Toesore gas trofoas Reperial on limited

72010, 18 22 71

1878 GEOTECHNICAL SURVEY

PREPARED FOR

Fluor Canada 175. Calgary, Alberta

. . .

1.1.1.1.1

n

-

R.M.MARDY & ASSOCIATES LTD.

CONSULTING INCINEERING & PROFESSIONAL SERVICES © GEOTECHNICAL DIVISION

1976 GEOTECHNICAL SURVEY FIELD STUDIES

-

F

. .

• 4.

. .

Γ

 TAGLU, N.W.T.

R. M. HARDY & ASSOCIATES LTD. CALGARY ALBERTA

. .

and the second second

and a state of

2

REPORT ON

1976 GEOTECHNICAL SURVEY FIELD STUDIES

FOR

BEAUFORT GAS PROJECT IMPERIAL OIL LIMITED TAGLU, N.W.T.

ORTHERIN ENVIRONMEN REFERENCE COLLECTION PROTECTION BRANCH

PREPARED FOR

FLUOR CANADA LTD. CALGARY ALBERTA

> JUNE, 1976 CS 3161

R.M.HARDY & ASSOCIATES LTD.

Page

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
	1.1	General	1
	1.2	Scope of Work	1
		1.2.1 Field Drilling Program	2
		1.2.2 Laboratory Testing Program	5
	1.3	Authorization	5
	1.4	Personnel	6
2.0	SITE	DESCRIPTION AND SURFICIAL GEOLOGY	7
	2.1	Study Area - Physiography and General Geology	7
	2.2	Plantsite and Dock	10
	2.3	Big Horn Point (channel and bluff)	11
	2.4	Potential Alternate Borrow Source	13
3.0	FIELD PROGRAM		14
	3.1	Scope	14
		3.1.1 Alternate Borrow Area	15
		3.1.2 Plant Site	15
		3.1.3 Big Horn Point	16
	3.2	Drilling Equipment	17

i.

ι.

٠

Page

, ",

: •

i ii

. .

.

· .

. .

.

÷.

.

÷

.

3

	3.3	Samplin	ng Equipment and Methods	17
		3.3.1	Frozen Soils	18
		3.3.2	Unfrozen Soils	18
		3.3.3	Insitu Testing	19
	3.4	Survey	ing	20
4.0	LABO	RATORY !	FESTING	21
	4.1	Test De	escription	21
		4.1.1	Moisture Content (ASTM D2216-71)	22
		4.1.2	Atterberg Limits	22
			4.1.2.1 Liquid Limit (D423-66)	22
			4.1.2.2 Plastic Limit (D424-59)	23
		4.1.3	Grainsize Distribution or Particle Size Analysis (D422-63)	23
		4.1.4	Unit Weight (D2937-71)	23
		4.1.5	Unconfined Compressive Strength of Cohesive Soil (D2166-66)	24
	4.2	Test R	esults	24
5.0	RESU OF S	UTS OF	FIELD PROGRAM AND DISCUSSION CONDITIONS	26
	5.1	Plant	site	26
		5.1.1	Ice Wedges	26
		5.1.2	Airstrip	31

(ii)

	V & ASSOCIATES LTD.
--	---------------------

Page

	5.2	Barge	Dock		32
		5.2.1	General		32
		5.2.2	Subsurfa Docksite	ce Conditions at the	34
		5.2.3	Riverban Channel	k Migration and Scour	39
			5.2.3.1	Channel Bank Migration	40
			5.2.3.2	Potential Scour Depth	44
		5.2.4	Soil Par Dock Des	ameters for Barge ign	46
			5.2.4.1	Dock Pad Settlement	46
			5.2.4.2	Soil Properties for Design of Dock Structure	49
		5.2.5	Other Ge tions	otechnical Considera-	51
			5.2.5.1	Ice Forces	51
			5.2.5.2	Frost Action	52
	5.3	Big Ho	rn Channe	-1	54
		5.3.1	General		54
		5.3.2	Subsurfa	ce Conditions	55
		5.3.3	Borrow E	Svaluation	56
	5.4	Big Ho	orn Point	Bluff	59
	5.5	Potent	ial Alter	nate Borrow Source	60
6.0	SUMM	ARY AND	CONCLUSI	ONS	63
	REFE	RENCES			67

.

.

-

2 1

.

~

- APPENDIX A Plantsite Area Borehole and Laboratory Data
- APPENDIX B Barge Docksite Borehole and Laboratory Test Data
- APPENDIX C Bighorn Channel Borrow Area Borehole and Laboratory Test Data
- APPENDIX D Bighorn Bluff Area Borehole and Laboratory Test Data
- APPENDIX E Potential Alternate Borrow Source Borehole and Laboratory Test Data
- APPENDIX F Soil and Ice Classification Systems

LIST OF FIGURES

FIGURE	TITLE
2.1	Surficial Geology; Taglu Gas Plant Area.
3.1	Photos of Drilling Equipment and Split Spoon
	Sample
3.2	Photos of Soil Samples
5.1	Borehole Locations at Plantsite
5.2	Ice Wedge Distribution
5.3	Borehole Locations at Barge Dock
5.4	Docksite Section A-A
5.5	Docksite Section B-B
5.6	Docksite Section C-C
5.7	Docksite Section D-D
5.8	Docksite Section E-E
5.9	Docksite Section F-F
5.10	Docksite Section G-G
5.11	Docksite Section H-H
5.12	Summary of Data on Depth to Permafrost
5.13	Summary of Data on Scour Depth
5.14	Summary of Dynamic Cone Penetration Data
5.15	River Bank Migration
5.16	Borehole Location Plan; Big Horn Point Area

(v)

,

5.17	Big Horn Point Section A-A
5.18	Big Horn Point Section B-B
5.19	Big Horn Point Section C-C
5.20	Big Horn Point Channel Borrow Evaluation
5.21	Borehole Location Plan; Potential Alternate
	Borrow Source
Table A-1	Test Hole Co-ordinates; Plantsite Area
A-1 to A-5	Test Hole Logs; Plantsite Area
A-6	Grain Size Distribution Curve; Plantsite
	Area
A-7	Summary of Laboratory Testing; Plantsite
	Area
Table B-l	Test Hole Co-ordinates: Docksite Area
B-1 to B-37	Test Hole Logs; Docksite Area
B-38 to B-50	Grain-Size Distribution Curves; Docksite
	Area
B-51 to B-54	Summary of Laboratory Testing; Docksite Area
B-55	Evaluation of Thaw Strain and Soil Compressi-
	bility
Table C-l	Test Hole Co-ordinates; Big Horn Channel
	Area
C-1 to C-21	Test Hole Logs; Big Horn Channel Area
C-22 to C-43	Grain Size Distribution Curves; Big Horn
	Channel Area
C-44 to C-45	Summary of Laboratory Testing; Big Horn
	Channel Area

.

1

*

...

. . . .

...

÷

÷

÷

+

,

1 - 1 - 1 - 1

-

(vi)

R.M.HARDY & ASSOCIATES LTD.

- Table C-2 Borrow Calculations for Big Horn Point Channel
- Table D-1 Test Hole Co-ordinates; Big Horn Point Bluff
- D-1 to D-6 Test Hole Logs; Big Horn Point Bluff
- D-7 to D-10 Grain Size Distribution Curves; Big Horn Point Bluff
- D-11 Summary of Laboratory Testing; Big Horn Point Bluff
- Table E-1Test Hole Co-ordinates; Alternate BorrowSource
- E-1 to E-23 Test Hole Logs; Potential Alternate Borrow Source
- E-24 to E-42 Grain-size Distribution Curves; Potential Alternate Borrow Source
- E-43 to E-44 Summary of Laboratory Testing; Potential Alternate Borrow Source
- F-1 Modified Unified Soil Classification System
- F-2 N.R.C. Ice Classification System

1.0 INTRODUCTION

1.1 General

Imperial Oil Limited is currently planning a gas gathering and processing facility at Taglu in the Mackenzie Delta, N.W.T. Geotechnical recommendations and design criteria for the foundations and earth structures associated with the plant facilities are being established by R. M. Hardy and Associates Ltd. for Fluor Canada Ltd., the design engineers.

In order to verify and finalize this initial phase of the geotechnical studies, it was decided to carry out a field program in the winter of 1975/76. The areas delineated for further work within the present study program are outlined in the following paragraphs.

1.2 Scope of Work

The scope of work for the 1976 Geotechnical survey was outlined by Mr. W. L. Smith, Project Director, Fluor Canada Ltd., in a letter dated November 20, 1975, and later confirmed in a telex dated December 11, 1975 from Messrs. R. Foster and J. Miecik. The scope of work was laid out as follows:

- 1 -

1.2.1 Field Drilling Program

R. M. Hardy and Associates were requested to provide technical personnel to log and sample boreholes, and to participate in selecting borehole locations based on aerial photograph interpretation and the day-to-day findings of the drilling program. The drilling program included the following items:

(a) Plant site

Borings were to be made in the ice-wedge terrain at the plant site to define the likely maximum depth of ice wedges at the site. As ice-wedges are extremely prevalent at the site, it was considered quite likely that some holes augered for the installation of piles at the site will encounter pure ice to a depth equal to the depth of the icewedges. As the embedded length of the pile was a direct function of the amount of pure ice encountered, it was important to assess the maximum embedded depth of piling likely to be required.

(b) Dock site

Additional borings would be made at the dock site, in order to obtain the necessary geotechnical data to

- 2 -

finalize barge dock design criteria. The dock location was selected by Fluor Canada Ltd. and drilling was concentrated in this area. Other borings would also be made to the East of the selected location in the event that unforeseen circumstances dictated that the barge dock be located elsewhere in this area.

It was estimated that about 30 holes would be required at the docksite and plantsite to obtain the necessary information for planning and design purposes.

(c) Potential Alternate Borrow Source

Additional borings would be made at possible new borrow sources a few miles southwest of the plantsite. Based on the terrain information currently available for the area, and two borings (PB-3 and PB-4 of the E.B.A. Engineering Consultants report) that apparently encountered granular material, it was possible that significant deposits of sand or sandy gravel were present in this area.

It was proposed to examine the terrain information and aerial photographs currently available for the area, and to assess the more promising areas in which drilling would take place. One or more sites were to be selected for exploratory drilling and sampling to obtain the quantity and quality of the potential borrow materials. One potential borrow site was located on the edge of a small lake 3 miles (5 km) southwest of the plantsite. The possibility of obtaining suitable granular material from this lake would be investigated, the extent depending on the results of preliminary test holes drilled at the beginning of the field program.

(d) Big Horn Channel

Depending on the results obtained earlier, additional borings would be made in Harry channel at Big Horn Point in order to verify properties and quantities of sand indicated in previous investigations.

(e) Big Horn Bluff

Additional borings in the Big Horn Bluff would be made to obtain back-up information on quantities and properties of sand deposits in this area.

It was estimated that about 20 holes approximately 30 feet (9 m) in depth would be required in the river channel and the adjacent bluff to obtain the necessary information.

- 4 -

R.M.HARDY & ASSOCIATES LTD.

1.2.2 Laboratory Testing Program

During the course of the drilling program, soil samples would be collected for laboratory testing.

No samples were to be collected for testing during drilling of the ice-wedge terrain at the plant site, as the primary purpose of this part of the program was to determine the maximum extent of the ice in the wedges.

Samples would be collected from the dock site, borrow source, and Big Horn Point drilling programs, to augment the field logging and testing. Moisture content, grain size analysis, consistency limits and visual description would be carried out on disturbed samples collected at regular intervals from each hole. Strength tests would be carried out on samples of unfrozen, undisturbed river bed material at the docksite.

1.3 Authorization

Authorization to proceed with the 1976 Geotechnical Survey was received from Messrs. R. Foster and J. Miecik of Fluor Canada Ltd. in a telex dated December 11, 1975.

- 5 -

Details of the contract between Fluor Canada Ltd. and R. M. Hardy & Associates Ltd. are outlined in Amendments Number 2 and 3 of Contract Number 65040 C-9-0001.

1.4 Personnel

The work described in this report was carried out by a project team, with Dr. J. F. Nixon, P.Eng. as Project Director. The supervision of the field program and the compilation of field results was carried out by Mr. R. S. Tenove, P.Eng. The surficial geological work was carried out by Mr. D. Hora, P.Geol. Mr. S. Munn and Mr. D. Vincent were field engineers on the project. Laboratory testing was supervised by Mr. R. Cooper, and drafting of the report was carried out by Mr. Y. Kunimoto and Mr. L. Bell.

Field logistical support was provided by Imperial Oil Limited, Field Services Branch, under the direction of Mr. G. Turnock, Operations Superintendent of Field Support.

Program co-ordination and technical liaison was provided by Mr. J. C. McDougall of the Beaufort Gas Group, Imperial Oil Limited, who also arranged for field surveys to be carried out by Canadian Engineering Surveys Company Limited of Edmonton.

- 6 -

R.M.HARDY & ASSOCIATES LTD.

Field engineering support was provided by Mr. A. Gebraad of Fluor Canada Ltd.

2.0 SITE DESCRIPTION AND SURFICIAL GEOLOGY

2.1 Study Area - Physiography and General Geology

An overview of the general surficial geology of the area has been presented in a previous report (E.B.A. Engineering Consultants, 1975). The following discussion is designed to augment prior work in this area, by concentrating on the particular areas of interest covered by this report. The study area extends along the boundary of two Physiographic Regions (MacKay, 1963):

(i) Alluvial Islands of Mackenzie Delta and

(ii) Tununuk Low Hills

The division between the two physiographic regions forms the boundary between the low alluvial deposits of the modern delta and the higher area with the Pleistocene deposits of fluvial and deltaic origin with glacial drift. Several detached portions of Pleistocene deposits scattered in the delta alluvium (Kendall, Pelly, Rae, Hooper islands, etc.) are also considered as part of the Tununuk Low Hills Region.

- 7 -

The elevation of the Tununuk Low Hills Region is, in general, from 100 to 200 feet (30 to 60 m) above sea level (a.s.l.), while the elevation of the Alluvial Islands of the Mackenzie Delta, excluding pingos, does not exceed 10 feet (3 m) a.s.l.

Geologically, the Tununuk Low Hills Region is an old Pre-Wisconsin Pleistocene delta whose surface relief has been greatly modified by:

- (1) glacier ice
- (2) deposits of glacio-fluvial origin
- (3) collapse of kettlehole ice (glacier ice) and long-continued thermokarst development
- (4) Ice-rafted sediments, both of glacial and nonglacial (ocean ice, Mackenzie River ice) origin.

As the glacier retreated, the isostatic rebound lifted the land and exposed these deposits to erosion. Due to the raised surface, the Mackenzie River system cut into the older deposits and is building the modern delta over the underlain lower parts of the Pleistocene sediments and around the outliers. In the channels of the present outer delta, 650-700 feet (200-220 m) of Quaternary sediments are

- 8 -

reported. Of these deposits, a maximum of 200 feet (60 m) is attributed to post-glacial deltaic deposits (Kerfoot, 1975).

The irregularities in deposition of any deltaic sediments is a typical phenomena for the Mackenzie Delta as well.

Seasonal variations in current velocities and volumes of discharge, together with the changing amount of suspended material result in different rates of bank erosion, channel shifting, scouring-and-filling and a changing rate of gravitational sorting of transported particles. Abandoned parts of channel system are subject of siltation in a similar way as the thermokarst lakes. Therefore, sudden changes in the grain size both in vertical and horizontal sense are basic characteristics for deltaic deposits.

The mean grain size of delta surface sediments appears to decrease from fine and very fine sand in the southern portion of the delta to silt in the middle and outer delta. Although minor textural differences have been recorded between deltaic sub-environments, most sediments

- 9 -

are finer than 0.125 mm and appear to be predominantly composed of silt with a clay fraction. Very little material in the upper 100 feet (30 m) of the delta, even in the channel bottoms, is coarser than fine sand (0.25 mm). No sources of coarser aggregate have been reported from the modern delta (Kerfoot, 1975).

The sedimentation process during the Pleistocene period was not different enough to expect coarse aggregate deposits in the old deltaic sediments. The only exception may be glacial outwash, found locally as irregular blankets overlying the moraine deposits or old deltaic sediments.

A summary of the surficial geology of the study area has been prepared as shown on Figure 2.1. Geological units have been grouped into four main categories comprising: alluvium of the modern delta, lacustrine deposits, glacial outwash and deltaic glacial till deposits.

2.2 Plant site and Dock

This area is entirely within the deposits of the modern delta, (see Figure 2.1). The surface pattern observed on air-photos indicates irregular deposition of material,

R.M.HARDY & ASSOCIATES LTD.

typical for deltaic sediments. Old channel scars are distributed at random over the area. This corresponds with Mackay's (1963) observations of a wandering type of channel shifting within the Mackenzie River delta. Very well developed ice-wedge patterned ground on both sides of the Kuluarpak Channel is an indication that no significant channel shifting has occured there for at least several hundreds of years. According to Mackay (1963), development of the ice-wedge pattern requires several hundreds to thousands of years. The area does not exhibit well developed and/or widely distributed thermokarst features.

The deltaic deposits are composed mainly of silt and clay size particles with less important lenticular bodies of fine sand.

2.3 Big Horn Point (Channel and Bluff)

i i

This area extends along the boundary of modern delta and Pleistocene deposits of Tununuk Low Hills Physiographic Region, as shown on Figure 2.1. The deposits of the modern delta exhibit a very similar pattern of deposition to those described at the plant site. Patterned ground, old channel scars and a general absence of thermokarst features are also typical for these recent alluvial deposits.

- 11 -

Big Horn Bluff, and adjacent areas to the east, is a completely different type of landform. The surface exhibits widespread and well developed thermokarst depressions. Some of these depressions have been infilled with lacustrine sediments, while most of the others are lake basins with either internal drainage or integrated by irregular channels into the Mackenzie River Delta system. The surface and near-surface soils are mainly sand on highs and level plateaus, and silt and clay in lows, with occasional thick surficial organic (peat) layers in the hollows. Glacial till and Pleistocene deltaic deposits are the main geological units in the Big Horn Bluff area. Since the deltaic deposits are the main source of local till and the length of the transport by advancing glacier in this area has not been over long distances, it is sometimes very difficult to distinguish till from deposits of the Pleistocene delta.

