ	¥			-															
6		<u>`</u>										6	 	μ						_											· .	
									. •	F	' NB		<u> </u>	1-						-		-		4.								
8								1		F		6		\vdash							-		··									
	:								•				-	+								-+]					
10	3	\leq	<u> </u>			CLAY	-	Grey, Silt	v			10		┝─┥			- †			\rightarrow				-	ŀ							
1		•			cı	0211	-	Med Plasti	, city				<u> </u>								-+	-+		1								-
12												12	<u> </u>									-+										-
						END (DF H	OLE 13'		1									+		\neg			1								
4	· -			-								14																1				
16												16] ·								
																										ļ	1					
18-												18	_	 		·]					
Í						•																			ļ							
20												20	 	<u> </u>										-								
																								1								
22										1		22	+											1								
						•							<u> </u>											-								
24	1		[24	<u> </u>						+					1								

••

.

•

																	•								•						
OW	NA	the second s						OCIATES						E RE					D	EP/	ART	MENT	OF	PI EN	UBL ZIE	IC HI	WOI GHV	RKS ∀AY	, CAN	IADA	
СК		KG T	TEC			ЛК	RIG	Texoma	SURF	ACE	DRAINAGE:	_	oor		NAG	VEGE		6 + 8 2N;	0			& Birch	FSET		EV	337				T HOLE	
DEPTH (FEET)	SAMPLE	SAMPLE TYPE	% RECOVERY	ENETRATION ESISTANCE	UNIFIED	SOIL	. Di	ESCRIPTION		FROZEN GROUND	ICE DESCRIPTION	DEPTH (Feet)		() = WAT () = ICE	CON	ITENT	т (% (% с	6 OF	DRY MPLE	WEIG E VOI	GHT)		GR		SIZE		1	DRY DENSITY (PCF)	MILE 659	B,C,S C	NUMBER
	+	┼	*		OL		-			ŝč	· ·			20	1	LASTIC		60		DUID MIT BO	10	0 100-		_		%	- III	Day P	ŧ	REMARKS	;
2	1		OL SILT - Med. Brown to - Organic V ML - Low Plasticity 15-20% SAND - Med. Brown - Trace of Silt - Medium - Some gravel																											<u> </u>	
4	2	И			SP	SAND	-	Trace of Sil t Medium				-	╞											(9)	78	13				-	
8 10	3	И			СІ	CLAY	- '	Grey Silty Med-Plasticity		F	NB	- 8 10	╞																		
12											∨ 0-5%	12 14						-													
16 18	4 NB 14																			· · ·							-				
20						END O	FH	OLE 18'				18- 20-																			
22-			1			·		•				22-																			
24												24																			·

-

ŀ -

L			BR	00	KER			SOCIATES			DRILL			R	EPO	ORT	•			DE	PAF	RTN		OF	PU N7	BLI	C V HIC	VOF	RKS	, CAN	ADA	
DW	N A	LB	FI	ELD E	ENG:	NRA	A DAT	TE DRILLED24/	2/78AIR	PHOT	O NO: A22774	4 - 5	55	СНА	INAG	E: 34	46	+ 20	0					SET	1 4 4-	<u> </u>	1110	/ 11		L		
СК		\B	Tε	CH :		JK		Mayhew			DRAINAGE C					VEG				ck Sp	oruce	e & B			ELE	v: 3	324.	9'		TEST	HOLE	MVPL16
			ER	NO						ONNO	ICE												-		IN- S			ΤY	Ł	MILE	B,C,S	NUMBER
DEPTH	SAMPLE	IPLE	RECOV	PENETRATION	UNIFIED	SC		DESCRIPTION		S OF	DESCRIPTION	EPTH		= WAT = ICE										CLAY	SILT	SAND	GRAVEL	DENSI	DENSITY C.F.)	659	S	1
	SA	5AM		PENE						LIMIT FROZ		05		2		ASTIC		60		LIQUI LIMA 60		100	100 +		5 %	3 %	89 %	WET (P(DRY (P		EMARKS	
								dish Brown,			V 15-20%	1	ļ																	North	Bank El	liot
	1				GV	GRA	VEL	- Sandy, Mee Brown Loose Well Grade	4. 3.		NF	2	9																	Loose	gravel	
4					ML	SILT (TILI	-	Med. Brown Low Plastic	, Sandy			4								_										would	ing. So not bloi	
6	2	P		-		CLA		Grey Some Silt				6																		out of	hole.	
					сі			Med. Plasti	city			8									_	_										
										F							_		_		_	_										
	3	P									V - 0-5%	10	₽		¢⊢ │																• •	•
12						-						12																				
14						-						14							_	_										· .		
16	4	P						A Few Isol Pebbles	ated			16	<u></u>		-6-																, ,	
18																-																
												18	1	-							-1-											
20						END	OF	HOLE 19'				20-				_	_															
22												22																		-		
ļ													L																			
24												24																				

•

L.

-

•

.

• `

, in

Page 1 of 2

.

1

٤.

	E.W. BROOKER & ASSOCIATES LT											DRILL			R	EP	ORI	Г			DE	PAR	TME		OF	PU NZ	BLI		VOF	KS ΔΥ	, CAN	ADA	
DWN			_	· · · · · · · · · · · · · · · · · · ·	NG	NRM	DAT	TE DRILLE	D24/2/7	BAIRPHO	TO NO	o: A22774	1 - 5	5	СНА	INAC	SE:	3449	7+2	2				OFF						<u> </u>			
CKD	LA	<u>B</u>	TEC	:H :		ЛК	RIG							to N							nck S	pruce	e & Bi			ELE	v: 3	25.	3		TEST	HOLE	
	-		ERY	N N	BOL			·		OF CROUND		ICE												<u>1911 -</u>	GRA	IN+ S	IZE			٤	MILE	B,C,S	NUMBER
DEPTH (FEET)	AMPLE	SAMPLE. TYPE	RECOVER	ETRAT	UNIFIED	50	IL [DESCRIPTI	ION			CRIPTION	DEPTH (FEET)			COM	NTEN	т (%			RY W PLE 1				CLAY	SILT	SAND	GRAVEL	WET DENSITY (P.C.F.)	DENSI	659	S	2
	άž	N. ⊢	8	PEN	⊐ õ					LIMITS FROTEN					2	р :0		۰ ۱	60	, <u> </u>		r r	100	100+	0/	%	ء %	5 %	WET (P.	0RY (P.	R	EMARKS	
						GRA	VEL	- Med.				•				ļ															South	Bank El	liot
2								- Sand	•				2																				
	1	\geq	ł		SP				y Gradeo	3			-			1	2													i			
								- Dense																					: I				
	2							and C	e of Silt		1		4		/	r							-						1				
	-							- unu C	Juy						Ĩ		┠╌┤	\neg		-+													
6													6		+		┝─┤												(
															-		├∤																
8													8	<u> </u>			┟┟																
					SF .	SAN	D	- Med,	brown elly & sil of Clay	+	N	IF																					
10	3							- Trace	of Clay		l to		10		<u>ا</u> ر	1									8	20	55	17					
	ľ					CLAY	- '	Grey			N	IB	1.0		Ĭ											_							
12								Some Si																					1				
			•		CI		-	Med.P	lasticity	F			12					· †											, I				
		-															+ +												.				
14	÷ •								_				14	┼──┤		<u> </u>	┠──┤							· · · · · · · · · · · · · · · · · · ·					ļ				
	4 [\geq					-	A Few I								}												. :					
16							••	Pebbles					16-	├		 							_		•								
	Í												1																				
18													18-																				
20	_	-																															
20	۶	\rightarrow							· .				20-		—	Ŷ				-+			+										•
																	┟╌─┼				-+-												ĺ
22		ļ									 		22.	<u>├</u>																			
										1	l v	0-5%		\vdash			┝──┼																
24	+				┝╶╢						┇		24-																				1
									·····		<u> </u>		<u> </u>																				

•

۰.

E	E. W	<i>I</i> . B	RO	OK	ER	8 A	SSOCI	ATES	LTD).	DRILL	нс	DLE	RE	PO	RT	1		DE	PA	RTN	ENT	OF	PU	BL		VOF	RKS	, CAN	ADA									
DWN	AL	В	FIEL	LDE	NG:	NRM	DATE DRILL	LE024/2	/73AIRI	рнот	O NO: A227	74 -	55	СНА	NAGE		449	+ 22				OFF		.112				AI											
CKD	LA	B	TEC	CH ·		JK	RIG May	hew	SUR	FACE	DRAINAGE G	ood	to No	orth						Spru	ce &	Birch		ELE	V:	325	.31		TEST	HOLE									
±C			ERY	LION	BOL	601	0550010	Tion		OF GROUND	ICE												GRA	UN- S	IZE			Ł	MILE	B,C,S	NUMBE								
0EPT (FEE'	AMPLE UMBE	SAMPLE TYPE	% RECOVER	NETRA	UNIFIED	501	DESCRIP			LIMITS O FROZEN GI	DESCRIPTION	DEPTH (FEET)			CONT	ONTEN ENT	% OF	SA!	MPLE	VOL	UME)		CLAY	SILT	SAND	GRAVEL	DENSI	DRY DENSITY (P C F.)	659	S	2								
		s,	*	a 2	1°°					FRO			ļ,	20	ريء ال 			60		910 11 T 1)	100	100 +		I	%	%	WET (P	DRY (P	R	EMARKS									
		\leq				CLAY	Y - San	ne as a	bove						↓		_	<u> </u>																					
26				. 	СІ					F	V-0-5%	26	;		┼╌┼			-																					
					–						v-0-5%				┼╋				-				1																
28												28			╋		+		╞──┼	+																			
30	6	\leq																	┝╼╴╉	-+									Slough	Sloughing in hole Could not drill pa 30'									
						END C	OF HOLE	30'			· · · · ·	30			0											•			Could										
32												32		_															50										
													<u> </u>			_		 	.	_							-												
34												34				_					-																		
													-						-+												•								
36			- 1									36				- <u> </u>															~								
38												_			-+-		-	<u> </u>				·					•												
												38																											
40							••••					40																											
		Í																																					
42									ĺ			42-												1															
				Ì									\vdash						-+																				
44								• .				44																			•								
46		Ì															<u> </u>																						
		. 1										46								\uparrow			ļ	ļ															
48												48			_								ĺ																
																					T																		

Page 2 of 2

E.W. BROOKER						8	& ASSOCIATES LTD.					DRILL)LE	E REPORT				DEPARTMENT						OF PUBLIC WORKS, CKENZIE HIGHWAY						, CAN	, CANADA				
UTIN ALB PICLUENG NRM [DATE DRILLED/5/7/73AIRPHOTO NO: A22774 - 55 CHAINAGE: 2442 + 50																																			
СКД	LA	В	TEC	сн		JK	R	NG Mayhew SUR			SURFA	ACE	DRAINAGE: G	ood	to 5	outh				ATION: Birch & Black Spruce					ELEV- 334.7'					TEST	TEST HOLE				
	SAMPLE NUMBER		ERY	NOT DO	BOL		SOIL DESCRIPTION				QND	ICE			GRAIN- SIZE								r	Ł	MILE	B,C,S	NUMBER								
DEPT (FEET		AMPLE	RECOVER	PENETRATION	UNIFIED	SC					, <u>z</u>	DESCRIPTION	DEPTH (FEET)	O = WATER CONTENT (% OF DRY WEIGHT)						DENSI	RY DENSITY (P.C.F.)	659	S	3											
		ω`	8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s			L- Med. Brown			FROZE				PLASTIC LIQUID LIMIT LIMIT LIMIT 40 60 80 100 100+ % % % %						XET WET	Day Pa	REMARKS												
2	3	И			GW		•	- S - L	led. andy oose Vell (NF	2		0 						-											sand & 1 slough	hing
4 6	2	И			SW to	SAN		- s - c	Med. Brown Some Clay Silty Low Plasticity	Trace	of			4		A		 							·····	(3)	70	27						
8 10	3				SF		-	- N - S - S		Brown Clay	n		F	NB	8											·····			-						
12												∨ 0-5%	12-				-/															-	•		
14	4	И			сі	CLA		- Gre - Silt - Med	ilty		icity		 ز	Unfrozen	14- 16-			4	/																
18														18-																					
20	5	Ζ				END	OF	НС	LE 2	0* •				Teatige of weight and areas	20-																				•
22															22.																				
24															24-																				

.

1

~

.