Clayey and silty sediments with peat layers have accumulated in thermokarst depressions and locally overlie the deposits of till and Pleistocene delta. The pingo is a typical feature which develops in these lacustrine sediments.

- 12 -

Larger accumulations of fine sand in irregular

lenses extend along the recent river channel, and are interbedded with subordinate silt and minor clay. While the sand covers the surface of a large part of Big Horn Bluff, only minor sand lenses were intersected during the drilling program.

2.4 Potential Alternate Borrow Source

• •

. .

The potential alternate borrow source area (in common with the Big Horn area) extends along the boundary of the modern delta and Pleistocene complex of glacial drift and deltaic sediments, overlain locally in depressions by lacustrine deposits. The area delineated for study is shown on Figure 2.1.

The surface of the modern delta exhibits a widespread, well developed ice-wedge pattern. Old channel scars are less well developed compared with the previous two study areas. There are indications that the thickness of modern alluvial deposits is rather limited and the Pleistocene deposits are present near ground surface. (Test Holes H76-G2, G5, G6, G15).

- 13 -

The complex of Pleistocene deposits in this area consists of mainly glacial outwash with subordinate lacustrine deposits in thermokarst basins and till, with sediments of the Pleistocene delta. The glacial outwash covers a large proportion of the tills and deltaic sediments of this area. The composition of this outwash is classified on the surficial geology map (Rampton, 1972) as mainly sand with occasional layers of gravel.

i.

à

. .

. .

[

(

The drilling in this area intersected sand in layers more than 20 feet (60 m) thick only on elevated areas of outwash and in one test hole drilled on the 'West Lake' (see Figure 5.21), immediately adjacent to the outwash area.

The rest of test holes in this area intersected deltaic deposits with only minor or subordinate amount of sand layers.

3.0 FIELD PROGRAM

3.1 Scope

The scope of the field drilling program may be divided into three areas as follows.

- 14 -

3.1.1 Alternate Borrow Area

To delineate subsoil conditions in a one mile (1.6 km) square area approximately three miles (5 km) southwest of the Taglu Plant Site (see Figure 5.13) for the purpose of evaluating potential granular borrow sources. Airphoto studies of the area suggested granular deltaic or outwash deposits may be present. This area was outlined by Mr. J. C. McDougall, of Imperial Oil Limited, as an area of general interest.

3.1.2 Plant Site

To evaluate subsoil conditions and location of the permafrost boundary along the channel at the plant site for the purpose of locating and designing a barge dock, a field program of 15 test holes was set out within the channel. Test holes were drilled in the unfrozen sediments to a depth sufficient to delineate permafrost, and soil samples were retained. Five additional holes were spaced at 25 foot (8 m) intervals at the preferred dock location and Dynamic Cone Penetration tests were conducted to assess the soil consistency and delineate the permafrost boundary. In addition, penetration tests were conducted at all test holes

- 15 -

drilled over water, to determine soil consistency, scour depth and the position of permafrost boundary.

In addition to test holes at the barge dock location, two test holes were drilled along the realigned airstrip and several shallow test holes were drilled at three locations to determine ice thickness at predetermined possible ice wedge locations near the plant site. The possible ice wedge locations were flagged by Mr. J. C. McDougall during site reconnaissance in the summer of 1975.

3.1.3 Big Horn Point

Visual inspections of soil exposures on Big Horn Point Bluff suggested granular soils may be encountered on the bluff. A series of six holes were drilled at an approximate spacing of 400 feet (120 m).

To further delineate sand deposits within Harry Channel at Big Horn Point, ten test holes were drilled and sampled. A single test hole was drilled on a mid channel island. 3.2 Drilling Equipment

The Field Services Division of Imperial Oil Limited retained Big Indian Drilling, a Division of Kenting Petrolia Drilling, to provide a drill rig. The drilling equipment selected was a sleigh mounted Heli-Drill 500 (see Figure 3.1). This drill rig is equipped with a separately housed air compressor and pump and is capable of wet or dry drilling techniques to a depth of approximately 100 feet (30 m). Both units are fully enclosed to shield equipment and personnel from the elements.

The drill rig assembly was skidded with a D7 caterpillar tractor. A laboratory trailer was attached to the end of the drill string to provide for storage and preparation of the soil samples, maintenance of equipment and shelter.

A self-contained sleigh-mounted trailer camp was also provided by Imperial Oil Limited, and was set up in each of the three study areas.

3.3 Sampling Equipment and Methods

Samples of frozen and unfrozen soil in both an undisturbed and disturbed state were required to properly

- 17 -

assess the engineering properties of the soils encountered together with soil classification and index tests.

3.3.1 Frozen Soils

Frozen soils were sampled using a CRREL (Cold Regions Research & Engineering Laboratories) core barrel equipped with carbide tipped insert teeth. Using the dry drilling method, the core barrel acts as an auger and can cut a 3 inch (75 mm) diameter core 2.5 feet (0.8 m) in length which is retained in the barrel. The core was hydraulically extruded, labelled, photographed, wrapped and packaged in an insulated crate for shipment (see Figure 3.2). Where the sample was to be used for moisture content determination or soil classification, the soil was packaged and sealed but no attempt was made to prevent thawing.

3.3.2 Unfrozen Soils

Unfrozen soils were sampled using 2 and 3 inch (50 and 75 mm) diameter split spoon samplers which are driven into the soil (see Figure 3.1). A driving method employing 350 foot pounds (475 N-m) was used. The number of blows required to advance the sampler is recorded and the

- 18 -

.

PHOTOGRAPH No.| Drill Rig String on River Channel

PHOTOGRAPH No.2 Typical Split—Spoon Sample (from Dock Site H76—DI5)

.[

PHOTOGRAPH No. 3 CRREL Core Showing Frozen Sediments (from Dock Site H76-D6)

PHOTOGRAPH No.4 CRREL Core Showing Stratified Ice (from Big Horn Bluff H76-BB2)

relative density and/or consistency of the soil strata can be determined (ASTM D1586-64T, Standard Penetration Test). Disturbed samples were obtained and packaged for soil classification and index tests.

R.M.HARDY & ASSOCIATES LTD.

Relatively undisturbed samples of unfrozen ground were obtained by hydraulically pushing a 3 inch (75 mm), diameter Shelby tube into undisturbed soils. The cohesionless nature of most channel deposits made retention of these samples difficult. A piston sampler was used with some success to obtain several undisturbed samples of the more sandy soils. These samples were retained and tested to evaluate the soil shear strength for the unfrozen sediments at the proposed barge dock site.

3.3.3 Insitu Testing

At the dock site and in Harry Channel at Big Horn Point, Dynamic Cone Penetration tests were conducted to assess the insitu relative density and/or consistency of the unfrozen sediments encountered. Standard Penetration Tests were conducted where a soil sample was also desired. A continuous profile of relative density with depth was obtained using the Dynamic Cone Penetration test. A driving effort of 350 ft pounds was also used. The tip of the driving rod is a solid 2 inch (50 mm) diameter cone tapered to an angle of 60 degrees at the apex.

All samples were transported to BAR C and shipped to Edmonton by Imperial Oil Limited aircraft where they were trucked to the Calgary laboratory of R. M. Hardy & Associates Ltd. Frozen samples were stored in a freezer until laboratory testing was conducted.

3.4 Surveying

All test holes were flagged and staked at the completion of drilling. Test hole locations were mapped and recorded on airphotos.

Canadian Engineering Surveys Company Limited of Edmonton was retained by Imperial Oil Limited to conduct a survey of all test holes and to provide locations relative to the UTM coordinate system. Time delays resulted in postponement of the field survey until early March. Location of test hole stakes was sometimes difficult at that time and a few stakes could not be located. Survey data was transmitted to R. M. Hardy & Associates Ltd. between March 17 and

R.M.HARDY & ASSOCIATES LTD.

22nd, 1976. Interpretation of survey data was closely referenced to initial test hole positioning using airphotos. Co-ordinates submitted by Canadian Engineering Survey, Company Limited are tabulated at the beinning of each Appendix, together with additional co-ordinates based on field measurements at the docksite at the time of drilling.

4.0 LABORATORY TESTING

4.1 Test Description

The majority of soil samples retained from the field program were visually identified and tests such as Atterberg Limits and particle size analysis were conducted to aid in soil classification. The Modified Unified Classification System for Soils was used and is shown on Figure F.1 in Appendix F. The NRC Ground Ice Classification System was used to describe the ice types present in frozen soil samples, and is shown on Figure F.2 in Appendix F.

Additional laboratory tests were conducted to determine the index properties of the soil types encountered relative to foundation design. These tests include moisture

- 21 -

content, unconfined compressive strength, unit weight, drained triaxial, frozen bulk density and thaw settlement. Strength tests were conducted only on unfrozen, relatively undisturbed soil samples.

Where applicable, tests were carried out using current ASTM (American Society for Testing and Materials) Standards. The ASTM Designation and definition of these tests are as follows:

4.1.1 Moisture Content (ASTM D2216-71)

The moisture content of a soil is the ratio, expressed as a percentage, of the weight of water in a given mass of soil to the weight of solid particles.

4.1.2 Atterberg Limits

4.1.2.1 Liquid Limit (D423-66)

The liquid limit of a soil is the moisture content, expressed as a percentage of the weight of oven-dried soil, at the boundary between liquid and plastic states.

4.1.2.2 Plastic Limit (D424-59)

The plastic limit of a soil is the moisture content, expressed as a percentage of the mass of oven-dried soil, at the boundary between the plastic and semi-solid states.

4.1.3 Grainsize Distribution or Particle Size Analysis (D422-63)

The grainsize analysis is the quantitative determination of the distribution of particle sizes in soils. The distribution of particle sizes larger than 75 μ m (retained on No. 200 sieve) is determined by sieving whereas the distribution of smaller particle sizes is determined by a sedimentation process using a hydrometer.

4.1.4 Unit Weight (D2937-71)

The unit weight or density of a soil sample obtained by hydraulically pushing a 3 inch (75 mm) thinwalled Shelby tube into undisturbed soil is determined without extruding the soil sample from the tube.
4.1.5 Unconfined Compressive Strength of Cohesive Soil (D2166-66)

The unconfined compressive strength is the load per unit area at failure (20 percent axial strain) of an unconfined cylindrical specimen of soil. The test is carried out using strain-controlled application of the test load.

4.2 Test Results

Laboratory tests were conducted on soil samples as an aid to soil classification and to determine the index or engineering properties of the soil. All test results are shown on the test hole logs or, in the case of grain size distribution, the figure number on which the test results are presented is given. In addition, a summary of all laboratory tests, excluding moisture content, is given at the end of each appendix.

Moisture contents recorded in the unfrozen sediments below the bottom of lakes and river channels often reflect the normal saturated state of the soil.

In frozen soils where large discrete ice bodies were present the soil layer between the ground ice was

- 24 -

sampled; thus the moisture content will be that of the soil layer only. Visual ice contents are given on the logs and indicate the percent of ice by volume in excess of that normally present in the soil type in an unfrozen state.

Shear strength tests (drained triaxial and unconfined compression) were conducted on selected undisturbed samples of the unfrozen sediments at the barge dock site. Also, a profile of soil consistency with depth was obtained by conducting dynamic cone and standard split spoon penetration tests from which approximate soil shear strengths may be derived empirically.

Frozen bulk density and two thaw settlement tests were conducted on frozen cores obtained at the dock site. These tests provide the settlement characteristics of a frozen soil. Two samples were placed in consolidation test devices, and thawed under a small nominal loading, and the strain recorded. Subsequent load increments were then placed on the samples to determine the compression characteristics of the thawed soil. The thaw strain was evaluated using the method proposed by Watson, Slusarchuk and Rowley (1973), as shown on Figure B.55, and the thaw strain and compressibility values so obtained are valid for the stress range of 0.3 to 0.8 t.s.f. (32 to 86 kPa). These test results are included in Appendix B, and are also shown on the test summary sheets at the end of Appendix B.

5.0 RESULTS OF FIELD PROGRAM AND DISCUSSION OF SUBSOIL CONDITIONS

5.1 Plant site

The subsurface investigation at the plant site area was limited to two considerations; (a) to obtain further information on the depth and lateral extent of ice-wedges at the site, and (b) to drill two holes at the revised airstrip location.

5.1.1 Ice Wedges

During the summer of 1975, the locations of some possible ice wedges on the plant-site were flagged by Mr. J. C. McDougall of Imperial Oil Limited. Six holes were drilled at one of these locations (H76 W1), and the maximum depth of ice was 2.8 feet (0.85 m). Three holes were drilled at a second location, H76-W2, about 22 feet (7 m) away, and the maximum depth of ice recorded was 8.5 feet (2.6 m).

- 26 -

Another hole H76-W3 was drilled at a third location, but no ice was found. The positions of these holes are shown on Figure 5.1, and the drilling logs and test results are given on Figures A-1 through A-7 in Appendix A.

The maximum depth of ice encountered during this phase of the study was 8.5 feet (2.6 m). This is not felt to be representative of the depth of wedges at the site. The limited time available for this part of the field program did not permit sufficient holes to be located and drilled to obtain representative drill-hole data on the depth of ice-wedges in the Taglu area.

In the context of pile foundations, and the depth of ice that may be encountered at the site, the following discussion reviews the available drill-hole information, provides some estimates of the depth and extent of wedges at the site, and outlines the surface distribution of ice wedges based on aerial photographs.

Parts of Richards Island are underlain by massive tabular blocks of underground ice (Rampton and Mackay, 1971); however, the low lying nature of the Taglu site and the well-developed ice-wedge polygon system suggest that the only abundant ice type is wedge ice.

- 27 -

The available borehole logs record the presence or absence of ice, but it is difficult to ascertain the genesis of the ice (i.e., whether wedge ice or not). However, the infrequent occurrence of ice in the drilling logs indicates laterally discontinuous ice, and in addition, the polygonal pattern on air-photos suggest the presence of wedge ice. It should also be noted that drill-hole records probably do not give maximum ice depths, as ice-wedges taper downwards and drill holes may pass through the side of a wedge.

The following drill-holes display abundant ice: A-6, B-7, F-2, G-11 and O-6 (E.B.A. Engineering Consultants, 1975), and H76-W2 drilled during this program. The hole A-6 may indicate the presence of a buried ice-wedge, as it records ice from 14-24 feet (4.5-7.5 m). Although there is no published information specifically for the Taglu site, there is evidence of a thaw unconformity in the vicinity (Mackay, 1975) at a depth of 9-12 feet (3-4 m). If this extends beneath the Taglu area, there may be relic wedges at depth with no surface expression. If such wedges are present, they are unlikely to exceed a depth of 10 feet (3 m) below such an unconformity. The E.B.A. borehole A-6 probably indicates a buried wedge, otherwise a vertical borehole would intercept a vertical wedge above 14 feet (4.3 m).

LEGEND

○ 1976 R.M. HARDY & ASSOCIATES LTD.

× E.B.A. FIELD PROGRAM

Figure 5.1

Further evidence of ice-wedge depths in the general area is obtained from test hole log H76-G6, where 17 feet (5.2 m) of ice was logged during drilling of the alternate borrow source south of the plant site.

Comparison of drill-hole positions with ice-wedge distribution is difficult due to the scale of the airphotographs, but holes with records of abundant ice are close to wedges shown on photographs. Aerial photographs display polygons up to 75 feet (23 m) across, thus wedges with surface expression may comprise a limited proportion of the terrain, but individual wedges may be several feet across. Depths of wedges have not been reported in the literature, but wedges 4-6 feet (1-2 m) across at the top may penetrate to 15-18 feet (5-6 m). Where wedges have grown syngenetically with active sedimentation, multiple tiered wedges may occur, and surface expression may not represent the volume of ice at depth. However, the width of wedges is minimal below about 12 feet (4 m). For the Taglu site, therefore, it should be assumed that ice-wedges are 4-6 feet (1-2 m) across at the top, and that holes drilled for pile foundations at the site may remain predominantly in ice for depths of up to 20 feet (6 m).

An attempt has been made to map ice-wedge polygon distribution at the Taglu site, in terms of the presence or absence of wedges, polygon size, and associated wedge size. The map is based on airphoto interpretation, and is shown on Figure 5.2. The map displays a zone of large polygons which probably comprises the largest wedges. Medium polygons comprise large and medium wedges, while small polygons have the greatest range of wedge size, and the greatest density. Large polygons are usually low-centred, whereas the smaller polygons tend to have high centres. Low-centred polygons have ridges adjacent to the wedges, whereas in high-centred polygons the ridges have broadened and the central hollows have become infilled with peaty material. Frequently this peat has a high ice content. At Taglu, most polygons are low-centred, as readily observed on the shore of Big Lake, where centres are water-filled. In addition, zones of possible new wedges are outlined. These are where an old channel has been abandoned, and point bars have developed. No polygons are evident, but thermal contraction cracking may occur.

From a terrain sensitivity and construction viewpoint, the following distinctions may be made between the two types:

R.M.HARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING

. 8

ICE WEDGE DISTRIBUTION

- Low-centred polygons may have ponds in their centres.
- Low-centred polygons may have ice lenses in the ridges; in addition high-centred polygons tend to have high ice contents in their peaty centres.
- High-centred polygons have thinner active layers in their centres.
- High-centred polygons have more ice, both ice wedge ice and ice in the peaty centre.

5.1.2 Airstrip

Subsequent to the preliminary geotechnical evaluation carried out by E.B.A. Engineering Consultants Ltd., the location of the STOL airstrip was altered to a more northerly alignment. The revised location was taken from the most recent plot plan of the site available (Fluor Drawing No. 650406-SK4-0050) and is shown on Figure 5.1. The original airstrip alignment is clearly seen from the location of the nine E.B.A. drill-holes, AS-1 to AS-9.