E	W	. В	RO	ок	ER	8	AS	SOCIATES	LTI) <i>.</i>	DRILL	HC	LE	REP	OR	Γ			DEP	ART	MENT	OF	PL NZ	IBLI		VOF	RKS	, CAN/	ADA	
DWN	AL	B	FIEL	DE	NG	NR	M DAT	TE DRILLED3/2/	73 AIR	PHOT	TO NO: A22774	- 5	<u>5 To</u>	HAINA	GE:	345	2 +6;	2				FSET								
CKD	LA	١B	TEC	H :		JK	RIG	Mayhew	SUF	RFACE	DRAINAGE	bood				ETA	TION	Bla	ck Sp	ruce	& Birch		ELE	V:	335	.2'		TEST	HOLE	
			ERY	LON CE	BOL					OF GROUND	ICE						101 0					GR/ AN	LYS	SIZE IS		17	ΤY	MILE	8,C,S	NUMBER
DEPTH (FEET)	AMPLE	SAMPLE TYPE	RECOVER	PENETRATION	UNIFIED	SC		DESCRIPTION		LIMITS OF	DESCRIPTION	DEPTH (FEET)	0=1	VATER CE CO	NTEN	т (%		SAMP	LE V		~	CLAY	SILT	SAND	GRAVEL	P.C.F.)	P.C.F.)	659	S	4
	4 Z	3	*	μ μ μ μ	°° (FRO				20	LASTI	°	60		LIQUID LIMIT 80		00 100	%	%	- 	%	жСТ -	PRV P	R	EMARKS	· · · · · · · · · · · · · · · · · · ·
					Pt	PEA		 Reddish Brov Fibrous 	vn		∨ 10-15%		<u> </u>					_				-						Elliot	Creek	
2.	,	-				GR	1/51	- Reddish Bro		4		2			+							-								
	•	·			Gw		AVEL	- Sandy, Som							+							4						l		
4								- Loose		1	-	4										4								
	2							- Well Gree	de d											1		(2)	36	52					
6											NF	6																		
					╏──┤									\sum							1									
8					SF	SAN		- Med. Brown						V]								
Ĩ					to			- Med. Grain - Loose, Silty						Ν	Τ							7								
					SP			- Poorly Grad												1		1]							
10	3	\geq								F		10		- 🕈						-		1								
					<u> </u>	CLA	Υ.	Grey	·	1		1		++					-+-		<u> </u>	-								
12				:		•		Silty				12.		-++	+-							-								
				1	CI		-	Med. Plastic	city													-								
14							-	Trace of Fin	e Sand		NB.	14										-								
	4	Ζ											┝╼╼╌┟╴									-								
16						•	. .					16										- ·								
																				_										
18												18																		
	5																				1	-						ĺ		
20						EN	OF	HOLE 20'				20-			1					-	t	7						ĺ		
															1					1	<u> </u>	1			1					
22												22			+					· 	<u> </u>	1						l		
			•										┝╼╍┼╸		+							-						ł		
24												24	┝╍╌┟╸		+							-								
			L	L	11										1															

L.

:

· _

.

4

.

.

	E.V	V. E	RO	ок	ER	8 /	ASSOCIATE	S LT	D.	DRILL	нс		RF	PC	RT	Τ	····	DI	EPA	RTN	MENT	OF	PU	8L	C V	VOF	RKS	. CAN	ADA	
DW!			FIEL				DATE DRILLED 3								34:	1			<u> </u>		<u>MA</u>	CKE	NZ	IE	HIC	SHV	<u>YAY</u>	, CAN		
CKD			TEC	H		JK	RIG: Mayhew	SU	RFACE	DRAINAGE: FO	n - c air ta	o No	rth		VEGET	TION	<u>12</u> 1 Bl	ack	Spru	ce &	Birch	SET	ELE	V: 1	336.	<u> </u>		TEST	T HOLE	
			ž	3	5				1 -										01-0			GRA	IN- S	IZE				MILE	8,C,S	NUMBER
H	<u>س</u> م	.	IDAE	ANCE	ED YMB	sou	L DESCRIPTION		OF	DESCRIPTION	EE	0	= WATE	ER C	ONTEN	r (%	OF (DRY	WEIG	HT)			LYSI		त् <u>र</u>	5177	SITY		+	
50	SAMP	SAMPLE TYPE	RE	NET	UNIFIED				LIMITS		DEPTH (FEET)		= ICE		TENT (% OF	SAN			UME))	CLAY	SILT	SAND	GRAVEL	N U U U U U	Y DENSITY (P.C.F.)	659	S	5
ļ		ļ.,	8	2.5	s			ب بين الم	L N M N				20	թլ։			50		010 417 0	100	100+	0/	%		%	13×	7 a O		REMARKS	;
		ľ				SANE	D - Med. Brow																					Elliot	Creek	
2							– Med. Grai – Silty	ined			2					1					·							2	CICCK	
	1	\geq			SF		- Dense						9								······									
4							- Gravelly fr	rom		NF	4		\square																	
	2						2 - 5'			to				<u> </u>																
6							- Fine			NB	6.																			
8		Ì									8-			\downarrow														Į		
								•						++	<u> </u>	ļ												1		-
10-	3	\square				CLAY	' - Grey		┥ _┍ ╺╽		10			\downarrow								ĺ								
	ĺ					CLAI	- Silty		F					┼┼																•
12-					Сі		- Med. Plast	icity			12					<u> </u>												I		
							- With Some	Fine						++														į		
14							Sand			NB	14			++														1		
	4	\geq												∲-ŀ-									ľ					1		
16							-				16			┼┼		<u> </u>			_+											
														┼╂-				-+												
18-											18-			┼┼																
	_		ĺ											╁╌╊╍																
20	5	\rightarrow									20-	· ·				<u>├</u>														•
22														-+-		+												-		ĺ
]											22-					 		-+	\dashv							ļ				
24	·					END C	OF HOLE 23'							+					\neg											
											24			-																

.

-

1

E.W. BROOKER & ASSOCIATES LTD. DEPARTMENT OF PUBLIC WORKS, CANADA MACKENZIE HIGHWAY DRILL HOLE REPORT OWN: ALB FIELD ENG NRM DATE DRILLED 3/2/73 AIRPHOTO NO: A22774 - 56 CHAINAGE: 3451 + 50 OFFSET CKD LAB TECH RIG SURFACE DRAINAGE JK Mayhew Good to North VEGETATION: Black Spruce & Birch TEST HOLE 333.0 ELEV: OF GROUND GRAIN- SIZE UNIFIED RECOVERY PENETRATION RESISTANCE ICE WET DENSITY (PC F) DRY DENSITY (P C F) MILE B,C,S NUMBER CEPTH (FEET) Sample Number Sample ANALYSIS SOIL DESCRIPTION DESCRIPTION O = WATER CONTENT (% OF DRY WEIGHT) DEPTH (FEET) GRAVEL CLAY SAND LIMITS FROZEN △=ICE CONTENT (% OF SAMPLE VOLUME) 51LT 659 S 6 8 PLASTIC LIMIT 40 LIQUID LIMIT 80 % % % % REMARKS 20 60 100 100+ PEAT -₽t Reddish Brown - Fibrous V-10-15% Elliot Creek 2 2 1 GRAVEL - Med. Brown Q Sandy -4 GP Loose 2 Poorly Graded NF 6 6 8 A SAND -Med. Brown Silty SF 10 3 (2B) 67 10 Some Gravel 10-Fine to Med. F 12-12 CLAY - Grey SILT - Med. Plasticity 14 IC1 14 4 NB' 16-16 18-18 20 5 20 22ł 22 24 24

Page 1 of 2

Page 2 of 2

.

k

E.W. BROOKER & ASSOCIATES LTD. DRILL HOLE REPORT DEPARTMENT OF PUBLIC WORKS, C. MACKENZIE HIGHWAY OWW ALB FIELD ENG NRM DATE DRILLE03/2/73 AIRPHOTO NO: A22774 - 56 CHAINAGE: 3451 + 50 OFFST CKD LAB TECH JK RIG Mayhew SURFACE DRAINAGE: Good to North VEGETATION: Block Spruce & Birch Soil DESCRIPTION Soil DESCRIPTION Soil DESCRIPTION CLAY Soil DESCRIPTION Soil DESCRIPTION Soil Soil DESCRIPTION Soil CLAY SILT - Some As Above Soil Soil Soil Soil 28 Soil CLAY SILT - Some As Above F NB. Soil	ST HOLE
CKD LAB TECH JK Rig Mayhew Surface DRAINAGE Good to North VEGETATION Block Spruce & Birch ELEV 333.01 T x 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1	E B,C,S NUMBER
$\frac{1}{2} \underbrace{1}_{1} \underbrace{1}_{2} $	S 6
7 SiLT - Some As Above 28 NB 30 8 32 - 34 9 36 - 38 - 10 -	
7 SiLT - Some As Above 28 NB 30 8 32 - 34 9 36 - 38 - 10 -	REMARKS
7 SILT - Same As Above 28 Cl 30 8 32 - 34 9 36 - 38 V-0-5%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} $	
$ \begin{array}{c} 32 \\ 34 \\ 9 \\ 36 \\ 38 \\ 38 \\ 10 \end{array} $	
V = 0 - 5%	· .
$ \sqrt{-0-5\%} $ $ \sqrt{-0-5\%} $ $ \sqrt{-0-5\%} $ $ \sqrt{-0-5\%} $	
V - 0 - 5%	•
	•
38	-
40 10 40	
	-
42	•
44 END OF HOLE 43'	
44 END OF HOLE 43'	
46	
48 48	

								SOCIA				DRILL									DE	ΕΡΑ	RTI	MENT MA	OF CKE	PU NZ	BLI IE		VOF	RKS	, CAN	ADA	······································
DWN CKD			TEC	DE H	NG	NRM JK		E DRILLE				NO: A22774 DRAINAGE: G			CHA						ack	Spru	ce &	OFF Birch		FFF	v: 3	30.0	, 1		TEST	HOLE	
			2	z	5	1					2		<u> </u>	F			1								GRA	IN- S	IZE				MILE	B,C,S	NUMBER
DEPTH (FEET)	P C E	سرب	RECOVER	RATIC	ED SYMB	so	IL D	ESCRIPTI	ON	19 9	5 U		ET H	ļŏ								WEIG				T —		ि इ	NSITI	DENSITY	659	S	7
āt	NUM	SAMPLE TYPE	% RE	PENET	UNIFIED					LIMITS			9E 7E		- 102		LAST LIMIT		'a UF	5AM		VOL	UME	1	CLAY	SILT	SAND	L Č	ET 0E (P.C	DRY 0			
					Pt	<u> </u>		Reddish	Brown				<u> </u>		2	0 		°	6	o 	-i Liv Liv 80		- 101	0 100+	%	%	%	%	Зж М	ā		EMARKS	
2.						CRAN		Fibrous Med. B			l⊻	/ - 10-15%			F								-+		4						Elliot	Creek	
	1	\leq					D -	Loose					2	P	'																		
4					GP		-	Poorly	Graded			NF	4		<u> </u>		<u> </u>																
	2	\geq	1		to									┝┥									_										
6					SP							:	6									-+											
5		-											B											····									
-	·																																
10	3	\leq				SANI) -	Med. B	rown	F	\vdash		10																				
					SP	0/1111		Fine, L			:				\mathbb{N}																		•
12-						CLAY		Grey					12-		\uparrow																		
14								Silty Med. P	lasticity	,			14-		$\Box \setminus$																		
	4	\leq			СІ											\ 	· ·										. 1						
16												NB	16																				
18																+																	
													18-												1								
20	5	\leq											20-]				•				
Ì									•																ł								
22	·												22												1								
24						END	OF I	HOLE 23	1		+		24																				
													24-																				

•

•

Ĺ

.

	E. V	V. E	BRC	ok	ER	8	ASSOCIATES	LTI	D.	DRILL	нс		RF	PO	PT	T		DE	PAR	TMENT	OF	PI	IRI	IC V	NOF	225	CAN		
	[₽] AL			LD E			A DATE DRILLED 3/2			O NO: A22774	- 5	<u> </u>	CHAIN				. 0				CKE	EŃŽ	IE	HIC	<u>SHV</u>	YAY	, 044		
	LA		TE		1	JK	RIG: Mayhew	SUF	RFACE	DRAINAGE: C	Food	to s	outh			ATION	BI	- 344	17 +	50 OF & Birch	FSET			309.				HOLE	
I x ~			ERY	Not	BOL				OF GROUND	ICE											GR	AIN- S	SIZE			<u> </u>	MILE	8,C,S	NUMBER
DEPTH (FEET)	MPLE	MPLE YPE	RECOVER	ETRAT	UNIFIED	SC	OIL DESCRIPTION		1 _ 1	DESCRIPTION	DEPTH (FEET)	0	= WATE	R CO	NTENT ENT ('	" (% % OF	OF D	RY V	VEIGH	T) MF1		1	r	GRAVEL	ENSIT	ENSIT F)	659	s	8
	ž č	5A T	%	PEN	NO S				LIMITS FROZEN		°÷				STIC						CLAY	SILT	SAND	NA D	WET DENSITY (PC F.)	08Y 0 (P C			
						GR	AVEL - Med. Brow				†	<u>†</u>	20		40		<u>°</u>	80		100 100	• %	%	%	%	\$	<u> </u>		EMARKS	· · · · · · · · · · · · · · · · · · ·
2	1	k-			[- Loose		F	NF	2										1	1					Elliot (_reek	
					GP		- Med. to C Sand	Coarse																					
4							- Poorly Gr	aded			4																		
6					C I-		CLAY - grey, silty					 				$\left\{ - \right\}$					-								
							med. plast	ic			6				1	╞╼╼┤													н. Н
8							END OF HOLE 5'				6				_														
							(Loose grave)														1.								
10							sloughing into hole)				10																		
12												┝──┤								+									
											12-			_	·						1							-	
14	~				:		•				14]								
16																		_											
							•				16					┝╍╌┼	-+												
18											18-									1									
					•									_	_														
20											20-				_														
22											ŀ																		
											22									+									
24											24	-								1									Ċ,
	l																				· -								

- .