The preliminary geotechnical evaluation has concluded that the subsurface conditions were relatively uniform and typical of conditions over the rest of the site. Ice-rich silts overlie denser silts or silty sands at depth. In order to confirm that subsurface conditions would not be greatly different under the revised airstrip location, two drill-holes (H76-Al and H76-A2) were drilled. The test hole logs for these two holes are shown in Appendix A. Sandy silts were found in both holes to a depth of 25 feet (8 m). Excess ice contents varied from 60 percent in the top 10 feet (3 m) to little or no excess ice below 20 feet (6 m). In the depth range 10-20 feet (3-6 m), moisture contents lay between 20 and 40% by dry weight.

These results are similar to those determined in the preliminary geotechnical evaluation, (Test Holes AS-1 to AS-9). The high excess ice contents in the near-surface layers provide further evidence for the requirement to maintain the permafrost beneath the airstrip pad in the frozen condition, thereby preventing thaw-settlement in the underlying soils.

5.2 Barge Dock

5.2.1 General

Prior to the present geotechnical survey, subsurface information on the dock site area included four profiles of the channel bathymetry reported by Slaney (1976),

- 32 -

and six test hole logs described in the preliminary geotechnical survey (E.B.A. Engineering Consultants, 1975). Of these six holes drilled in the river channel, five were located in a relatively shallow area of the river where a dock might have to extend up to 200 feet (60 m) from the shoreline in order to attain the required draught for barges. The remaining test hole was drilled closer to the existing gravel pad at the river bank, the area now favoured for a barge dock location (see Figure 5.3).

R.M.HARDY & ASSOCIATES LTD.

In order to augment the subsurface information in the area of the preferred dock site location, some twenty holes were drilled during the present program. The locations of these holes are shown on Figure 5.3. The borehole logs, laboratory test summary sheets and grain size distribution curves are included in Figures B-1 through B-57 of Appendix B. The field and laboratory logging and testing programs were designed to provide information on the water depth, depth of scour, permafrost depth, and the consistency or strength of the unfrozen sediments above the permafrost table.

The permafrost table was delineated by either (a) retrieval of a soil sample containing ice or (b) noting the

depth at which the resistance to penetration of the dynamic cone showed a sudden increase in excess of 45 blows/foot.

The "depth of scour" was defined on an empirical basis as that depth above which the dynamic cone penetration resistance was less than 5 blows/foot. This definition may not correspond exactly to the possible scour depth, but certainly indicates a surficial zone of very soft soil, that may have been reworked and whose strength should not be relied upon in the dock design.

5.2.2 Subsurface Conditions at the Docksite

Based on the drill-hole information and the field determinations of "scour" depth and permafrost table, crosssections A-A through G-G were drawn running in a North-South direction as shown on Figure 5.3. The sections themselves are shown on Figures 5.4 through 5.11. In general, the water (plus ice) depths vary between zero at the river bank and 15 feet (5 m) within 100 feet (30 m) of the river bank. Some of the cross-sections, however, indicate a pronounced reduction in water depth between 80 and 120 feet (25 and 40 m) from shore. This reduced depth appears to be greater than about 7 feet (2 m). This same feature is reported by Slaney

1 1 1

(1976). In general, 5 to 15 feet (1.5 to 5 m) of silt or sandy silt overlies silty sand. Some of the test holes indicate the presence of silts or clays beneath the sand at greater depths.

,

5

_

R.M.HARDY & ASSOCIATES LTD.

The position of the permafrost table beneath the river is a typical feature of the thermal regime beneath an Arctic river at these latitudes. The depth to permafrost varies from zero at the shoreline to depths of 50-70 feet (15 to 20 m) a distance of 100 feet (30 m) from shore. The actual position of the permafrost table may vary a few feet from that shown, due to the difficulties in logging the first occurrence of permafrost in the field. No "islands" of permafrost were delineated during the subsurface investigation, and although it is unlikely that such islands are present, the possibility of encountering them over 200-300 feet (60-90 m) of dock installation certainly exists. A summary of the depths to permafrost below river bed level is shown on Figure 5.12.

The depth of scour as defined above varies generally between 5 and 10 feet (1.5 and 3 m) at most locations investigated. Sections B-B and C-C show an increased scour depth about 60 feet (18 m) from shore. The maximum scour depth below river bed level here was 14.5 feet (4.4 m), and coincides with an area of deeper water. A summary of the information on scour depth is presented on Figure 5.13. A discussion of scour depth in the context of riverbed morphology is included in section 5.2.3.

The consistency or in-situ strength characteristics of the unfrozen soils at the docksite has been evaluated using dynamic cone and standard penetration tests. In addition, laboratory strength tests were carried out on selected samples of the unfrozen soils to assess soil strength for design purposes. Plates B-1 through B-37 contain the dynamic cone penetration results for test holes at the dock site. A summary of the dynamic cone penetration data recorded for all boreholes is shown on Figure 5.14. Penetration data are included for sands, silts and clays, together with data for frozen soils. Considerable scatter is evident in the data, but a general trend of increasing strength with depth is observed. No clear distinction can be made with regard to different soil types. Almost all of the data points for frozen materials are greater than 45 blows/foot, and this fact was used to assist in defining the position of the permafrost table in test holes that were advanced using the dynamic penetration device alone.

DYNAMIC CONE RESISTANCE 25 30 35 40 45 80 8 8.0 • 0 G ă 10 BOTTOM ×9 •) 15 0 . • O CHANNEL 0 Ø œZ) ۲ x Ø 0 68 20 ⊞ ж<mark>ж</mark> 0 0 ж. 8 . ۲ * 6 8 × 8 • x BELOW 25 . Ξ × × × × DEPTH Ø 30 0 8 8 -Ð • 35 × Ø × × × × × 40 × LEGEND R.M.HARDY & ASSOCIATES LTD. ----× SAND OD QUESTIONABLE FIGURE 5.14 O SILT X O . D UNFROZEN CORRELATION BETWEEN 4 . SAND & SILT FROZEN CONE RESISTANCE AND DEPTH CLAY .

٠

1

1

1

1

1

1

1

1

1

1 . 1

Based on established relationships between dynamic penetration tests and the relative density or consistency of soils, the following assessment of the unfrozen sediments at the dock-site can be made.

R.M.HARDY & ASSOCIATES LTD.

Depth below river bed level (feet)	Lower bound of Dynamic Cone Resistance (Blows/foot)	Relative Density	
0-Scour (approx. 8 ft)	2	Very Loose	
Scour-20	6	Loose	
20-30	18	Medium	
30-permafrost	36	Dense	

In the depth range greater than 30 feet (9 m), some of the cone penetration data indicate layers of low density soils at depth. These are generally confined to layers of soft clay or organic silt and are probably not representative of typical conditions at depth at the site.

An unconfined compression test on a sample of sandy silt from 14 feet (4.3 m) below river bed level gave an unconfined compressive strength of 920 p.s.f. (44 kPa). This low compressive strength reflects the sandy non-plastic nature of this stratum. Two drained trixial tests on samples of sandy silt from 8 and 18 feet (2.5 and 5.5 m) below river bed level provided effective strength parameters as follows:

	Depth below River bed level	Dry Density	Effective Strength Parameters	
Sample	(feet)	(p.c.f.)	cohesion	friction angle
H76-D4 (U2)	8.0	81	C'=0;	ø'=35°
H76-D4 (U6)	18.0	93	C'=0;	ø'=38°

These friction angles are probably representative of the stronger, more intact samples that could be retained in the sample tubes, and looser, weaker soils could not be retained during the sampling operations, and therefore could not be tested. Consequently, these values represent the higher strength parameters that might be anticipated for the sandy silts at this location.

Some limited testing of the permafrost underlying the unfrozen sediments was carried out to determine the likely thaw settlement of the permafrost, should long-term deepening of the permafrost table occur near the outer limit

R.M.HARDY & ASSOCIATES LTD.

of the proposed dock. The frozen bulk densities of the permafrost lie between 118 and 120 p.s.f. (about 1.9 Mg/m^3). Based on thaw strain tests and these bulk density values, a strain of 2 to 4 percent may be anticipated where deepening of the permafrost table occurs.

The compressibility of the unfrozen sediments beneath the dock pad can be estimated from the consolidation behaviour of similar frozen soils after they have been thawed in the laboratory. Based on such laboratory tests, the value for the coefficient of compressibility, m_v , of the unfrozen sandy silts is estimated to be 0.02 to 0.04 ft²/ton.

The application of this parameter in estimating dock pad settlement following construction is discussed later in section 5.2.4.

5.2.3 Riverbank Migration and Channel Scour

Several factors will govern the precise location and final design the dock. Channel bank migration and potential scour depth are two of the more important factors and are discussed in the following paragraphs. It is important to recognize that the design of the structure and the two phenomena discussed herein are interdependent so that the potential for migration and scour should be assessed at each design stage.

5.2.3.1 Channel Bank Migration

The area of interest encompasses the Kuluarpak Channel of the Mackenzie River Delta from where it deviates from the Harry Channel to a point approximately 1 3/4 miles (2.8 km) downstream.

The section of concern within the Kuluarpak Channel is "S" shaped, 400 to 600 feet (120 to 180 m) wide and 25 to 50 feet (8 to 15 m) deep. The banks and the bottom have a shallow slope angle (10° to 20°) with no apparent river bank erosion. Slow slumping due to the thermal niching is manifested above the normal high water line at about elevation 89.5 feet (27.3 m). The normal fluctuations of the water level in the Kuluarpak Channel are in the order of 2 feet (0.6 m) with peak levels due to the spring break-up and summer storm surges up to a possible elevation of 97.0 feet (29.6 m). Comparitive aerial photography techniques have been used to assess potential river bank migration. Two different air-photo coverages were employed for this purpose.

R.M.HARDY & ASSOCIATES LTD.

The low quality of the older 1:40,000 scale air photos eliminated the possibility of establishing the water elevations in relationship to the banks and surrounding ground and made the determination of the changes in the river channel difficult. Therefore, a correlation between the more recent 1:10,000 scale set and the blow-up of 1:40,000 air photos into the 1:10,000 scale was chosen as the best approach to establish any possible shifting of the river channel. First, the shoreline from the 1:10,000 scale photo was traced under the stereoplotter on a transparent sheet. Subsequently the shoreline from the enlarged 1:40,000 scale air photo was plotted on the same sheet as shown on Figure 5.15.

A well developed net of ice-wedge polygons on both sides of the river channel together with two small lakes (Lake "A" and Lake "B") made it possible to match the air photo and blow-up, thereby minimizing the influence of the optical distortion. The following observations were made comparing the two shorelines as delineated on each set of air photos:

- 41 -

For the first mile from the place where the Kuluarpak Channel splits from the Harry Channel the 1975 channel contours closely follow the channel contours of 1950. The only difference is that the recent air photos show that the shoreline receded on each side some 33 to 50 feet (10 to 15 m) compared to its position in 1950.

The next 0.5 miles (0.8 km) of the channel indicate a positive shifting of the channel to the west. The western shoreline remains the same distance from the shoreline 25 years ago, while the eastern shoreline was moved some 100 feet (30 m) to the west.

For the last 1,300 feet (400 m) both shorelines on the recent air photos are once again outside the 1950 channel limits with 50 feet (15 m) overlap on the western side and up to 16 feet (5 m) on the eastern side.

These observations lead to the conclusion that the channel widened over the past 25 years some 15 to 50 feet (5 to 15 m) along the northern and eastern bank and some 30 to 50 feet (9 to 15 m) along the southern and western bank with the exception of a 0.5 mile (0.8 km) section where the channel shifted 100 feet (30 m) to the west. This would indicate a rate of widening of approximately 1.2 feet per year (0.36 m/year).

- 42 -

However, there are indications that the 1975 air photos represent the shoreline at the high water mark while the 1950 air photos represent the channel at the low water level. Under such circumstances, the actual channel widening would be considerably smaller than indicated by the above established differences in the shoreline position. It is our opinion that the only significant change is represented by the westward shifting or narrowing of the channel, within its segment 1.0 to 1.5 miles (1.5 to 2.5 km) from the point where the Kuluarpak Channel deviates from the Harry Channel.

R.M.HARDY & ASSOCIATES LTD.

These estimates of river bank migration confirm independent field observations by R. M. Hardy & Associates Ltd. personnel in the summer of 1975 that an average regression at the dock site of 0.3 to 1.0 feet per year (0.1 to 0.3 m/year) might be expected. The central position of the channel thalweg, low energy gradient combined with the short duration of high water coinciding with the thawed bank probably help to explain the comparatively low rate of migration. The construction of the dock structure will very likely further reduce the erosion along the north bank both upstream and downstream of the site. Thus we believe that bank migration will not be of great concern at the proposed site.

- 43 -

5.2.3.2 Potential Scour Depth

The bed level at any given time and location will vary with

- general aggradation
- movement of bed forms
- local scour due to channel bends, structures, etc.

Given the general nature of the delta, the low channel slopes, and fine grained bed materials; bed level changes due to aggradation and movement of bed forms at the proposed dock site will be relatively minor. The depths to which the river bed materials are re-worked on a regular basis to the present time have been estimated during this program using in-situ testing techniques. The results of these investigations have been summarized on Figure 5.13. On the other hand there will be local scour caused by the structure itself. Depending upon its final shape and extent it will likely have much the same effect as a spur projecting into the channel.

Kuluarpak channel has been analysed for local scour at the proposed dock site. The analysis is based on a section which is equivalent to station 15 of the Slaney
(1976) report. Depths are related to the June 10, 1975 water level which may be taken as the bankfull condition. The corresponding flow in Kuluarpak channel on 10 June 1975 was 28,600 cfs (810 m³/s.). Assuming that the dock projects approximately 90 feet (27 m) into the channel (i.e., to station 3+60) at which point the depth is 10 feet (3 m) below high water, it is estimated that the local scour effect could result in a scour depth of 50 feet (15 m)

R.M.HARDY & ASSOCIATES LTD.

below bankfull stage. Depending on the depth of water at this time, this suggests potential scour depths of 30-35 feet (9-10.5 m) below present channel bed depth, for the example cited above (i.e., dock projecting 90 feet into channel). The present maximum channel depth varies from 40 to 50 feet (12 to 15 m) without any imposed structure, and it is possible that this low point may migrate in time towards the North bank of the channel, in view of the fact that the dock structure constricts channel flow, and imposes a rigid outside wall in lieu of an erodible bank. This method of calculating the maximum scour depth is based on the design approaches outlined for example by Blench (1957 and 1969) and Neill (1973). Although the permafrost table may offer temporary resistance to such potential scour, recession of the permafrost table after partial removal of the unfrozen sediments may occur. Some design measures are available which can help to reduce the potential scour. These include

- 45 -

the alignment of the dock face into the flow at an angle of 10 degrees or less, feathering the dock into the bank and placement of gravel or larger size stone around the base of the structure.

If a design approach is adopted where piling for dock structure is driven to refusal, then the shift of the thalweg can be monitored annually, and should it become a cause for concern, an erosion control method (e.g., "Fabriform" type apron) can be employed to control further scour.

5.2.4 Soil Parameters for Barge Dock Design

5.2.4.1 Dock Pad Settlement

An estimate of the consolidation settlement of the dock pad surface following construction may be obtained from the following equation:

	$S = m_v \cdot H \cdot \Delta P$	(5.1)
where	S is settlement in feet	
	H is the thickness of the unfrozen soil above the permafrost table (feet)	
	∆P is the increase in vertical effective stress due to pad construction (tons/ft ²)	
and	<pre>m is the coefficient of soil compressi- vbility (ft²/ton)</pre>	

- 46 -

Two tests were carried out on undisturbed permafrost cores in which the samples were thawed and subsequently consolidated. The compression characteristics of these two samples are likely to be representative of the behavior of the overlying unfrozen sediments. Over the stress range likely to be experienced by the unfrozen soils beneath the barge dock pad, the tests provided the following results.

R.M.HARDY & ASSOCIATES LTD.

Sample	Soil Type	Moisture Content (%)	Frozen Density (p.c.f.)	Compressibility, m (ft ² /ton) v	Thaw Strain (%)
H76D5-Cl	silt	26.9	118.3	0.038	2.4
H76D8-Cl	sand	26.4	119.9	0.014	1.6

In view of the fact that silts predominate beneath the dock locations, a value of

$$m_{\rm u} = 0.04 \, {\rm ft}^2/{\rm ton}$$

should be used to provide an estimate of total pad settlement following construction.

The stress increase, ΔP , following construction can be estimated from the following equation:

$$\Delta P (in t.s.f.) = (\gamma H_1 + \gamma' H_2) / 2000 \qquad (5.2)$$

where γ is the total unit weight of fill above the low water level (γ#125 p.c.f.) Y' is the submerged unit weight of gravel (γ'#65 p.c.f.) H₁ is the height of fill above low water level (feet) H₂ is the height of fill below water level

The total pad settlement following construction can therefore be calculated readily. The method of calculating the rate at which such settlements will develop has not been presented, but it is likely that up to a year may elapse before most of the consolidation settlement has been experienced.

The above estimate of total settlement does not include the consolidation or possible lateral displacement of the very soft near surface sediments that may occur during fill pad placement. Settlements arising from this source will likely take place during construction, and will require placement of additional fill material to offset these effects. In view of these initial settlements and possible lateral soil displacements, it would be advisable to place the dock pad prior to installation of the dock structure. If the dock pad is placed subsequent to the dock

- 48 -

pad structure, larger settlements of the bed material should be accounted for in design.

Should deepening of the permafrost table occur beneath the dock structure adjacent to the river, the thaw strains measured above indicate that the settlements resulting from deepening of the permafrost table by a few feet will be small in comparison with the pad settlements resulting from consolidation of the existing unfrozen sediments.

5.2.4.2 Soil Properties for Design of Dock Structure

Based on the results of laboratory triaxial tests and the field dynamic penetration test results, (see Figure 5.14 and section 5.1) the following strength parameters are recommended for use in barge dock design where sands and silts are present:

Depth Range below river bed level (feet)	Submerged Density (p.c.f.)	y Properties) C' Ø'		Earth P Coeffi Active, K a	ressure cients Passive, K p
0-scour (approx. 8')	50	0	0	1.0	1.0
Scour-20	55	0	28	0.36	3.5
20-permafrost	60	0	32	0.3	4.5

Should the dock structure be located on an area where the subsurface investigation delineated significant clay layers, then the density and strength properties for the clay layer should be as follows:

For clays, Submerged density $\gamma' = 55$ p.c.f. Strength C'=0; Ø'=28° Active Earth Pressure Coefficient K_a = 0.36 Passive Earth Pressure Coefficient K_p = 3.5

For sand or gravel fill placed to form the dock structure, the following soil properties should be assumed:

C' = 0 $\phi' = 32^{\circ}$ $\gamma_{\text{total}} = 125 \text{ p.c.f.}$ $\gamma'(\text{submerged}) = 62 \text{ p.c.f.}$

Active Earth Pressure Coefficients:

for end-dumped or lightly compacted fill, $K_a = 0.4$ for compacted fill, $K_a = 0.7$

Surcharge loadings due to stockpiles, vehicles or off-loading equipment should be accounted for in design of dock structures. Methods of estimating the lateral pressures on the dock structures from such loads are outlined, for example, in the Navfac DM-7 Design Manual (1971).

- 50 -

R.M.HARDY & ASSOCIATES LTD.

5.2.5 Other Geotechnical Considerations

5.2.5.1 Ice Forces

The various forces that ice may exert on the dock structure may be listed as follows:

- (i) Impact from floating ice masses. These forces
 would normally be experienced at break-up, and
 would depend on the thickness of the ice sheet,
 the consistency of the ice and the river velocity.
 Observations carried out by Slaney (1976) provide
 information on this design aspect.
- (ii) Uplift or downdrag forces caused by ice adhering to the dock structure. Fluctuations in river level during the winter period may cause tangential forces to be transmitted to the dock structure. Such forces will depend on the rate of fluctuation, and the strength, temperature and thickness of the ice sheet.
- (iii) Static lateral pressures imposed by the river ice sheet. Little information is available on the likely magnitude of such forces, but experience gained by Imperial Oil Limited and other agencies with similar structures in this area should pro-

- 51 -

vide assistance in this regard. A number of publications dealing with lateral ice pressures on structures might be consulted, including Kivisild (1966), Assur (1966) and Drouin (1966).

5.2.5.2 Frost Action

The near-surface soils at the dock location are presently in an unfrozen condition, due to the presence of the river. Placement of the dock pad will change the thermal regime of the soil surface beneath the dock pad. The ground surface thermal conditions will then approach those experienced by the adjacent tundra surface, which is underlain by permafrost. It should therefore be anticipated that permafrost will aggrade slowly back into the unfrozen soils beneath the dock pad.

Assuming that about 10 feet (3 m) of granular fill overlies the river bed materials, it is estimated that frost will penetrate through the fill pad within 2 to 3 years. Subsequently, the frost line will likely continue to descend into the unfrozen material beneath. Considering the silty nature of the river-bed materials, there is at least the potential for ice lensing and some frost heaving to occur. Although the relatively large surcharge pressures imposed by

- 52 -

the dock pad will greatly restrain the amount of frost heaving, it should be anticipated that some heaving will occur once the frost line penetrates the subsoils. A rigorous estimate of the amount of heaving has not been carried out, but prior analyses for soils of similar grain size distribution have indicated heave rates up to several inches per year may occur. These rates will decrease with time as the frost line penetrates deeper, and the overburden pressure on the frost line increases.

R.M.HARDY & ASSOCIATES LTD.

Deep-seated frost action will likely not affect the performance of the dock structure itself, as its proximity to the river will ensure that freezing and consequent heaving in the unfrozen silts immediately adjacent to the dock structure will not occur.

Piping, water intake facilities and other permanent structures founded on the dock pad should therefore be designed to accomodate differential movements resulting from frost heaving.

5.3 Big Horn Channel

5.3.1 General

Consideration of alternative borrow sources may provide economic benefits in the general Taglu area, in view of the high cost of granular material. The presence of sandy deposits on the riverbank near Big Horn Point, together with the surficial geological mapping, led Imperial Oil Limited to drill exploratory holes in the river bed in Harry Channel in the winter of 1974/75. The results of the preliminary evaluation of the river bed material is reported by E.B.A. Engineering Consultants (1975). Large deposits of silty sand overlain by silt overburden were delineated and it was concluded that a potentially exploitable borrow resource existed in Harry Channel near Big Horn Point. The suitability of the material was evaluated in terms of its acceptability for dredging, handling and placement, but not in terms of acceptability for heaving capacity, compaction or frost susceptibility in place.

In order to confirm the quantities of available material, and augment the existing information on the quality of the deposit, the present field program included the drilling of eleven test holes in the areas of Harry Channel that seemed most promising in terms of material quality and quantity.

- 54 -

5.3.2 Subsurface Conditions

The location of the study area in Harry Channel is about 3 miles (5 km) North-East of the plant site, and is shown on Figure 5.16. Eleven test holes were drilled at the locations on this figure, five along the centre of Harry Channel (section A-A), three parallel to section A-A along the East bank of the channel (section C-C), two along an East-West tributary (section B-B) and one hole on an island in the channel.

R.M.HARDY & ASSOCIATES LTD.

The test hole logs are shown on Figures C-1 through C-21 in Appendix C, together with laboratory moisture content data. Grain size distribution curves were determined in the laboratory for selected soil samples to assist in delineating the overburden and assessing the quality of the sand deposits. The grain size curves are presented on Figure C-22 through C-43 of Appendix C. A summary of the laboratory tests carried out is included at the end of this Appendix.

In general, the channel deposits consist of a variable thickness of silt (0-20 feet (6 m)) overlying a silty sand. The thickness of silt becomes greater than 20

- 55 -

feet (6 m) at the extremeties of the study area. The sand is generally a fine uniform deposit that varies between 10% and 50% silt content. Using the test hole data obtained from the previous (E.B.A.) study and the present program, section A-A, B-B and C-C have been prepared as shown on Figures 5.17, 5.18 and 5.19.

5.3.3 Borrow Evaluation

In order to evaluate the quality and quantity of the borrow from a dredging and handling viewpoint, the following criteria were established following discussion with Fluor Canada Ltd. and Imperial Oil Limited.

- (a) The depth of excavation below river bed level
 would not exceed 50 feet (5 m), and depths of 25,
 35 and 50 feet (7.6, 10.7 and 15.2 m) were to be
 considered for calculation purposes.
- (b) The limits of the area suitable for borrow recovery was to be limited to the segments of the river channel where the depth of silt overburden was generally less than 20 feet (6 m).
- (c) The borrow excavation would be assumed to have side slopes of 3:1.

BOREHOLE LEGEND

0	R. M.	HARDY,	1976
---	-------	--------	------

× EBA, 1975 (o	ipprox.)
----------------	----------

NOTE

1976 BOREHOLE LOCATION AND RIVER BANKS BASED ON CANADIAN ENGINEERING SURVEY DWG. Nº 8363-M-2 FOR IMPERIAL OIL LIMITED.

BOREHOLE LOCATION PLAN BIG HORN POINT AREA FIGURE 5.16

1

.

R.M.HARDY & ASSOCIATES LTD.

- (d) The "volume of material suitable for processing" was defined as that material having greater than 50% sand sizes (i.e., less than 50% passing the #200 sieve).
- (e) The "volume of processed fill" was defined as the volume remaining after a separation method was used to reduce the silt fraction to a maximum of 10%.

Fill material would be lost during dredging and subsequent separation, but these loss factors have not been estimated or introduced into the following calculations for borrow volumes, as these will vary with the dredging, handling and separation techniques adapted. The crosssections shown on Figures 5.17, 5.18 and 5.19, together with the grain size data included in Appendix C were used to calculate the potentially exploitable volumes of borrow.

The total volumes of waste, material suitable for processing, processed material and overburden ratios are summarized in Table 5.1 for sections A-A and B-B, and are plotted on Figure 5.20. The volume of processed fill increases with the depth of excavation $(1.4 \times 10^6 \text{ cu. yds} \text{ at 25 feet to 2.9 x} 10^6 \text{ cu. yds} \text{ at 50 feet})$. The volume of overburden remains constant however, and when combined with the material wasted during separation, provides an overburden ratio that decreases (improves) with increases in the depth of excavation (see Figure 5.20). Assuming a 35 foot (10.7 m) excavation, a volume of processed material of 2.2 million cubic yards (1.7 $\times 10^6 \text{ m}^3$) has been calculated. Assuming, for example, that a further 30% of this material is lost during dredging handling and separation, approximately 1.5 million yards (1.1 $\times 10^6 \text{ m}^3$) of processed material is available.

The quality of the in-place sand deposit and the amount of overburden vary considerably with location along the river channel. Table C-2 in Appendix C shows the detailed borrow calculations, and this table may be used to evaluate volumes for different locations in the river channel. The largest volumes and most favourable overburden ratios appear to be between Test Holes 14 and BHl on section A-A (see Figure 5.16).

This 1200 foot (370 m) segment of the channel would yield about 514,000 cubic yards (393,000 m³) of processed

- 58 -

 **************************************	· · · · · · · · · · · · · · · · · · ·	 A 100 Mag 	 3	••••••••••••••••••••••••••••••••••••••		*** · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·	* · · · · •	*	· · · · · · · · · · · · · · · · · · ·	1 n m 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	, · · · · · · · · · · · · · · · · · · ·
. 4	s 📕	. 4	 	, 1	. I	· •	. .	 . I	. J	. 1	. I	. 3	. J		. 1

Table	5.1	Summary	of	Borrow	Calculations

Excavation Depth ft.	Overburden (yd ³)	Volume of Material Suitable for Processing	Cumulative Total Waste yd3 without overburden	Volume of Processed Fill yd ³	Total Waste + Overburden (yds) ³	Average Overburden Ratio
25	1,330,229	1,807,827	387,722	1,420,105	1,717,951	1.21
35	1,330,229	2,795,494	565,902	2,229,592	1,896,131	0.85
50	1,330,229	3,804,160	814,389	2,989,771	2,144,751	0.72

(No loss factor assumed for handling, processing etc.)

These results are plotted on Figure 5.20.

material from a 35 foot (10.7 m) excavation, with 103,000 cubic yards (78.000 m³) of waste and 73,000 cubic yards (56,000 m³) of overburden. The ratio of overburden and waste to processed material at this location is therefore 0.34.

The feasibility of the separation process, and the geotechnical qualities of the material when placed have not been considered within the scope of the present work, and these factors must be considered before this source of borrow is designated for use as a core material in pads and roads for this project.

5.4 Big Horn Point Bluff

A total of six test holes were drilled at different locations on the bluff at Big Horn Point. The locations of those holes are shown on Figure 5.16. The logs for the test holes are included in Figures D-1 to D-6 of Appendix D.

The logs indicate that the bluff is comprised of variable thicknesses of sand, silt and clay. Sand does not constitute a large proportion of the soil types delineated in this area. Considerable thicknesses of ground ice were logged in these test holes, and are indicative of a high intensity of ice wedges and other ice forms at this site.

- 59 -

The sand observed on the slopes of the bluff and on the adjacent beach are likely colluvial deposits derived from the relatively minor deposits of sand intersected during the drilling program.

No attempt has been made to draw cross-sections of the soil profile at this location, because of the high variability of the subsoils over relatively short distances.

Based on the soil types encountered during this part of the drilling program, and the large quantities of ice apparently present in the sub-soils, this site is not recommended for further consideration as a potential borrow source. A thaw-strip type of operation would be difficult to carry out and would produce large quantities of meltwater, and the material so derived would not be suitable for use as a non-frost-susceptible fill material.

5.5 Potential Alternate Borrow Source

The area outlined for study is about 3 miles (5 km) South-West of the plant site, and is shown on Figure 5.21. A total of seventeen holes were drilled in the locations shown on Figure 5.21. The detailed test hole logs are given

R.M.HARDY & ASSOCIATES LTD.

on Figures E.l through E.23 in Appendix E, together with the laboratory test summary sheets and grain size curves on Figures E.24 through E.64.

A simplified soil type and ice description is given for each test hole on Figure 5.21, to assist in the interpretation of subsurface data. Test holes G3, G3A and G4 were drilled on the higher ground between the two lakes shown on Figure 5.21. Test holes G1 and G2 were drilled in the "East" lake, and G9, G9A, G10, G10A, G12, G13, G14, G15 and G16 were drilled in the "West" lake. A further test hole, G5, was drilled in the narrow delta channel to the south.

The test holes in the East lake and the delta channel indicated up to 40 feet (12 m) of silts or silty clays, with minor amounts of sands. The two holes G3 and G3A, indicated primarily fine sand to 30 feet, with some silt. This sand deposit is similar in grain size characteristics to the Big Horn Channel deposit. Test holes G9, G9A and G13, drilled on the Eastern edge of the "West" lake also indicated the presence of significant quantities of fine sand overlain by 8-10 feet (2.5-3 m) of silt.

- 61 -

Occasional coarse sand and gravel layers were also intersected in this area, and some grain size distributions are presented for samples of these layers. Test holes G-10 and G-10A were predominantly very fine sand and silt, with a 2 foot (0.6 m) gravel layer at 17 feet (5.2 m) in G-10.

The remaining holes drilled in the "West" lake generally contained only minor quantities of fine sand, and silt comprising the dominant soil type.

Two test holes G-6 and G-6A at the southern edge of the study area also indicated silt or silty fine sand.

The subsurface investigation at this site covered a wide area, in an effort to indicate whether potentially exploitable deposits of suitable borrow material exists. Because of the large area covered and the widely spaced boreholes, it is not possible to provide quantitative estimates of the amounts of various materials present. The original objective of this phase of the drilling program was to drill a series of preliminary holes at widely spaced locations. Should any of these holes indicate promising results, the remainder of the program was to be devoted to proving out the quality and quantities of such granular resources. Although significant depths of fine sand were encountered in some holes, no test holes indicated large quantities of material of superior quality to, for example, the Big Horn Point channel deposit. Consequently, no area was selected for further subsurface investigation on a more

intensive basis.

In summary, it appears that although potentially exploitable quantities of fine sand may be present in one section of the study area, the geotechnical properties of the material for construction pruposes would not be any more acceptable than the sand deposit present in the channel at Big Horn Point. In view of the geological history of these deposits, the gravel or coarse sand layers encountered during the drilling program are likely to be limited in depth and discontinuous in lateral extent. Such layers would, therefore, be difficult to delineate accurately, and would be costly to obtain.

6.0 SUMMARY AND CONCLUSIONS

In order to finalize the geotechnical parameters for design of the barge dock, and to augment the subsurface information at the Taglu plant site and potential borrow

- 63 -

source areas, a geotechnical survey has been carried out by R. M. Hardy and Associates Ltd.

Soil conditions have been investigated at the revised airstrip location, and found to be similar to conditions elsewhere at the plant site. Data on the magnitude and frequency of occurrence of ice wedges have been summarized for the plant site area.

Test holes drilled at the barge dock site have provided information on soil stratigraphy, water depth, scour depth and depth to the permafrost table. Recommendations for soil properties to be used for design purposes have been presented.

The quantities of a sand deposit in the river channel at Big Horn Point have been confirmed. Estimates indicate that a volume of silty sand in excess of 2 million cubic yards $(1.5 \times 10^6 \text{ m}^3)$ is suitable for processing at this location, and that about one-quarter of this volume would be wasted during processing, in order to obtain a material that has greater than 90% sand-sized particles. This deposit is overlain by an estimated 1.3 million cubic yards $(1 \times 10^6 \text{ m}^3)$ of silt overburden. The suitability of

- 64 -

this as a fill material for pad construction has not as yet been determined, and its compaction characteristics, bearing capacity and frost susceptibility will have to be assessed before final recommendations can be established.

A limited drilling program on the bluff at Big Horn Point revealed that this area is underlain by materials that are not suitable for fill construction.

Subsurface investigation at an area about 3 miles (5 km) south of the plant site indicated that some parts of the study area are underlain by significant deposits of silty sand, with occasional coarse sand or gravel layers. The prime objective of this phase of the program was to determine if potentially exploitable quantities of coarse sand or gravel were present, and such quantities do not appear to exist in this area. Based on the limited program carried out, it is not possible to establish the likely quantities of the silty sand. It is clear, however, that the engineering properties of the silty sand delineated in this area would not, on average, be superior to the properties of the sand deposit in the channel at Big Horn Point.

Respectfully Submitted, ENGIA LAD D. S. TEA R. M. HARDY & ASSOCIATES ROH S Per: vl R. S. Tenove, M.Eng., P. Per: (A J. F. Nixon, Ph.D., P.E

RST/JFN:vh

June 28, 1976. CS3161

REFERENCES

Assur, A. (1966) Ice forces on sloping structures. Proc. of Ice Pressure Conf., Laval Univ., Nov. 1966.

Blench, T. (1957) Regime behavior of canals and rivers. Publ. by Butterworth.

- Blench, T. (1969) Mobile Bed Fluviology. Univ. of Alberta Press.
- Christie, R. L. et al. (1972) The Canadian Arctic Islands and the Mackenzie Region. XXIV Int. Geot. Congress, Excursion A66 Guidebook.
- Drouin, M. (1966) Static ice force on extended structures. Proc. Ice Pressure Conf., Laval Univ. Nov. 1966.
- E.B.A. Engineering Consultants Ltd. (1975) Preliminary Geotechnical Evaluation, Beaufort Gas Project. Report submitted to Imperial Oil Ltd.
- Kerfoot, H. (1975) Mackenzie Delta A Summary Report of Surface Conditions. Unpublished report, GSC 179 p.
- Kivisild, H. (1966) Influence of ice forces on the strength and stability of piers, dolphins and offshore structures. Proc. of Ice Pressure Conf., Laval Univ., Nov. 1966.

Mackay, J. R. (1963) The Mackenzie Delta Area, N.W.T. Dept. of Mines and Techn. Surveys, Geogr. Branch, Memoir 8. 202 p.