•-

•• • • • •

1	E.W	V. E	RO	OK	ER	8	ASSO	CIATE	S IT	D	DRILL	н	ר ב	DE	-00	ют	T		D	EPA	RTN	MENT	OF	PL	RI I	C V	NOF	215	CAN		
	AL			DE							O NO: A22774							<u> </u>				MA	<u>CŘE</u>	NŽ	IE .	HIC	<u>SHV</u>	<u>VAY</u>	, CAN		
	LA		TEC			JK	RIG	Mayhew	SU	RFACE	DRAINAGE: C	J 700d	to	Sout	h	34 vege						OFF	SET	ELE			F.8*			HOLE	
]			_	z	5					6		Τ	T		<u></u>								-	IN- S			r	1	<u> </u>	r	r
ΞĒ	шŧ		DV ER	NCE	0.0	SOI	L DES	SCRIPTION		OF GROUN	ICE DESCRIPTION	I=ε	0	= WAT	ER C	ONTEN	т (%	OF	DRY	WEIG	нт)		ANA	LYS	S		Ě	È	MILE	8,C,S	NUMBER
DEPTH (FEET)	AMPL	SAMPLE TYPE	% RECOVER	IETRU SISTA	UNIFIED							OEPTH (FEET)	Δ	≈ ICE	CON	TENT	(% 0	F SA	MPLE	VOL	UME)		CLAY	SILT	SAND	GRAVEL	DENS C F.)	C F.)	659	s	9
	ωz	5	*	PEA PEA	200					L.IMITS FROZEN		1~~	1	20	PL	ASTIC IMIT H 40				UIÐ M2T			0/			5 %	L Č	DRY DENSITY (P.C.F.)	F	EMARKS	
[GRAV		led. Brow	n			<u> </u>		ΠŤ			1	<u>60</u>			<u>100</u>	100 +	^o	<u>^</u>	70	70		F	<u> </u>		
2					GP			oose			N/C		-	<u>├</u> ┼						┟──╀									Elliot	Creek	
	ł	\leq						iandy <u>'oorly</u> Gra	ded		NF	2	a	┼──┼	-+			-													
						CLAY		Grey, Silt			<u> </u>	1		\mathbf{k}^{\dagger}				+					1								
4	•				ļ .			Aed. Plast				4	<u> </u>	\mathbb{H}			+			┝┈┼											
	2									F	NB'			<u> </u>	╞┼	 				┝──┦·		<u>-</u>									
6												6		┟──╁	╌┼╌╄							<u> </u>									
					С								<u> </u>	┦──┤	┿┿			+													
8-												8	╀──		++-		+					· · · · · · · · · · · · · · · · · · ·									
												1	<u> </u>						$\left - \right $										ĺ		
10	3	\geq									V	10	β-		\$			+													
	ļ										0 - 5%		 					+													•
12 -												12	+	┝──┼				+			-+-										
	ĺ			_		END (DE HO	DLE 13'		╁╼╾┼				┠╼╼┟			+	<u> </u>													
14												14						+													
																		+													
16							V ¹	•				16-							-				·								
											•		<u> </u>																		-
18												18-					┦														
					·						•							_													
20												20-	 				_													•	
			ŀ										 						├												· .
22												22-						ļ													1
																	<u> </u>	ļ					ĺ								
24												24-	ļ		<u>.</u>		ļ														
								·									1						1	- 1				1			

i.

۰.

\$

-

.

											T															_				209	gelot	Ζ
DWM				OK				SOCIATES			DRILL									DE				OF CKE	PU NZ	IBLI IE		NOF SHV	RKS	, CAN	ADA	
CKD			TEC		140-		<u>N</u> D/ RI	ATE DRILLE03/2/ IG: Mayhew	73 AIR SUR	FACE	DRAINAGE	- 50 jood	to s	CHA Sout	h h		344 GETA	14 +	83 Blc		Spruc		OFF	SET			329.				T HOLE	
10			ERY	NO L	BOL		~	00000000000		OF GROUND	ICE DESCRIPTION							104						GRA	IN- S	SIZE			2	MILE	B,C,S	NUMBER
DEPTH (FEET)	AMPLE	SAMPLE TYPE	% RECOVER	VETRA	UNIFIED	3	OIL	DESCRIPTION		LIMITS OF FROZEN GI	DESCRIPTION	DEPTH (FEET)			co	NTEN	IT (9			IPLE	WEIGI VOLI		, }	CLAY	SHLT	SAND	GRAVEL	DENSI C F.)	DRY DENSITY (P.C.F.)	659	S	10
	0 Z	°.	8	2.5						L IMI FRO				2	р 0	LAST		6	0	-1 LIQU	HD HT S	100	004	10	%		%	¥ET C P	DRY	R	EMARKS	;
					Pt	PEA		 Reddish Brow Silty, Fibrou 			V 5 - 10%																					
2.	1				SP	SAN	- D۷	- Med. Brown - Loose			NF	2	٩																			
4					to SF		-	- Gravelly - Poorly Grade	ы			4		A																		
	2	\leq					•	- Med. Brown - Silty					-		9-	-																
6							-	- Fine				6		<u></u>	\uparrow																	
8							-	- Dense - Uniform			N8	6			\square									1								
10	3					CLA	Y' -	- Grey																								
	Ĵ						-	- Silty Med. Plastic	itv	F	V	10				2											•				· ·	-
12					сі						0 - 5%	12										_										
14			-									14	·		-d-																	
	4	\leq							ĺ			1**				·			_													
16											NB	16	<u> </u>										· · · · · · · · · · · · · · · · · · ·	•								
18												18								7		+										
ĺ																																
20	5	\leq										20-						-														
22												22											<i></i>									
24		- 1						• •• •• •• •• •• •• •• ••				24	-																			
										_																						