- Mackay, J. R. (1975) Relict Ice Wedges, Pelly Island, N.W.T. (107 C/12). GSC Paper 75-1, Part A, pp. 469-470.
- Navfac DM-7 Design Manual (1971) U.S. Dept. of the Navy; Soil Mechanics, Foundations and Earth Structures.
- Neill, C. R. (1973) Guide to Bridge Hydraulics. Univ of Toronto Press.
- Rampton, V. N. (1972) Surficial Geology and Landforms, Mackenzie Delta. Open file map 96, GSC.
- Rampton, V. N., M. Bouchard (1975) Surficial Geology of Tuktoyaktuk, district of Mackenzie, Paper 74-53, GSC.
- Rampton, V. and Mackay, J. (1971) Throughout the Tuktoyaktuk Pennisula, Richards Island, and Nearby Areas, District of Mackenzie. GSC Paper 71-21, 16 p.
- Slaney, F. F. and Company Ltd. (1976) 1975 Hydrology Survey, Taglu, N.W.T. Report submitted to Imperial Oil Limited.
- Watson, G., Slusarchuk, W. and Rowley, R. (1973) Determination of some frozen and thawed properties of permafrost soils. Can. Geotech. J.10, p. 592.

- 68 -

APPENDIX A

PLANT SITE AREA BOREHOLE AND LABORATORY DATA

TABLE A-1 TEST HOLE CO-ORDINATES FOR PLANTSITE AREA (U.T.M. Zone 8)

Te Ho	st le	N (Me	tres) E
Н76	Al	7695890	501335
	A2	7696065	501250
н76	W1/W2	7695895	502260
	W3	7696020	502210

.

- 1 - 14 - 1

.

-

н 16 г.

5

.

le z

.

		-	TEST	HOL	E	LOG
CONSULTING	& ASSOCIATES LTD. ENGINEERING & TESTING	PROJECT	LU GA	S PL	ANT	TEST HOLE NO. <u>h76-al</u>
LOGGED BY SGN	DRAWN BY BT	CHECKED	RST		DATE	February, 1976
RIG Heli Drill	METHOD	START	January 12,	1976	FINISH	
PROJECT NO. cs 3161	ELEVATION			AIR TEMP	RATURE	
Wp-D W-O WL-& OWL- (199) HE day HI	DESCRIPTIC)N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % LEST LEST LEST	ATORY JIdwy	SAMPLE CONDITION CORE RUN AND	CORE CONDITION REMARKS
ML ML ML ML ML ML ML ML ML ML	grass cover under 6-8" <u>SILT</u> medium grey, unit trace of fine sand, content layered, brown to g very fine ice lamin little fine sand, i little fine sand little fine sand trace of fine sand ice laminae, cross- and horizontal laye no sand, finely lay stratified, trace of laminated eflt, tra- fine sand	snow form , high ice ,	+ Vx, + Vs + (60%) + + + + + + + + + + + + + + + + + + +	C1 C2 C3 C3 C5 C6 C6	902 100 2 100 2 902 100 2 100 2 100 2	
	Bottom of Hole at 25	.0 Feet.				PLATE

-

-

ŧ.

. . .

antinum - A

i Se a

1

.

	· · · · · · · · · · · · · · · · · · ·		TEST	HOL	E L	.0 G
CONSULTING E	& ASSOCIATES LTD.	PROJECT	LU GA	S PL	ANT	TEST HOLE NO. <u>h76-a2</u>
LOGGED BY SGM	DRAWN BY BT	CHECKE	D <i>rst</i>		DATE F	ebruary, 1976
RIG Heli Drill	METHOD 3" CRREL	START	January 1	2, 1976	FINISH J	anaury 13, 1976
PROJECT NO. cs 3161	ELEVATION			AIR TEMPE	RATURE	
Wp-⊡ W-O WL-A (ise) HId3 HOISTURE CONTENT 20 40 60	DESCRIPTION		ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % Sat TT Sat TT	DRATORY	SAMPLE CONDITION CORE RUN AND RECOVERY CORE CONDITION	REMARKS
ML	grass cover, l" ice <u>SILT</u> very ice rich, trac clay	ce of	$+ v_x, + v_s + c_0 v_s +$	c1	40% I	
	trace of fine sand, a ice laminae, non plas layered, medium brown	very fine stic, n	++ ++ ++ ++ ++ + + Plat	Size Size A-6	100 II	
			* + + + + + + + + + + + + + + + + + + +	<i>C</i> 3	100 II	
25	trace of fine sand, .	layered		C4	100 I	
	trace of fine sand, light brown	medium to	Nbr	<i>c</i> 5	100 II	-
					100	
25	Bottom of Hole at 25.	0 Feet.	•		X	
						PLATE

			т	EST	HOL	E	LOG
	HARDY	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT TAGL	U GA	S PL	ANT	TEST HOLE NO. <u>176-111</u>
LOGGED BY MR		DRAWN BY BT	CHECKED	RST		DATE	February, 1976
RIG Heli Drill		METHOD	START			FINISH	
PROJECT NO. C	s 3161	ELEVATION			AIR TEMPE	RATURE	-20° F
W _P -□ W-⊙ W _L -▲ MOISTURE CONTENT 20 40 60	DEPTH (feet) SOIL GROUP SYMBOL	DESCRIPTIC	Z ICF CRADHIC 1 00	VISUAL ICE %	ATORY JUN	SAMPLE CONDITION CORE RUN AND % RECOVERY	CORE CONDITION
		ICE SILT sandy, fine grain thin layering and cra	ned, brown, oss-bedding	ICE			
	-20	Bottom of Hole at 1 Five additional hol in immediate vicini <u>ice depth 2.8 Feet</u> .	7.0 Feet. es drilled ty- <u>maximum</u>				PLATE A-3

and the second second

LALININ AL

-

.

The second second

						<u> </u>									TI	ES	т	 ł	10	LE			L	0 G
E)-		R.	M.	HAF	IDN VG	EN	GINEER	ING	ATES	LTD.	PRC	JECT TAG	LI	J	G A	S	P		N	т		TEST HOLE NO. <u>h76-w2</u>
OGGI	ED	8Y		1	ЧR				DRAWN	BY	Y	٢		CHECKE	D		RST				DAT	E	Fel	pruary, 1976
₹IG	H	eli	Da	<i>i</i> 1.	1				METHOD					START							FINI	ѕн		
PROJ	ECT	N	0.		cs	3161		-		EL	EVAT	ION			.		·	AIR	TEM	PEF	TAF		,	
₩p- 40151 2		E _ 40	© COI	WL NTE	-& :nt	DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG		• [DESC	RIPTI	ON		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOI	RATC I DA	DRY TA	AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
							<u> </u>		MUSKE	<u>;</u>														
							ML		SILT occ occ thi Bo Tw dz de	sand asion ck ttom o add illed pth e	dy, fi hal th hal le of Ho dition 1 and encour	ne gra. in lens nses of he at i hal hol the ma ntered	ined, ses of f ice lo.5 F es wer ximum was 4.	brown, clay, to 1/8" eet. e ice 5 feet.		V5 103)							
																								PLATE

	-			TES	от но		E	LOG
	IG ENGI	ASSOCIATES LTD.	PROJECT					TEST HO
			TAG	LU	GAS P	LA	ANT	NO. <u>H76-W3</u>
OGGED BY	DR	RAWN BY BT	CHECKE	כ	RST		DATE	February, 1976
RIG <i>Héli Drill</i>	ME	ETHOD	START				FINISH	
PROJECT NO. CS 3161		ELEVATION			AIR TE	MPE	RATURE	
Wp-□ W-0 WL-A	SOIL GROUP SYMBO SOIL GRAPHIC LOG	DESCRIPTIO	N	ICE GRAPHIC LOG	LABORATORY	SAMPLE TOPE AND NUMBER	SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
┤┼┼┼┼┼┽	SM	<u>SILT</u> sandy, fine grain	ed, brown,			\square		
┾╋╋┿╋╋╋		TAACTOR					ļ	
┼┽┼┽┼┼┼┤								
5								
				ł				
		۰ ه						
		······································	·.					
<u>↓ </u>		Bottom of Hole at 8.4	Feet.					
		No massive ice encour	stered.					
┝╞╍╞╪╋╡╡ ╸┃								
┝┼┾┼┼┟┝┥								
┟╅┟┟╞╋╋╋ ┊					~			
┞╋╄┼┼╊┽╊╴╽								
┝╋╋╪╋╋		• •						
┝╋╋╪╋╋╧╋								
┝╼╊╼╇╼╇╼╇╼╇								
┝╋┽╃┽╄╶┨								
┝╋┿╋╫╀╬╇					· · · ·			
┝╉┽╋╇╄╶┨╴║		• •	· .					
┝╁┿╆┿┽┽┽								
┝╉┽╋╆╄╋┿╹╽								
┝╊┿╊╋╋╋┥╽			1					ļ
			[PLATE 1-5

• .

2

, 199

–

(mark)

	€	R.M.H		4 AS	SOCIATES LTD	SUN Labora	MMAR	Y ۲	C TES)F ST	N		- P.B - L.D - D.A - L.D		Taglu Plate Janua CS316	Gas Site Ty, 1	Plant 976
	SAMP	LE	DAT	A				•	CLA	SSII TES	FICA	TIO	N		OTHE	R TI	ESTS
	1111 1111	PEFTH ()	alamas SAMPLE	LASSIFICATION	SOIL	DESCRIPTION	e .	ATI	ERB IMI DILSVI	ERG XIONI		x tu (%)	RE	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	
1	¥76-A2	7-8	c 2	ML	SILT,trace sand,layere	of clay,trace o d,non plastic,b	of fine prown			Ē		81	7				
					-											•	
•																	
,																	
•						<u> </u>											
-						· · · · · · · · · · · · · · · · · · ·											
					<u> </u>												
-																	
							•							•	-	-	
-																	· · · · · · · · · · · · · · · · · · ·
-																	
-						· · ·	÷										
-																	· ·
_								•									PLATE A-

APPENDIX B

BARGE DOCK SITE BOREHOLE AND LABORATORY TEST DATA

TABLE B-1 TEST HOLE CO-ORDINATES FOR DOCKSITE AREA

....

(U.T.M. Zone 8)

Test Hole	R.M.I N (met	Hardy tres) E	C.E.S N (metre	5. es) E
		[
Dl	7,695,137	501,905	7,695,120	501,900
2	7,695,152	501,905	7,695,145	501,905
3	7,695,168	501,915	7,695,165	501,910
4	7,695,128	501,927	7,695,115	501,925
5	7,695,138	501 , 927	7,695,135	501,925
6	7,695,158	501 , 927	7,695,155	501,930
7	7,695,118	501,957	7,695,110	501,955
8	7,695,133	501,957	7,695,125	501,955
9	7,695,148	501,957	7,695,145	501,960
10	7,695,098	502,017	7,695,080	502,015
11	7,695,115	502,017	7,695,100	502,015
12	7,695,076	502,077	7,695,065	502,075
13	7,695,091	502,077	7,695,075	502,080
14	7,695,060	502,130	7,695,035	502,125
15	7,695,075	502,130	7,695,045	502,130
18	7,695,123	501,944		
19	7,695,132	501,944	7,695,115	501,945
20	7,695,138	501,944	7,695,135	501,940
21	7,695,146	501,944		
22	7,695,153	501,944	7,695,145	501,945

. * +

-

-

• -

.

i se se

–

	R	л наб	2022		ASSOCIATES ITO			T	ES	T	НС		E			OG	
	CON	ISULTI	YG I	EN	GINEERING & TESTING	PROJ	ect T A G	L	J	GA	S P	L.		1T		TES NO	Т НС . <u>#76-р</u>]
LOGGED E	IY SGA	,		1	DRAWN BY BT		HECKE	D		RST			ПА	TF	 Feb	ruaru.	1976
RIG He	li Drill			T	METHOD Split Spoon Shelby Tube		START	Ja	nuar	y 8,19	76		FIN	ISH	Jan	uary 9	,1976
PROJECT	NO. C	S 3161			ELEVATION						AIR TE	MPE	RAT	TURE			<u> </u>
Wp- I W • Dynam. Penets: (Blow: 5 MOISTURE 20	- O WL- ic Cone ration s/Foot) 10 15 CONTEN 40 60	DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG	DESCRIPTION	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICF %	LABOR	ATORY DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND	CORE CONDITION	RE	MARK
				-	ICE				ICE								
				್ಷ ಕ್ರಾಮಿಸಿದ ಮು	5.0			Same La Car									
	┠┼╊╋	5			WATER		i		115								
	╞╴┠╴┨╶┼	+					•		Ur								
		\downarrow															
┣╌╁╌╂╌╂╌	┝╶┼╌┟╌╎	+															
┠┼╁┼╴	┝┼┼┼	- 10															
					STIT sandu son slast												
		+	~~		grained, dark grey, wet,	, laye	red										
		+															
		- 15								Gr. Siz	e	51	\bigtriangledown	100			
		Ţļ			· · ·				·	Plate 1	3-38	-	Д	*			
		╡╎														•	
	┭┼┼┼	┽┟	SM :		SAND fine grained wilt.										_		
	11	20	•		thin layers of organi	; ic ma	tter,					SPT	Щ	*		N=3 bl	ows/foo
		\downarrow			HELLUM ILDIOUS					11							
	┥┦┥	+				•											
	╺┼┼┽┥	+									ŀ	-					
		25	SP	1	SAND silty, fine-grained	,medi	um				ľ	53	Xľ	200 2			
		Ţ			grey								Ī	T			
╾╁╌╂╎┠╌┨	╶┼┼┼╌	+			•												
╺╶┼╴┨╎╏╶┨		↓ ↓					}									•	

		<u></u>	Г Т	FEST	HOL	E L	.0 G
	IARDY	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT	U GAS	S PL/	ANT	TEST HOLE NO. <u>H76-D1 (Cont</u>
OGGED BY SGM		DRAWN BY BT	CHECKED	RST		DATE ^{Fe}	bruary,1976
RIG Heli Drill		Split Spoon METHOD Shelby Tube	START Ja	nuary 8,1976	5	FINISH J	anuary 9,1976
PROJECT NO. CS	3161	ELEVATION		I	AIR TEMPE		
w _P -⊡ w-⊙ w _L -&	(feet) P SYMBOU					NUMBER CONDITION N AND OVERY	
MOISTURE CONTENT	DEPTH SOIL GROU		DN	ICE GRA NRC ICE VISUAL	DATA DATA	SAMPLE CORE RU CORF CC	S REMARKS
	SP	SAND silty,fine-grain	ned,medium	UF	54		-
		32.2	dium brown				
		fine organic laminat	tions traces	24 C		100	N=7 blows/foot
	- 35	of wood and fine sar	nđ		(51	2	
	SP	SAND fine-grained,tra	ices of or-				
	- 40	layers of fine to sizes	medium sand		se	100	N=16blows/foot
	-						
		medium sand sizes	•		-		
	- 45				(ŝi		N=21 blows/foot
	- 50	clean,medium grey		Nbn	5. (5.		N=64 blows/foot
		53.5	f gravel and				
	_ 55	sand, brown to grey layering	thick	Vr 102)			-
		58.0			C	9 100 ₁₁	
		Bottom of Hole at 5	8.0 Feet.	•			
					l		PLAIE

				*****	TES	ST	HO		Ξ	L	.0 G
CONSU	LTING	& ASSC	P	ROJECT	LU	G A	S PI		NT	-	TEST HOLE NO. <i>,:<mark>#76-D2</mark>_</i>
LOGGED BY SGM		DRAWN	BY BT	CHECKE	D RS			Т		Fab	nuary 1076
RIG Heli Drill		METHOD	Split Spoon	START	Janua	ry 6,19	76.	+	FINIS	u Jan	uary,1976
PROJECT NO. CS	3161	-	ELEVATION				AIR TEM	PE	RATU	RE	
W _P -⊡ W-⊙ W _L -∆ • -Dynamic Cone Penetration (Blows/Foot) I& 20 30 MOISTURE CONTENT 29 ^(*) 40 60	DEPTH (feet) Soil GROUP SYMBOL	SOIL GRAPHIC LOG	DESCRIPTION		ICE GRAPHIC LOG NRC ICE TYPE	LABO	DATA		SAMPLE CONDITION	CORE CONDITION	REMARKS
		ICE	· · ·			5					
	5	5.0 WATER 7.6			UF	-					
	10	non too	plastic,dårk-grey, shaking,, wet	e di sanî, sênsitive				51 52		20	
	.15		ittle coarse sand,de parse gravel sizes tratified,,fine laye anic.medium grey	ark grey, ers of or-		Y =142 ¥ =11 Y =103 ¥ =80 × =106	.2pcf 3.1pcf .0pcf .2pcf	U1 U2 U3			Gr. Size Plate B-39
	SM . 20	SAND non sit. dil	trace of silt,fine plastic,dark grey, ive to <u>shaking</u> (ra atancy) et	-grained, verų sen- pid		Ÿ =78	.8pcf	U5 U6	01	5 1	
	.25	n	imerous gravež size:	s to 1/4"		γ =132 γ ^w =104	.2pcf U .6pcf	17	80	;)%	
0	6")	f: fr	inely laminated with ilty layers, very s ozen	h d ark ilty	Nbr	·	Ċ	2	80) 1	Y _W = 110.6 pcf Y _d = 80.7 pcf
	30	<u> i</u> ,	solated cobble				Γ	T	T		PLATE

-

n Naratan Adiman

-

and the second

. 9

.

and the second

		TE	ST H	OL	E	L	OG
CONSULTING E	A ASSOCIATES LTD.	ROJECT TAGLU	GAS	PL	ANT		TEST HOLE NO. <u>H76-D2 (Co</u> nt
OGGED BY SGM	DRAWN BY BT	CHECKED F	RST		DATE	Fe	bruary,1976
NG Heli Drill	Split Spoon METHOD Shelby Tube	START Jan	ary 6,1976		FINISH	Ja	nuary 7,1976
ROJECT NO. CS3161	ELEVATION		AIR	ТЕМРЕ	RATURE		
NP-D M-O M ⁻ (199) HT430 H	DESCRIPTION	ICE GRAPHIC LOG	HAN STATEST DAT	SAMPLE TYPE	SAMPLE CONDITION CORE RUN AND	CORE CONDITION	REMARKS
SM M ML	SAND very silty; fine- non plastic,dark grey,	-grained,	Nbn -				
	slightly clayey,fine-g	grained,		c	2 50	IV IV	
40	Bottom of Hole at 39.	0 Feet.					
				•			
		•					