-

Ĺ

E.W. BROOKER & ASSOCIATES LTD. DEPARTMENT OF PUBLIC WORKS, CANADA MACKENZIE HIGHWAY DRILL HOLE REPORT DWN: ALB FIELD ENG NRM DATE DRILLED 3/2/73 AIRPHOTO NO: A22774 - 56 CHAINAGE 3444 # 83 OFFSET CKD LAB TECH RIG Mayhew JK SURFACE DRAINAGE Good to South TEST HOLE VEGETATION: Black Spruce & Birch ELEV 329.3 OF GROUND GRAIN- SIZE PENETRATION RESISTANCE UNIFIED % RECOVERY ICE DEPTH (FEET) SAMPLE NUMBER SAMPLE TYPE DRY DENSITY (P C F) MILE B,C,S WET. DENSITY (PCF) ANALYSIS NUMBER SOIL DESCRIPTION DESCRIPTION DEPTH (FEET) O = WATER CONTENT (% OF DRY WEIGHT) GRAVEL LIMITS FROZEN △= ICE CONTENT (% OF SAMPLE VOLUME) SAND CLAY SIL7 659 10 S PLASTIC LIQUID LIMIT 40 LIMIT % % % % 20 REMARKS 60 100 100+ 6 CLAY F NB CI - Same as above 26 26 28 26 END OF HOLE 28' 30 30 32 32 34 34 36 36 38 38 40 40 42 42 44 44 46 46 48 48

Page 2 of 2

	E.\	N. 1	BRC)Ok	ER	8	AS	SSOCIATES	LT) .	DRILL	Н	OLE	ER	EΡ	OR	 Γ			D	EPA	RTM	ENT	OF	Ρι	IBL		wo	RKS	, CAN		
DW	A	8		LD E				ATE DRILLED5/2/7			Ο NO: Δ2277	4 -	56	СНА				Ļ	15	··			MA	CKE	NŽ	IE	<u>HI</u>	<u>GH</u>	NAY			
CKE		B I	TE	с <u>н</u>	<u> </u>	JK T	RI	IG Mayhew	SUR	FACE	DRAINAGE: C	3000	l to ^S	outh				3 + TION			,	64 - C	OFF Birch	FSET	ELE		332				T HOL	
EE	u e	ш	RECOVERY	ATION	MBOL	- SI		DESCRIPTION		OF GROUND	ICE DESCRIPTION) = WA'	TED	CONT		10/	~~ .				-	GRA ANA	UN- S	SIZE		2	٤	MILE	B,C,S	NUME
DEPTH (FEET)	SAMPL	SAMPLE	RECO	ENETR	UNIFIED					LIMITS (FROZEN G		DEPTH) = ICE	CO	NTEN	т (%	6 OF	SAN	APLE	VOL	HT] UME)		CLAY	SILT	SAND	GRAVEL	DENSI'	DRY DENSITY (F C F)	659	S	:11
			8			SAN		Med. Brown		ĨĔ	-			2	Р :0	LASTI	°)	6(>	I LIQU LIM 60	110 111 2	100	1004		%			N K K K K	ρ Υ	F	EMARK	S
2	1				SP to SF	JAN	- U - -	Gravelly Loose Poorly Graded			NF	4	2 0 1																	Ellio	Cree	k
6 8	2						-	Med. Brown Medium Silty Dense			NF to NB	6			 \																	
10-	3				CL	CLAY	-	Some Gravel Grey Silty Low – Med.		F	·	10	 																			
14	4	Ν			to CI			Plasticity			NB	14	 											-								
18-								•				16 18-												-					-		• •	
20	5						-	Trace of Fine S	and			20 -																				
24						END	OF I	HOLE 23'				22-																		·		

L.

-

.

•

۰.