															T	ES	Т		НС)L	E		L	OG		
)—		R.N	sul		IG	EN	GINI	EERI	NG &	S LTD.	PRO	JECT TAG	Ll	J	G A	S	P	L	A N	T		TE N(ST D. <i>h</i> 76-1	HC
LOGGEC	B	Y		5G4					DRAW	VN B	Y 81	·	L	CHECK	D	** -	RST				DA	TE	Fe.	bruary	,1976	<u> </u>
RIG	Hel	i D	rij	11					MET	HOD	3" Cz	eel		START	Ja	nuar	u 11,	197	6		FIN	ISH	Jan	uary l	2,1976	
PROJE	ст	NC).	cs	i 31	161					ELEV							AI	R TE	MPE	RAT	URE				
W _P -⊡ MOISTU 20	IW	- c		TEN	т	DEPTH (feet)	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG			DES	CRIPTIC	DN	<u></u>	ICE GRAPHIC LOG	NRC ACE TYPE VISUAL ICE %	LABO	DRA1	TORY	SAMPLE TYPE AND NIMBED	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	R	EMAR	K
	Τ			Π				ŝ	GF	RAVEL	(FILL)					F				1	1				·	_
							ML		51	<u>LT</u>	trace o	of organic	c mate	erial		Nbn										
			0		+	5	CL		<u></u>	AY	silty,	low plast:	ic,gr	ey			Υ = Υ ^w - d	95.9 62.2	9pcf 2pcf	<i>c</i> 1	X	581	IV			
					+		ML		<u>51</u>	<u>ILT</u> clay	trace d ,low to	of fine sa o non pla:	and,ti stic,	race of		Vr 50 %				C2		801	IV			
						10					finelu	stratifi	ed.th	in		Vr										
┝╌┼╌┝					+		Jr			lami	inae of	sandy si.	lt		NAN S	5-1	2			сз		50	III			
			_			15	ML		<u>s</u>	ILT	trace d	of sand, no	on pla	astic	STERNES I	VT 20%									•	
											• · ·									C4 .	X	20:	IV			
					+		CL		<u><u> </u></u>	LAY	silty,	low plast:	ic	<u> </u>	<u> </u>	Nbr										
	 -				╇	20	SP		<u>5</u> /	<u>plas</u>	silty, stic,da	fine-grain tk grey	ned,n	on			Y₩=11 Y _d = 8	6.9 8.4	p cf pcf	C5 C6		60 % 100	II II			
		1			+					- 1.	aminata	t with an	79ni-	matout			Y₩=11 X == 7	3.1	pcf							
		ۻ			$\frac{1}{1}$	25			Bc	cz ottor	rossbedd m of Hol	led,strat	ified	t.			'α-'' Yw=10 Y _d = 7	6.1 <u>4.4</u>	pcf pcf	C7.	Ζ	80%	I			
-+	┼┨	\rightarrow	╉	+	+																					
	<u> </u>				1				I										_			н. Т		PLAT	<u> </u>	5

and the second sec

100 Mar. 100 Mar.

	<u> </u>		•	TEST	ног	-E	L	OG
	ARDY	& ASSOCIATES LTD.		LUG	GAS PL	ANT		TEST HOLE NO.#76-D4
LOGGED BY SGM		DRAWN BY BT	CHECKED	RST		DATE	Febr	ruary,1976
RIG Heli Drill		METHOD Shelby Tube	START J	anuary 7	,1976	FINISH	Jan	nuary 7,1976
PROJECT NO. cs 3	161	ELEVATION			AIR TEM	PERATUR	Ε	
Wp-□ W - O WL-△ • Dynamic Cone Penetration (Blows/Foot) 10 20 30 MOISTURE CONTENT 20 40 60	DEPTH (feet) SOIL GROUP SYMBOL	DESCRIPTION	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ABORATORY	AND NUMBER SAMPLE CONDITION CORE RUN AND	% RECOVERY CORE CONDITION	REMARKS
	F	<u>ICE</u> 5.0						
		<u>WATER</u> 9.0		UF				
	10 ML	SILT sandy,very sensi shaking	tive to					
	-15	very sandy,non plast grey,stratified	cic, dark	Y	=114.4pcf ^W =81.3pcf d	UI 01 U2 20 10	•	Drained Triaxial c'=0 \$=35° Plate B-47
	- 20					U3 01		
	- 25					U4 03	6	
	-	very sandy,fine-gr plastic dark grey,se shaking, moist	rained,non ensitive to		γ =116.0pcf γ =93.0pcf d	U6 10	50	Drained Triaxial c'=0, ¢'=38° Plate B-48
								PLATE

					TE	S	т но		-) G
	LTING	ENG	ASSOCIATES LTD.	PROJECT TAG	LU		GAS P	LA	N	Г		TEST HOL
LOGGED BY SGM				CHECKE		RST			DATE	E Fe	bru	uary.1976
RIG Heli Drill			ETHOD Shelby Tube	START	Ja	nuaı	:47,1976		FINIS	H	Ja	nuary 7,1976
PROJECT NO. cs 3	161		ELEVATION				AIR TE	MPE	RATU	RE		
Wp-C W-O WL-A • Dynamic Cone Penetration (Blows/Foot) 10 20 30 MOISTURE CONTENT 20 40 60	DEPTH (feet) Soil Group SYMBOL	SOIL GRAPHIC LOG	DESCRIPTIO	N	ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABORATORY TEST DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE HUN AND % RECOVERY	CORE CONDITION	REMARKS
	. MI		<u>SILT</u> sandy, non plas grey,stratified,very 32 to shaking, wet	tic,dark sensitive		-	Y =112.5pcf Y =86.7pcf d	U 8		100 ¥		
	CL		CLAY silty,low to medi medium grey,stratifie of organics,moist	um plastic, d,traces			Υ =114.7pcf Υ =86.4pcf d	<i>U</i> 9		100 ¥		
	- - - - - - - -		fine-grained sand,1 plastic,dark grey - 42.0	ense, non			Υ =118.0pcf Υ ^W =94.4pcf	UIC		100		
	ML SM		<u>SILT</u> trace of clau, low dark grey, wet <u>SAND</u> trace of silt, non fine-grained dark gree	plastic,			γ =122.1pcf γ _d =98.8pcf γ =122.3pcf γ _d =101.3pcf	v11		100 * 100		
	- 45 - -		of goarse-grained san	d,saturated								۱.
	- 50											
	- 55 SE		fine to coarse grain 56.0 possible slough CLAY silty,trace of s grey-brown,gravel si	and, soft, zes to 1",	+ + +	Vx (2%)		c1	M	100	IV	
┝┼┼┼┼┼┤	-	Z	wet -occasional ice cryst particles.	als and coa.	+			-				
			Bottom of Hole at 5	8.0 Feet.								PLATE B-7

r,

.-

		TEST HOLE	E LOG
CONSULTING E	A ASSOCIATES LTD. PROJE	AGLU GAS PLA	TEST HOLE NO. ^{H76_D5}
_OGGED BY SGM	DRAWN BY BT CH	HECKED RST	DATE February,1976
RIG Heli Drill	METHOD ST	TART January 9,1976	FINISH ·
PROJECT NO. cs 3161	ELEVATION	AIR TEMPE	RATURE
Wp-CW-OWL-A • Dynamic Cone Penetration (Blows/Foot) 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE TYPE VISUAL ICE TYPE SAMPLE TYPE SAMPLE TYPE	SAMPLE CONDITION CORE RECOVERY CORE CONDITION CORE CONDITION SY SS
	ICE WATER SAND silty,fine-grained,fin laminated	ICE UF VF	
20 20 20 20 25 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uniform, fine-grained	rey Gr. Size 52	602 PLATE

•

RIM-HARDY & A SASOCIATES LTD. PROJECT TAG LU GAS PLANT TAG LU GAS PLANT LOGGED BY RIG Ball Drill METHOD START JANARY / JANARY			TE	сят но	E L	.0 G
LOGGED BY SQU ⁻ DRAWN BY <u>pr</u> CHECKED <u>PC</u> OATE <u>Pervary.1976</u> RIG <u>Reli</u> Drill METHOD <u>START</u> January 9,1976 <u>PRISH</u> PROJECT NO. <i>cs</i> 3161 <u>ELEVATION</u> <u>ART TEMPERATURE</u> Wp D W - O WL-A <u>SUBJECTON</u> <u>Cs</u> 3161 <u>ELEVATION</u> <u>ART TEMPERATURE</u> Wp D W - O WL-A <u>SUBJECTON</u> <u>Cs</u> 3161 <u>CLEVATION</u> <u>CLEVATION</u> <u>REMARKS</u> WGSTWE CONTENT 30 40 40 10 40 40 10 40 40 10 40 40 10 40 40 10	CONSULTING	ASSOCIATES LTD.	PROJECT	GAS PL	ANT	TEST HOLE NO. <u>#76-D5</u> (Cont.)
RIG METHOD START January 9,1376 FINISH PROJECT NO. cs JIGI ELEVATION AR TEMPERATURE Wp-D W - O WL-a US ELEVATION AR TEMPERATURE PROJECT NO. cs JIGI ELEVATION AR TEMPERATURE Paratication (Jalogattor) US US US US Jo 40 66 US US US US US US Jo 40 66 US US <t< td=""><td>OGGED BY SGN</td><td>DRAWN BY BT</td><td>CHECKED R.</td><td>ST</td><td>DATE Fe</td><td>bruary,1976</td></t<>	OGGED BY SGN	DRAWN BY BT	CHECKED R.	ST	DATE Fe	bruary,1976
PROJECT NO. CE JEC ELEVATION AIR TEMPERATURE Wo-U W-O WL-A Panetracion (22,090/TOD) 20 40 40 10	RIG Heli Drill	METHOD	START Jan	uary 9,1976	FINISH	
Wp-O W-O W_L-Q Bottom of Hole at S1.0 Feet.	PROJECT NO. cs 3161	ELEVATION	· · · · · · · · · · · · · · · · · · ·	AIR TEM	PERATURE	
MI SILT sandy, non plastic,grey UP SI I I I SILT sandy, non plastic,grey UP I I I I SILT sandy, non plastic,grey UP I I I I SILT sandy, non plastic,grey UP I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td>DESCRIPTIO</td> <td>Z ICE GRAPHIC LOG</td> <td>LABORATORY</td> <td>AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION</td> <td>REMARKS</td>		DESCRIPTIO	Z ICE GRAPHIC LOG	LABORATORY	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
		SILT sandy, non pl silt layer interbedd of organics,finely 1 medium grey frozen Bottom of Hole at 51.	astic,grey Med,trace aminated,	Thaw Strain Figure 49 Yk=118.3 pcf Yd= 93.2 pcf	2 3 3 54 100 2 100 2 100 2 100 2 100 2 100 2 100 2	N=45 blows/foot Thaw Strain = 2.4 % N _V = 0.038 ft ² con PLATE

•

Notestantin a

-

.

11

-

			TES'	T	HOL	-E		L	OG
CONSULTING E	& ASSOCIATES LTD.	PROJECT	. U	G A S	6 P.L	AN	IT		TEST HOLE NO. <u>#76-26</u>
OGGED BY SGM	DRAWN BY BT	CHECKED	1	RST		DA	TE	Fe	bruary, 1976
RIG Heli Drill	Splitspoon, 3" METHOD Shelby Tube, 3"C	RREL START	Tanuary	8, 19	76	FIN	ISH		
PROJECT NO. CS 3161	ELEVATION			1	AIR TEMP	ERAT	TURE		
Wp-⊡ W-O WL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOR	ATORY DATA	AND NUMBER SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
	ICE		ICE						
ML	<u>SILT</u> sandy, fine-grain	neđ	+ ^V x +						
5 SP	<pre>SAND fine grained, si SAND fine grained, si ish grey, loose, wet</pre>	lty, brown-	Dr						
					2	51	20%		
		e g							
	fine grained, mino laminations, medium	r silt m grey			-	52 X	60%		
25 1	<u>SILT</u> grey, non plasti sand	c, trace of		$q_{u} = 92$ $\gamma_{W} = 114$ $\gamma_{d} = 92$ $Gr. Si$ Plate	23 psf 4.3 pcf 2.4 pcf [ze B-4]	 	100		Hole sloughing
	fine grained, cros	s-bedded,	N.bn				100	T	
20	laminae of silt an matter crossbedded	d organic		γ _W =113 Y _d = 80 Y _W =100 Y _d = 65	.6 pcf .5 pcf .9 pcf .3 pcf	2	100 X	I	
				-					Refu sa l
25	Bottom of Hole at 23.0) Feet.							
									PLATE

4

i k

7

	·			TECT			•	1.0.0
R.M.H	ARDY	& ASSOCIATES LTD		1631			•	
CONSU	LTING E	NGINEERING & TESTING	TAG	LU G	GAS P	LA	NT	TEST HOLE NO. <u>#76-D7</u>
LOGGED BY MR		DRAWN BY BT	СНЕСКЕ	D R	ST	D	ATE	February, 1976
RIG Heli Drill		METHOD	START	January	8, 1976	F	INISH	
PROJECT NO. CS	3161	ELEVATION			AIR TEN	APER/	ATURE	
Wp-⊡ W-⊙ WL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DEPTH (feet) SOIL GROUP SYMBO	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ABORATORY EST DATA	SAMPLE TYPE AND NUMBER	AMPLE CONDITION CORE RUN AND % RECOVERY	NOTITION REMARKS
							0	
	5 MIL 20	WATER - bottom of channel <u>SILT</u> fine sandy, brown plastic, occasional 1 3/8" of organics, wet	, non ayers to	UP				
	15			Gr Pl	. Size ate B-42	51 52	67 x	
	5 5	SAND silty, non plasti SILT little sand, brown plastic, soft	с а, поп	Ywr Ya	110.6 pcf 76.7 pcf	91	100 ¥	
	0			•	5: (SI	TX	100 X	$N = 5 \ blows/foot$ $PLATE = B-11$

and the second second

÷

l L

ĩ

			TES	T	HOL	E L	OG
CONSULTING E	ASSOCIATES LTD.	PROJECT	LU	GA	S PL	ANT	TEST HOLE NO. <u>H76-77</u> (cont.)
LOGGED BY MR	DRAWN BY BT	CHECKED)	RST		DATE Fe	bruary, 1976
RIG Heli Drill	METHOD	START	Januar	u , 197	76	FINISH	
PROJECT NO. CS 3161	ELEVATION				AIR TEMPE	RATURE	
W _P -⊡ W-O W _L -∆ • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60 S	DESCRIPTIO	DN	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOR		SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
ML ML ML 35 1 40 40 40 52 45	SILT fine sandy, brow plastic, medium dense sand lenses interb grained SAND fine grained, we brown, wet	m, non e, wet wedded, fine. ery silty,	UF	Gr. S. Plate	54 (SP: 55 8-43 (SP: -	100 2 100 2 100 2 100 2	N = 12 blows/foot
50 50 55 55 55	SILT fine sandy, brow laminated, dilatant, layer containing org stratified layers sand, soft, wet	<pre>m, faintly one 3/8" yanics, wet of silt, of silt, permafrost</pre>	•	•	57	100 *	

÷

,

	*						TE	S	Т	НС)L	E		L	OG
	R.M.	ULTIN	NG E	& ASSOCIATES LTD. NGINEERING & TESTING	PRO	JECT TAG	LU]	GΑ	S F	Ľ	AN	IT		TEST H NO. <u>H76-</u> (con
LOGGED BY	MR		-	DRAWN BY BT		CHECKE	D	ł	RST			DA	ΓE	Feb	ruaru, 1976
RIG , He	li Dríll			METHOD		START	Ja	nuar	u 8, .	1976		FIN	ISH		_
PROJECT I	0. <i>cs</i>	3161	·	ELEVATION						AIR TE	MPE	RAT	URE		
W _P -⊡ W - MOISTURE 20 40	© ₩ _L -∆ CONTENT	DEPTH (feet)	SOIL GROUP SYMBOL	DESCRIPTIC	DN		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	RATORY DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARI
			ML	<u>SILT</u> fine sandy, brow (cont.)	'n, we	t,		/s, /x			\uparrow				
	<u></u>	+ .:	CT	<u>CLAY</u> silty, trace of	sand,	dark		< 5%	Yw=103 Y = 69	.1 pcf	-	\mathbf{k}			
		ŧ		grey, medium plastic	, fro	zen			$Y_w = 110$ $Y_v = 81$.4 pcf	C1	X	80%	11	
		65		sand, brown, occas ganics to 1/8", oc crustals to 1/8"	ional casio	or- nal ice			$Y_d = 77$.2 pcf					
				- possible gravel or	cobb	les									
		-75		Bottom of Hole at 71.0	, Feet						•••				•
┠┼╊┽┼	+	┡													
┢╸┼╺╀╺┼╶┼		+													
															•
┣╍┼╶╂╶╄╌╂		+					·								
							ŀ								
┝┼╅┼┼														ŀ	

.

	<u></u>	1	TEST HO	LE L	_0 G
CONSULTING E	& ASSOCIATES LTD.	PROJECT	U GAS P	LANT	TEST HOLE NO. <u>176-178</u>
LOGGED BY MR	DRAWN BY BT	CHECKED	RST	DATE Fe	bruary, 1976
RIG Heli Drill	METHOD	START	January 7, 1976	FINISH	
PROJECT NO. cs 3161	ELEVATION		AIR TEN	IPERATURE	-25° C
Wp-DW-OWL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTIC	ON	UNC 100 LABORATORY	SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
	ICE WATER		ICE		
20 ML 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>> bottom of channel SILT fine sandy, brow plastic, occasional highly dilatant, we</pre>	l Mn, non fine organics t	Υ _W =115.6 pcf Y _d = 89.3 pcf.	S1 33%	

. 1

		TEST HOLE LOG
CONSULTING E	& ASSOCIATES LTD. NGINEERING & TESTING	TAGLU GAS PLANT NO. H76-D8 (cont.)
LOGGED BY MR	DRAWN BY BT	CHECKED RST DATE February, 1976
RIG Heli Drill	METHOD	START January 7, 1976 FINISH
PROJECT NO. cs 3161	ELEVATION	AIR TEMPERATURE -25° C
Wp-DW-OWL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % AND NUMBER SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION
	<u>ŞILT</u> fine sandy, brown, no plastic, quick,wet (cont.	n) S2 BOX N = 6 blows/foot
35 5M	2" sand lense, medium of SAND silty, fine grained coal and shell fragments, ice crystals, silty layer	grained U^2 $53x$ $V = 33 blows/foo$ $N = 33 blows/foo$ S^2 S^3
40	fine grained, silty, br frozen, occasional smal fragments	own, 1 shell \vdots $Y_{W}=119.9 \text{ pcf}$ H = 1.63 M = 1.64 $M_{V} = 0.016 \text{ ft}^{2} f_{OB}$
45		Υ _d = 94.9 pcf
55	Bottom of Hole at 52.0 Feet	

.