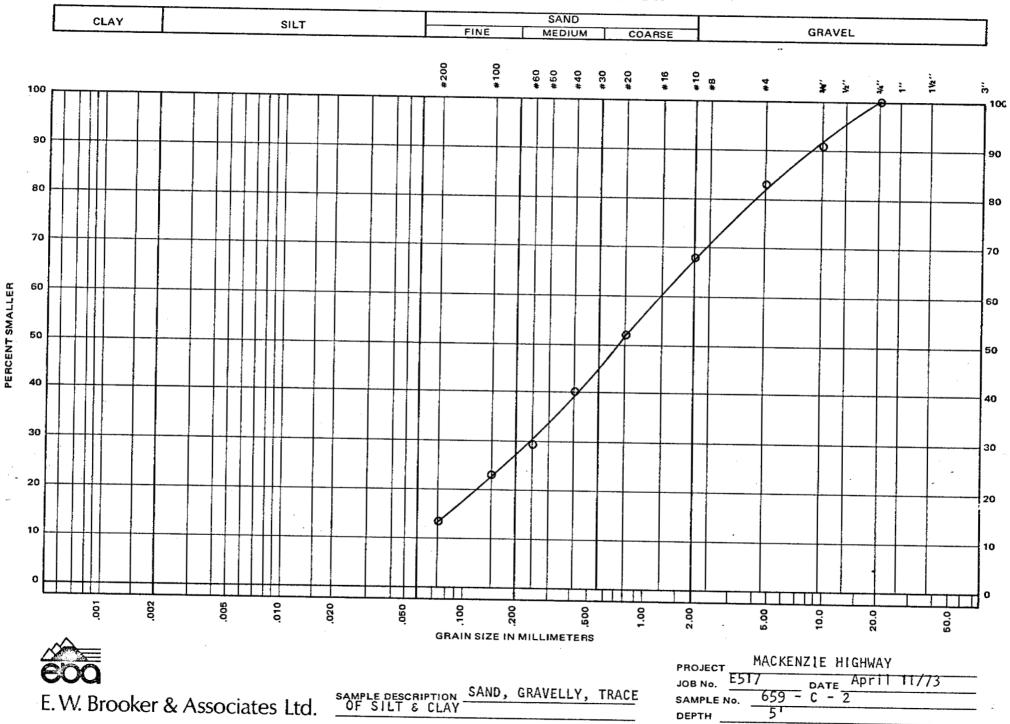


FIGURE C

1

GRAIN SIZE DISTRIBUTION

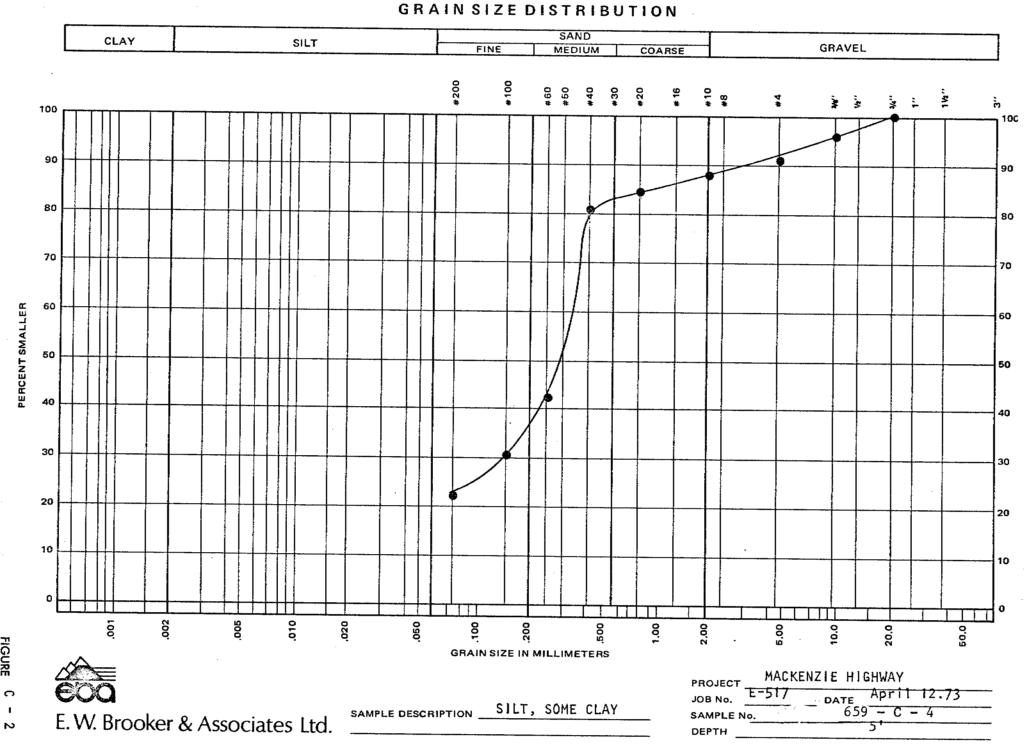


FIGURE C 1

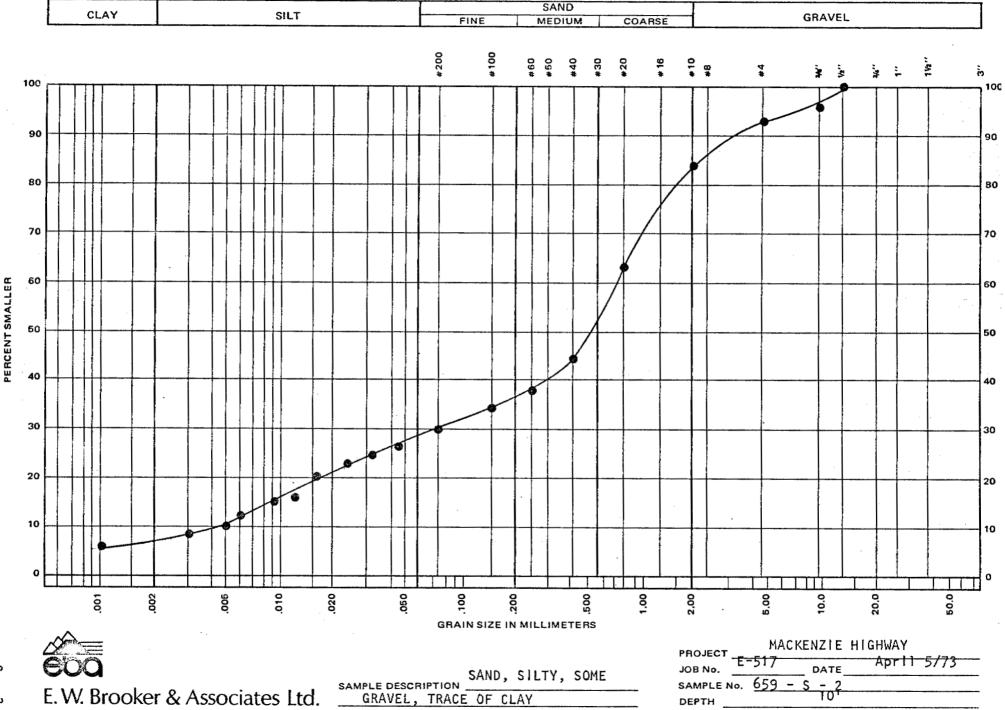
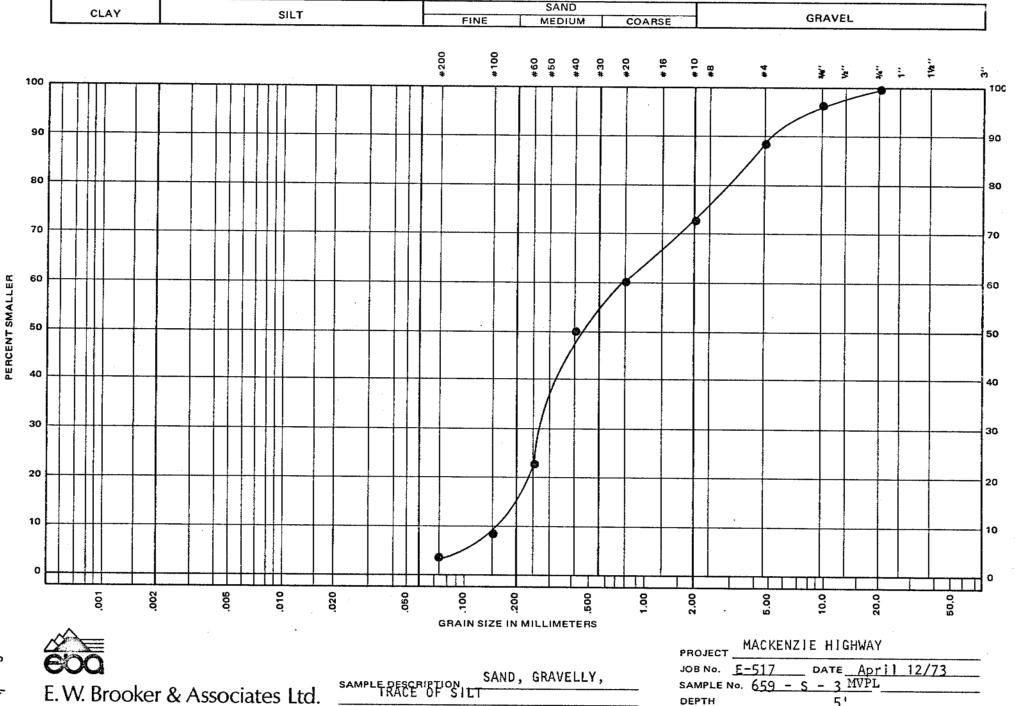