.

è, i

.

.

.

Antalana a s

-

R.M.HARDY & CONSULTING EN CONSULTING EN LOGGED BY MR RIG Heli Drill PROJECT NO. CS 3161 Wp-⊡ W - O WL-∆ • DYNAMIC CONE	ASSOCIATES LTD. IGINEERING & TESTING DRAWN BY BT METHOD ELEVATION	PROJECT TAG CHECKET	LUGAS	PLANT	TEST HOLE NO. <u>H76-D9</u> Tuary, 1976
LOGGED BY MR RIG Heli Drill PROJECT NO. cs 3161 Wp-⊡ W - ⊙ WL-△ • DYNAMIC CONE	DRAWN BY BT METHOD ELEVATION	CHECKEI) RST January 10, 1976	DATE Feb	ruary, 1976
RIG Heli Drill PROJECT NO. cs 3161 $W_{P}^{-} \square W - \bigcirc W_{L}^{-} \bigtriangleup$	METHOD ELEVATION	START	January 10, 1976		
$\begin{array}{c cccc} PROJECT & NO. & cs & 3161 \\ \hline W_{P}^{-} & W & - & & & \\ \bullet & DYNAMIC & CONE & & & & \\ \hline \end{array}$	ELEVATION			FINISH	
• DYNAMIC CONE			AIR	TEMPERATURE	-30° C
PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60 S 50 S 50		ON	ICE GRAPHIC LOG CE GRAPHIC LOG VIRC ICE TYPE VIRC ICE TYPE VIRC ICE TYPE ICE GRAPHIC LOG	SAMPLE TYPE SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	<u>ICE</u>		ICE		
Image: Constraint of the second se	SILT fine sandy, brown, soft to firm, ice 1/4" fine sandy, brown, moderate dilatanc slightly sandier fine sand, brown, moist to wet Hole drilled to 20.0 Hole completed to 23. means of Dynamic Con	<pre>m, frozen crystals to , soft, y, wet non plastic, Feet. 0 Feet by e Penetration</pre>	+ + Vx + + 10x + + + + + + + + + + + + + + + + + + +	U1 40% S1 57% S2 57% S3 100 %	N = 10 blows/foo
		· .	•		

.

.

•

					TE	S	Т	нс		=		L	0 G	
	NG E	& ASSOCIATES L	TING PRO		LU		G A	S P	LA	A N	т		TEST NO.	HOL <u>H76-D10</u>
LOGGED BY MR		DRAWN BY BT		CHECKED	2		RST			DAT	E	Fel	bruary, i	1976
RIG Heli Drill		METHOD		START	Ja	nua.	ry 9,	1976		FINI	sн	Jai	nuary 9,	1976
PROJECT NO. cs 3161		ELEVATIO	N					AIR TE	MPE	RAT	URE		-30° F	
Wp-⊡ W-⊙ WL-△ • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG	IPTION		ICE GRAPHIC LOG	VISUAL ICE %	LABOF	RATORY DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REM	IARKS
5		ICE WATER			Barrie & Spin and	ICE JF								
20	ML	bottom of ch	annel n									-		
25		brown, non p thin laminat wet sandy layers plastic	lastic, nu ions of or , brown, ne	merous ganics, on	•				51	Х	67%			
									v1		2.00		PLATE	B-17

.

.

.

	<u> </u>	<u>г</u>	EST	HOL	E L	.O G
CONSULTING E	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT	U GA	S PL	ANT	TEST HOLE NO. <u>H76-D10</u> (cont.)
OGGED BY MR	DRAWN BY BT	CHECKED	RST		DATE Fel	bruary, 1976
RIG Heli Drill	METHOD	START_	January 9,	1976	FINISH Jan	nuaru 9, 1976
PROJECT NO. cs 3161	ELEVATION			AIR TEMPE	RATURE	-30° F
WP-DW-OWL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60 S	DESCRIPTIC	ON	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % LSUAL ICE %	RATORY JAW	SAMPLE CONDITION CORE RUN AND RECOVERY CORE CONDITION	REMARKS
HL NL	<u>SILT</u> sandy, brown, non numerous thin lam. organics, wet	plastic, · inations of	$UF \begin{vmatrix} Y_W = \theta \\ Y_d = 4 \end{vmatrix}$	7.6 pcf 01 9.5 pcf		
35 SP	SAND fine grained, si non plastic, modera wet	lty, brown, te dilatancy,		U2	100	
40	fine grained, silt non plastic, mois moderate dilatancy	ty, brown, t to wet,		57 (59	2 7 7 7	 N = 43 blows/ft
	lenses and distor to 1/2" of silt, brown	ted layers fine sandy,		<i>c</i> .		-
55 CL	<u>CLAY</u> silty, little s plastic, soft to	and, low firm, occas-				_
	ional gravel size stiff, frequent of and coal particle	s coarse sand es (till-like)	•	c2		PLATE

. 1

		TES	ST HOL	E L	.0 G
CONSULTING	ASSOCIATES LTD.	PROJECT TAGLU	GAS PL	ANT	TEST HOLE NO. <u>H76-D10</u> (cont.)
LOGGED BY MR	DRAWN BY BT	CHECKED	RST	DATE F	ebruary, 1976
RIG Heli Drill	METHOD	START Jan	uary 9, 1976	FINISH J	anuary 9, 1976
PROJECT NO. cs 3161	ELEVATION			RATURE	-30° ř
WP-□W-OWL-A (199) HI MOISTURE CONTENT 20 40 60	DESCRIPTIO	Z ICE GRAPHIC LOG NRC ICE TYPE	HABORATORY	SAMPLE CONDITION CORE RUN AND RECOVERY CORE CONDITION	REMARKS
	CLAY (till-like) silt sand, brownish-grey, low to medium plasti	y, little stiff, c s of gravel	F		
	to 1" diameter		<i>C</i> 3	200 IV 3 II	-
70					
75	- estimated interface		-		
SP	SAND fine grained, sil grey to medium brown layering thin layer of claye	ty, damp, $+$ (10%) distorted $+$ (10%) by silt and $+$	() C4	80% II	
80	fine sand, trace of	fine gravel + + + + + + + + + + + + + + + + + + +			
		+ + + + + + + +			
	thin clay lense int	erbedded + + + + + + + + + + + + + + + + +	C5	601 111	-
	Bottom of Hole at 85.5	Føet.			
					PLATE

.

.

_

,

-

				TES	T	HOL	E		LO	G
CONSU	HARDY	ASSOCIATES LTD.	PROJECT T A G	LU	GAS	S PL	. A N	IT		TEST HOLE NO. <u>#76-011</u>
LOGGED BY SGM		DRAWN BY BT	CHECKE) ,	RST		DA	TE	Feb	oruary, 1976
RIG Heli Drill		Splitspoon, METHOD 3" Shelby Tube	START	Janua	ary 7,	1976	FIN	ISH		
PROJECT NO. cs	3161	ELEVATION				AIR TEM	PERAT	URE		
W _P -⊡ W - O W _L -∆ • DYNAMIC CONE PENETRATION blows/ft. 10 20 30 MOISTURE CONTENT 20 40 60	DEPTH (feet) SOIL GROUP SYMBOL	DESCRIPTIO	ON	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOR	ATORY DATA	AND NUMBER SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
	- 5	ICE MATER		UF						
	- 10 - ML - 15	<u>SILT</u> some fine sand, grey, very soft sandy, laminated, shaking	brownish sensitive to		Gr. S Plate	Size B-44	51 52	5% 5%		
	- 0L - 20 - ML - SP	SILT very sandy, fin sand sizes, numero lenses to 1/8", sa SILT fine sand size SILT fine sand size SAND fine grained, to	e-grained us organic turated s trace to litti		Υ ω =10 Υ _d = 7	8.2 pcf 4.6 pcf	53	50% 80%	,	
	-25 for 10 ML	Silt	ce of organic hely laminate	Nbr	1		\$5	502		- - -
	30			E	<u> </u>					PLATE

-

.

Г

1

•

		TES	ST	но	LE	•	L	.0 G
R.M.HARDY & ASSOCIATES LTD	PROJECT							TEST HOL
	TAC	GLU	GAS	Ρ	LA	NT		NO. <u>H76-D11</u> (cont.)
GGED BY SGM DRAWN BY BT	СНЕСК	ED	RST		D	ATE	Fe	bruary, 1976
G Heli Drill METHOD 3" Shelby Tu	be START	Janua	ary 7, 19	76	F	INISH		
OJECT NO. CS 3161 ELEVATION			A	IR TEN	IPER	ATUR	E	
P-□ W-0 WL-▲ (1) NSTURE CONTENT 20 40 60 P-□ W-0 WL-▲ (1) 100 100 100 100 100 100 100 1	TION	ICE GRAPHIC LOG NRC ICE TYPE	% JULABORA TEST	TORY	SAMPLE TYPE AND NUMBER	CORE RUN AND	CORE CONDITION	REMARKS
ML SILT sandy, fine Crossbedded, poorl	y laminated, y graded (con)	$ \begin{array}{l} & \text{bn} \\ \gamma_w = 108 \\ \gamma_a = 78 \\ \end{array} $	l pcf 8 pcf				
ο μαυers	edding, sand		$\gamma_w = 111.$ $\gamma_d = 81.$	8 p ef 4 pcf	C1	10 %	° I	
occasional thin occasional thin occasional thin Bottom of Hole at 4.	organic lens				C2	50		
		•						
								PLATE

ł

1

-

. U

.

. . .

.

-

.

- . . .

-

		-	TEST	HOL	E L	.0 G
CONSULTING E	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT	LU GA	S PL/	ANT	TEST HOLE NO. <u>H76-D12</u>
LOGGED BY SGM	DRAWN BY BT	CHECKED	RST		DATE F	ebruary, 1976
RIG Heli Drill	Splitspoon, 3"Sh METHODTube, 3" ID CRRE	elbu L START	January 10,	1976	FINISH J	anuary 10, 1976
PROJECT NO. CS 3161	ELEVATION			AIR TEMPE	RATURE	
$ \begin{array}{c c} W_{P}^{-} & W - O & W_{L}^{-} \Delta \\ \hline \\ 0 \\ DYNAMIC CONE \\ PENETRATION \\ blows/ft. \\ 20 & 40 & 60 \\ \hline \\ MOISTURE CONTENT \\ 20 & 40 & 60 \\ \hline \\ 20 & 40 & 60 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	DESCRIPTIC	ON	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % LT 2008		SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
5 ML 10 10 10 10 10 10 10 10 10 10 10 10 10	ICE WATER SILT some fine sand, SILT some fine sand, ORCANIC SILT spongey, roots SILT sandy, non to lo stratified	wood, leaves,	UP	<i>S1</i> <i></i> <i>52</i>	802 802 802	
30				54	80%	PLATE

and the second

			TEST	HOL	.E	LOG
	A ASSOCIATES LTD.	PROJECT				TEET HO
		TAG	LU GA	AS PL	ΑΝΤ	NO. <u>H76-D1</u> (cont.
OGGED BY SGM	DRAWN BY BT	CHECKE	D RST		DATE	February, 1976
RIG Heli Drill	METHOD Tube, 3" ID CRRI	EL START	January l	0, 1976	FINISH	January 10, 1976
PROJECT NO. cs 3161	ELEVATION			AIR TEMP	ERATURE	
Wp- W + O WL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % Sa Para		AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY	CORE CONDITION LONG CORE CONDITION
HL HL	SILT sandu, non to low	v plastic,	UF	(SP		N=1 blow/foot
┥┫┼╋┼┼┼┽╴║║	SCIGCILIEG .		Y1 Y	07.4 pcf 76.3 pcf U	100	
<u>₭</u> ┼┼ <u>┦</u> ┼┼┼┤ │ ║			Gr. S	Size		
┼┪┼╢┼┼┼┤						
35 SP	SAND fine grained, sil	ty, dense,				
┿╋┿╋	medium brown		Yw=11	11.5 pcf	5	
┿┽┽┽┫┥┼┥┥┊			Υ _d = ε	31.7 pcf	02	V
┼┼┼┼┼┝┝						
40						
┼┼┼┼┼┼┼┤ │ ┊						
┾╇┽┿┿╋┽╇╴╽┊						
┾┾┿┿╄┾╇╸┤╠						
┾┽┽┼┼┼┼┽┥╵┊						
45						
┼╅┽╉╉╪╋						
┝╋┿╋╋╋						
┼╇┼┞┼┠┼┫╴┣╍╬						
┼╅┿┿┿┿┿╋╴╽║	Bottom of Hole at 48.0	Feet.		-		
50						
	· ·					
+ + + + + + + + + + + + + + + + + + +						
I - I - I - I - I - I - I - I - I - I -	1	1				

•

and the second

.

.

1.1.1 × 0.0.1

and the second se

and the second second

	,	TEST	HOLE	0.6
CONSULTING E	& ASSOCIATES LTD.	PROJECT TAGLU G	GAS PLANT	TEST HOLE NO. <u>#76-723</u>
LOGGED BY MR	DRAWN BY BT	CHECKED RST	DATE Fe	ebruary,1976
RIG Heli Drill	METHOD	START January	10,1976 FINISH	January 10,1976
PROJECT NO. CS 3161	ELEVATION		AIR TEMPERATURE	-25° F.
Wp ⁻ ⊡ W - O W _L -∆ • Dynamic Cone Penetration (Blows/Foot) 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTIC	Z ICE GRAPHIC LOG VISUAL ICE 20	ABORATORY SAMPLE TYPE SAMPLE CONDITION CORE RUN AND CORE RUN AND	CORE CONDITION REMARKS
	ICE	ICE		
	<u>SILT</u> sandy, non plas occasional layer of material, moderate d	stic, brown, organic Hilatancy, wet		
	clayey,low plastic wet	;,dark grey,	51 (SPT) 52 (SPT) 52 (57) 67)	N=4 blows/foot
20	thin laminations,mo low to non plastic	pre organics	(5PT) S3 53%	
SM 30	<u>SAND</u> silty,fine, non hard, brown, numero laminations contain frozen	n plastic,	54 100% (SPT)	N=45 blows/foot

					TE	ES	T	HC		E		L	0 G
() -	CONSULTIN		ASSOCIATES LTD.	PROJECT									TEST
				TAG	LI	j	GAS	S P	Ľ	AN	Т		NO #76-D
													(Cont
LOGGED BY	MR		DRAWN BY BT	CHECKE	D		RST			DA.	TE	Fe	bruary,1976
RIG Heli	Drill		METHOD	START	J	anua	ru 10,	1976		FIN	ISH		January 10,1
PROJECT NO	. cs 3161		ELEVATION					AIR TE	MPE	RAT	URE		-25° F
w _P -⊡ w-o	WL-A	MBO	20		ß	ш.,			μg	₹	٥	z	
	feet	۶۲			₽	TYP %	LABOR	ATORY		IQ	AN	DITIO	
		P D	DESCRIPTIC)N	AP	E E E	TEST	DATA	L L L	8	N	CON	REMAR
	PTH	ß	29		5	ISU	1231	UATA	AMF	Ĩ		æ	
MOISTURE C	ONTENT H	SOL	SOIL		U U U	Z >			ſ	SAMI	COR 8	Ö	
		SM	SAND siltu,fine; non ;	plastic,		Nbn			+	+	+		
			brown, numerous thin containing organics.	laminations frozen		·							
		Ē		*			Yw=104	.5 pcf					
							Y _d = 69 Y _W =113	.9 pcf					
	35						Yd= 82 Yw=113	.5 pcf					
					++	Vx	Υ _d = 82 Υ _c =110	.7 pcf	c1		100	r	
00		i		· · · · · · · · · · · · · · · · · · ·	++	28	¥d= 81	.4 pct	-			_	
			Bottom of Hole at 3	5.5 Feet.									
┠╾┼╌╂╌╂╼													
┢┼┼┼┼	╶╋╶┼╌╋												
	╺╂╶╂╌╂╼												
$\left \begin{array}{c} \\ \\ \\ \end{array} \right + \left \begin{array}{c} \\ \\ \end{array} \right + \left \begin{array}{c} \\ \\ \\ \end{array} \right + \left \left \begin{array}{c} \\ \\ \end{array} \right + \left \left \begin{array}{c} \\ \\ \end{array} \right + \left \left \begin{array}{c} \\ \\ \end{array} \right + \left \left \left \begin{array}{c} \\ \\ \end{array} \right + \left \left \left \begin{array}{c} \\ \\ \end{array} \right + \left $	┝╋╌╄╌╋								·				
$\left - + + + + - \right $	┝╋╋												
┣┉┼╼╊╾┼╌╄╼	╶╂╶┽╾╃			н. - С					ľ				n r
				•									
				· · · ·									
					•								
					•								

•

)

	T	ES	T	нс		E		L	0 G
R.M.HARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING	PROJECT	U	G A	S P	L	AN	T		TEST HOLE NO. <u>#76-D14</u>
OGGED BY SGM DRAWN BY BT	CHECKED	R	RST	-		DAT	ΓE	Fe	bruary, 1976
NG Heli Drill METHOD	START	Januar	y 10,	1976		FIN	ISH	Ja	nuary 10, 1976
PROJECT NO. CS 3161 ELEVATION	····]	AIR TE	MPE	RAT	URE		
$W_{P} = \Box W = \Theta W_{L} = \Delta$ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		ILE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOR	DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
		ICE UF	·						
┼┼┼┼┼┼┼ ┝₋╠╣									
grey grey 10 15 15	ey, trace								
of organics					51		80%		
SP SAND fine grained, stra	atified grey				<i>s</i> 2		80%		
	-				53	Д	80%		PLATE B-26