FIGURE C - 3

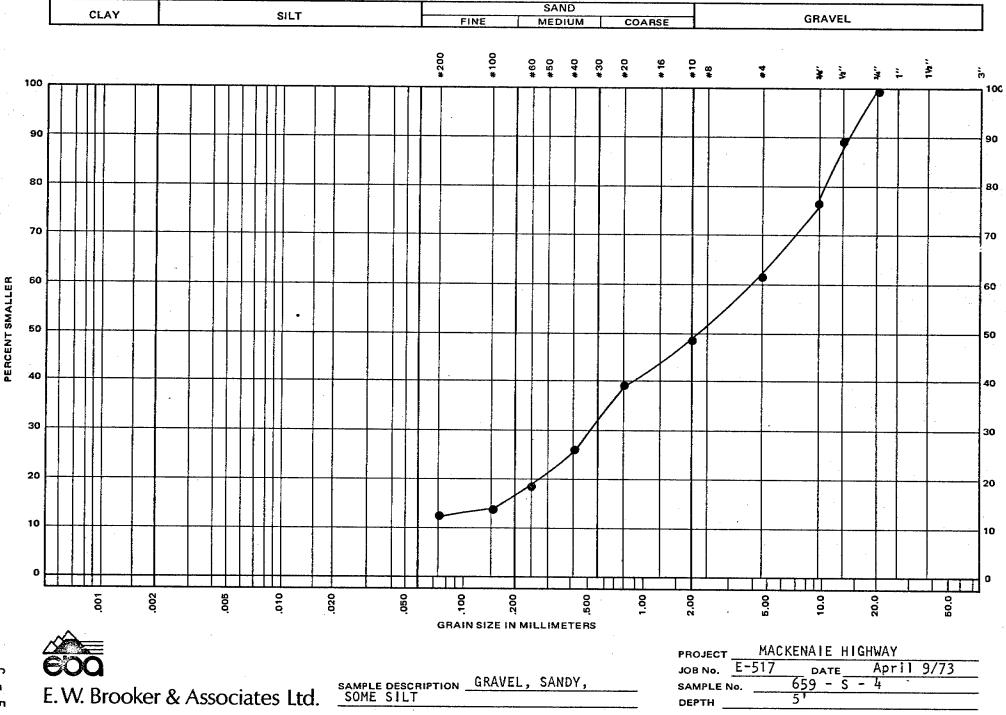
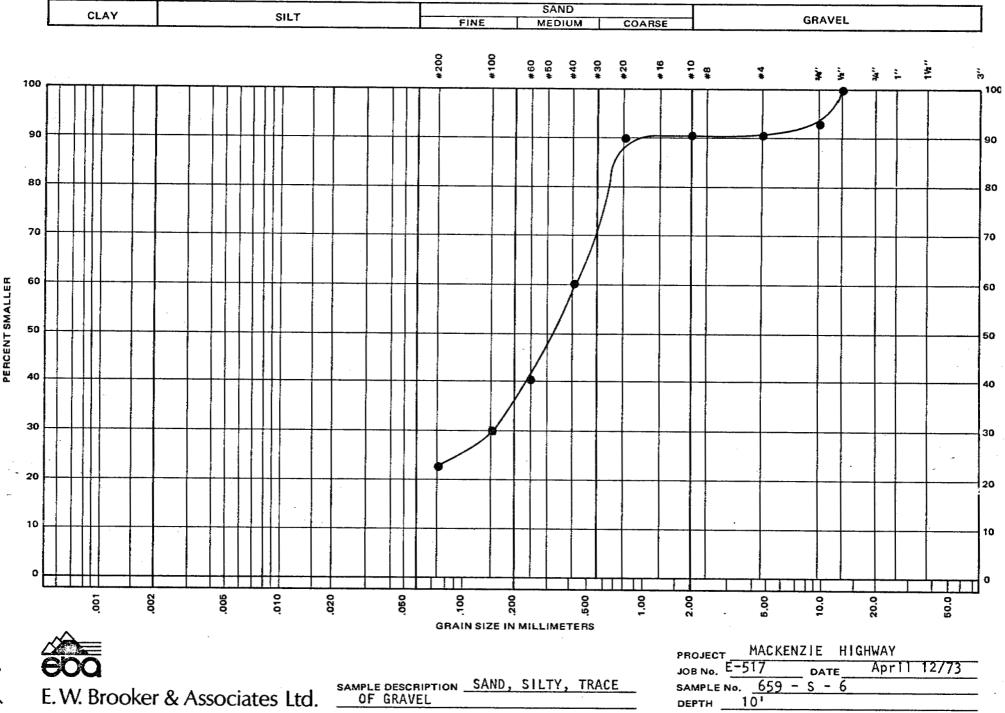
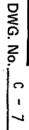


FIGURE C - 5




FIGURE C - 6

SUMMARY OF TEST RESULTS

ELLIOT CREEK CROSSING

JOB No. ____ E - 517

BORE	0.00711	NATURAL WATER	j	erberg L	imits	1	MECHANICA		IS	SOIL	
HOLE	DEPTH	CONTENT	WL	WP	PI		M.I.T. CLAS			CLASSIFICATION	REMARKS
· .	feet	%	%	%	%	% CLAY	% SILT	% SAND	% GRAVEL	(UNIFIED)	
659-0-2	5					.(1	1)	56	33	SW	
659-C-4	5						9	78	13	SP	
				[
659-S-1	10	22.0	40.7	23.7	17.0		······································		· ·	CI	L
							······				
659-S-2	.10	18.5	20.5	17.8	2.7	8	20	55	17	SF	
659-S-3	5					(3)	70	27	SW	·
659-s-4	5		-	-		(1	2)	36	52	GW	
								, ju	<u> </u>	GW	
659-s-6	10					(2	3)	67	10	SF	
659-S-9	5	25.0	40.2	24.2	16.0			-		CI	Solube Sulphates 0.43%
									· ·	· .	рН 6.5
											· · ·

êba

EBA ENGINEERING CONSULTANTS LTD.