								T	ES	6T	н	DL	E		L	OG
	R.M.	HAF	NG	EN	ASSOCIATES LTD. GINEERING & TESTING	PRO	JECT TAG	; L (U	G A	S F	۶Ľ	AN	IT		TEST HOL NO. <u>#76-D14</u> (cont.)
LOGGED BY	SGN	1		_[DRAWN BY BT		CHECKE	D		RST			DA	τε	F	ebruary, 1976
RIG Heli	Drill				METHOD		START	Ja	nua	ry 10,	1976		FIN	ISH	Ja	anuary 10, 1976
PROJECT N	0. <i>c</i> s	3161	!		ELEVATION						AIR TE	MPE	RAT	URF		
w _P -⊡ w -	⊙ ₩ <u>,</u> -&		ß	U				8	Γ			Т	Z			
• DYNAMIC PENETRAT blows/ 20 40 MOISTURE 20 40	CONE ION ft. 60 CONTENT 60	DEPTH (feet)	SOIL GROUP SYM	SOIL GRAPHIC LC	DESCRIPTIO	N		ICE GRAPHIC LO	NRC ICE TYPE	LABO	DATA	SAMPLE TYPE	SAMPLE CONDITIC	CORE RUN AND	CORE CONDITION	REMARKS
\downarrow		Ļ	SP		<u>SAND</u> fine grained, str. (cont.)	atifi	led			 		1	†			
┼┡┤╁		+			fine grained							U4		60 2		
p	╧┼╌╄╸	†			occasional silt len	50			Nhn	Y.=11	.4 pcf	F		100	_	• -
1 8	<u>+ + + -</u>	-35								Yw=11	l.1 pcf	C5		*	11	. .
╪╾ <mark>┨╌╢╶╂</mark> ╴	┼╂┼	†	ŀ			;				Y∂= 8. Y⊮=11:	1.1 pcf 5.1 pcf					
┼┼┼		†				• •				Ya= 8:	5.3 pcf					
╪╌╂╌┼╌┠╴	╎┼┼╌	†														•
┼╂┼┼	╞╌╂╌┼╌┥	┣														
┼┼┼┼	╞╌┠╶┼╼┥	-10														.1
┼┼┼┼	┼┼┼┤				gravel sizes						• •					
┼╂┼┠╴	╏╌┨╶┼╌┥	-	CT	$\overline{\mathcal{I}}$		• • • • •						_				
+ e ++				\square	sand, occasional coar	,110 18. an	d fine					S 6	X	50%		•
					gravel.sizes Bottom of Hole at 43.5 P	eet.						•				
								·			ĺ					
				·												· .
					•											
					÷		1									•
		-														
		-														
		•														
							ŀ	•								
							•									•
				l											۲.	NATE
							— <u> </u>	<u> </u>			l					LAIC

-

. 1. 6. ,

. . . .

, . .

		TE	ST HOI	E L	. O G
CONSULTING E	ASSOCIATES LTD.	ROJECT TAGLU	GAS PI	ANT	TEST HOLE NO. <u>#76-015</u>
OGGED BY SGM	DRAWN BY BT	CHECKED	RST	DATE	February, 1976
NG Heli Drill	METHOD Splitspoon	START Jar	nuary 9, 1976	FINISH	January 10, 1976
ROJECT NO. cs 3161	ELEVATION		AIR TEM	PERATURE	
NP- W - WL-A DYNAMIC CONE PENETRATION blows/ft. 10 20 30 MOISTURE CONTENT 20 40 60		ICE GRAPHIC LOG	LABORATORY	SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
	ICF SAND fine, silty, mediu	um brown-	1CE 		
5	grey		UF		
10 MZ	<u>SILT</u> sandy, grey, lamina fine grained sand size:	ated s			
25			Gr. Size Plate B-46	52 100	
20	little fine sand; me brown, non plastic,	dium grey- wet		52 30%	
SP (for 25	SAND fine grained, stra trace of organics, me to brown	atified, dium grey	Nbr	53 803 5277 803 54 603	N = 18 blows/ft
	Bottom of Hole at 28.5 i	Feet.			PLATEB-28

							TE	ST	нс)LE	-		L	0 G
9-	CONSU	HARDY	& ASSC	CIATES LTD.	PRC	DJECT TAG	LU	G A	S F	LA	N	т		TEST HOL NO. <u>#76-d18</u>
OGGED BY	SGM		DRAWN 8	}Y BT	L	CHECKEI	D	RST		1	DAT	E	Feb	ruary, 1976
RIG Heli	Drill		METHOD	Dynamic Cone Penetration Tes	t	START	Janı	ary 11	, 1976		FINI	SH	Jan	uary 11, 1976
ROJECT NO	. cs	3161		ELEVATION					AIR TE	MPEF	RATI	JRE		
Np- W - O • DYNAMIC CO PENETRATIC blows/ft 20 40 MOISTURE CC 20 40	₩L-A <i>DNE</i> <i>60</i> DNTENT	DEPTH (feet) SOIL GROUP SYMBOL	SOIL GRAPHIC LOG	DESCRIPTIC	DN		ICE GRAPHIC LOG NRC ICE TYPE	VISUAL ICE %	DRATORY T DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
		-												
		- 5	WATER r b	ottom of channel			U							
		- 10												
		- 								•			•	
		-												
		-20 - -			•									
		- 25												
		-					•							

...

.

.

*

÷

÷.

.

ì

. .

.

*

		г	EST	HOL	ΕL	_0 G
CONSULTING E	ASSOCIATES LTD.	PROJECT	.U GA	S PL	ANT	TEST HOLE NO. <u>#76-D13</u>
······································		L				(cont.)
LOGGED BY SGM	DRAWN BY BT	CHECKED	RST		DATE	Cebruary, 1976
RIG Heli Drill	METHOD Penetration T	est START J	anuary 11,1	976	FINISH J	anuary 11, 1976
PROJECT NO. cs 3161	ELEVATION			AIR TEMPE	RATURE	·····
$ \begin{array}{c} W_{P}^{-} \square W - \bigcirc W_{L}^{-} \bigtriangleup \\ \bullet DYNAMIC CONE \\ PENETRATION \\ blows/ft. \\ 20 \ 40 \ 60 \\ MOISTURE CONTENT \\ 20 \ 40 \ 60 \\ \end{array} $	DESCRIPTIC	DN	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % TS MARAN		ANU NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORF CONDITION	REMARKS
	possible permafros	t interface	UF			
50	Bottom of Hole at 49.0	0 Feet.				
		Т	EST HOL	E L	. O G	
--	---------------------------------------	---------	--	--	---------------------------------	
CONSULTING E	& ASSOCIATES LTD.	PROJECT	U GAS PL	ANT	TEST HOL NO. <u>1176-D19</u>	
DGGED BY SGM	DRAWN BY BT	CHECKED	RST	DATE	February, 1976	
IG Heli Drill	METHOD Dynamic Cone Penetration Te	START	January 11, 1976	FINISH	January 11, 1976	
ROJECT NO. cs 3161	ELEVATION		AIR TEMP	ERATURE		
WP-DW-OWL-A • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 H dynamic CONTENT 20 40 60 G G	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % ANPLE TYPE SAMPLE TYPE	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS	
	ICE	1 N	ICE			
5	Wamep		112			
10						
	r bottom of channel					
					· ·	
15				•		
20						
<u><u></u></u>						
25						
▶ ┃ 						
<mark>▶ ↓ ↓ ↓ ↓ ↓ ↓</mark> ↓ ↓						
╋ ╶╏╶╏╶						
		ſ				

—

-

.

	& ASSOCIATES LTD.	PROJECT	TES	т но	LE	
CONSULTING	ENGINEERING & TESTING	TAG	LU	GAS P	LANT	NO. <u>H76-D19</u> (cont.)
OGGED BY SGM	DRAWN BY BT	CHECKE	D F	RST	DATE	February, 1976
RIG Heli Drill	Dynamic Cone METHOD Penetration T	est START	Janua	ary 11, 1976	FINISH	January 11, 1976
PROJECT NO. CS 3161	ELEVATION				PERATURE	
N _P -⊡ W - O W _L -∆ • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DESCRIPTIC	DN	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABORATORY TEST DATA	SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND	REMARKS
35 35 40 40 45 83 %	permafrost interfa Bottom of Hole at 47.5	Ce 5 Feet.	UF			

RUMLARDY & ASSOCIATES LTD CONSULTING ENGINEERING A TESTING PROJECT TAGLU GAS PLANT TAGLU GAS PLANT TAGLU GAS PLANT TAGLU GAS PLANT TEST HOL NO. <u>BZE-DZI</u> DATE February, 1976 PROJECT NO. <u>CF 3161</u> PROJECT NO. <u>CF 3161</u>					÷						TE	ES	Т	нс		E		L	0 G	
TAGLU GAS PLANT NO. <u>MZE-DZI</u> <u>DOGED BY 50%</u> <u>DRAWN BY FT</u> <u>CNECKED RST</u> <u>DATE</u> <u>rebruary, 1976</u> <u>RIG Meli Drill</u> <u>METHOD Presentation rest START</u> <u>January 11, 1976</u> <u>FINISH</u> <u>January 11, 1976</u> <u>PROJECT NO. 07 JULI</u> <u>ELEVATION</u> <u>AR TEMPERATURE</u> <u>DESCRIPTION</u> <u>BY BUT TST DATA</u> <u></u>)	CONSI	HAR			ASSOC	G & TESTING	PRC	JECT									TEST	HOLE
LOGGED BY SCH DRAWN BY PT CHECKED ROT DATE PEDRUARY, 1976 RIG Hell Drill METHOD PROMETATION START JANUARY 11, 1976 PHNSH JANUARY 11, 1976 PROJECT NO. CS JIGI Wp-D W-O W_TA DTMATC COME PROTECTION C DI CONTRACT DESCRIPTION										TAG	LL	J	GA	S P	L	A N	Т		NO. #2	6- <u>D20</u>
RIG METHOD PARATE START January 11, 1976 FINISH January 11, 1976 PROJECT NO. cs 3161 ELEVATION AR TEMPERATURE AR TEMPERATURE Wp-D W - O W_L-A 1 ELEVATION AR TEMPERATURE DESSERVATION 1 ELEVATION AR TEMPERATURE DESSERVATION 1 1 1 1 DESSERVATION 1 1 1 1 1 DESSERVATION 1 1 1 1 1 1 DESSERVATION 1 </td <td>LOGGED B</td> <td>Y</td> <td>SGM</td> <td></td> <td></td> <td>D</td> <td>RAWN BY</td> <td>BT</td> <td></td> <td>CHECKE</td> <td>2</td> <td></td> <td>RST</td> <td></td> <td></td> <td>DAT</td> <td>Έ</td> <td>Fe</td> <td>bruary, 1</td> <td>976</td>	LOGGED B	Y	SGM			D	RAWN BY	BT		CHECKE	2		RST			DAT	Έ	Fe	bruary, 1	976
PROJECT NO. CF 3162 ELEVATION AIR TEMPERATURE Wp-10 W-0 W_1-0 DESCRIPTION Image: Construct of the second of the sec	RIG H	eli D	rill				METHOD	Dynamic Cone Penetration T	est	START	3	lanu	ary 11	, 1976	5	FIN	SH	Ja	nuary 11,	1976
Wp-O W-O WL-A Image: State of the sta	PROJECT	NO.	cs	3161]	ELEVATION	÷.			_		AIR TE	MPE	RAT	URE		<u>.</u>	
• DIMATIC CODE • Distribution • Dis	w _P -⊡ w	-0 V	NL-₽	~	MB0	90					g				<u>س</u> م	§		z		
MOISTURE CONTENT # 8	 DYNAM PENET blo 20 	RATIO	VE N	l (feet	ROUP SYI	APHIC		DESCRIPTIC	N		RAPHIC	CE TYPI	LABOR	ATORY	PLE TYP D NUMBF	CONDIT	RUN AN	CONDITIO	REM	ARKS
20 40 60 76 16 16 16 16 16 16 16 16 16 16 16 16 16	MOISTURE	CON	TENT	DEPTH	OIL GF	DIL GR					CE G	NRC I			SAMI	MPLE	ORE % R	CORE		
ICE ICE	20	40 6	<u>0</u>		so	So		<u> </u>			_				.	ŝ	Ö 	_		
3 MATER 10 MATER 10 Indiana 10 Indiana 11 Indiana 12 Indiana 13 Indiana 14 Indiana 15 Indiana 16 Indiana 17 Indiana 18 Indiana 19 Indiana 10 Indiana 11 Indiana 12 Indiana 13 Indiana 14 Indiana 15 Indiana 16 Indiana 17 Indiana 18 Indiana 19 Indiana 10 Indiana 110 Indiana				-			ICE					ICE ·						-		
3 MATER 10 10 10 10 115 r bottom of channel				-				5. Sec												
10 10 10	-+++-	+		- 5			WATTR WATTR					117								
10 10 10 15 f bottom of channel 20 20 25							-		•											
10 10 15 15 15 15 16 17 18 19 10 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																
10 10 10 15 15 15 16 17 18 19 10 <td></td>																				
20 20 20 25 25	-+												2							
p bottom of channel		++		- 10																• ·
<i>r</i> bottom of channel		+																		
20 20 20 20 20 25 25				-																
20 20 20 20 20 20 20 20 20 20																				
20 20 20 25 25																				
20 20 20 25 25				-15																
				F			- hot	tom of channel		۰.										
				ſ																
				F																
				F																
	<u></u>			- 20																
	1																			
				-																
25	T			-				i.												
				-																
	III			- 25						-										
	III I			-																
											•									
	III			-																
30 PLATE	VII			30															PLATE	B-33

-

-

-

R.M.HARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING PROJECT CONSULTING ENGINEERING & TESTING PROJECT TAGLU GAS PLANT TEST HOLE NO. <u>#76-202</u> (CORE.) LOGGED BY MIG SOM DRAWN BY METHOD prometic Come Prometic Come Pr			TES	T HOLE	LOG
LOGGED BY SOV DRAWN BY PT CHECKED RST DATE Pebruary, 1976 RIG Rell DELL METHOD Prestration Test START January 11, 1976 FINISH January 11, 1976 PROJECT NO. CS 7161 ELEVATION ELEVATION AIR TEMPERATURE METEMPERATURE WP-D W-O WL-A (1)<	CONSULTING	& ASSOCIATES LTD.	PROJECT TAGLU	GAS PLA	NT NO. H76-D20 (cont.)
RIG Me11 METHOD Pressing Conertset START January 11, 1976 FINISH January 11, 1976 PROJECT NO. cs JIGI ELEVATION AIR TEMPERATURE AIR TEMPERATURE ************************************	LOGGED BY SGM	DRAWN BY BT	CHECKED	RST DI	ATE Februaru, 1976
PROJECT NO. CS 3162 ELEVATION AIR TEMPERATURE Wp-D W-O W_L-A DENSTRATION 20 40 60 (19) 149 (19) 20 40 60 (19) 149 (19)	RIG Heli Drill	METHOD Dynamic Cone Penetration Te	est START Janua	ary 11, 1976 FI	INISH January 11, 1976
Wp-D W -O W_L-A Image: State of the s	PROJECT NO. cs 3161	ELEVATION		AIR TEMPERA	ATURE
35 40 permafrost Bottom of Hole at 40.5 Peet.	$W_{P} = \bigcup W = O W_{L} = \Delta$ $ \begin{array}{c} & DYNAMIC CONE \\ PENETRATION \\ blows/ft. \\ 20 40 60 \end{array}$ $HL d \\ HL d$	DESCRIPTIC DESCRIPTIC	ICE GRAPHIC LOG	LABORATORY	SAMPLE CONDITION CORE RUN AND CORE COVERY CORE CONDITION CORE CONDITION
		permafrost Bottom of Hole at 40.5	; Peet.		

.

			٦	TEST	HOL	E L	_0 G
	LTING EN	GINEERING & TESTING	PROJECT TAGL	U GA	S PL	ANT	TEST HOL NO. <u>#76-D21</u>
LOGGED BY SGM	1	DRAWN BY BT	CHECKED	RST		DATE F	ebruary, 1976
RIG		METHOD	START	January 11	, 1976	FINISH	<u>na toto na toto</u>
PROJECT NO. CS	3161	ELEVATION			AIR TEMPE	RATURE	
W _P -⊡ W - O W _L -△ • DYNAMIC CONE PENETRATION blows/ft. 20 40 60 MOISTURE CONTENT 20 40 60	DEPTH (feet) SOIL GROUP SYMBOL SOIL GROUP SYMBOL	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	RATORY UI	SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
	and a second second second	ICE					
	5	WATER FBOLtom of channel		UF			
	10						
	- 15						•
	20						
	- 25						
	30	possible permafrost	t interface				PLATE B-35

RMHARDY & ASSOCIATES LID. CONSULTING ENGINEERING & TESTING PROJECT TEST HOLE NO. <u>276-0221</u> (20061.7) LOGGED BY 55/M DRAWN BY PT CHECKED NOT DATE PROJECT RIG METHOD START JARUMERY L1, 1976 PROJECT PROJECT 0.0 09 3161 ELEVATION AR TEMPERATURE PROJECT 0.0 09 3161 ELEVATION AR TEMPERATURE PROJECT 0.0 09 3161 ELEVATION AR TEMPERATURE PROJECT NO. 09 3161 ELEVATION AR TEMPERATURE PORMETOR E 0 40 50 0 50 50 E PORMETOR E 0 50 50 E 0 50 50 NOSTURE CONTENT E 0 50 50 E E NOTO NOTO NOTO NOTO NOTO				TES	т но	LE	. 1	LOG
LOGGED BY SOM ORANN BY ST CHECKED RST DATE Pehrwaru, 1976 RIG METHOD START Januaru 11, 1976 FINISH PROJECT NO. ca 3161 UP - D W - O W A OF THE CONTENT 30 40 40 DESCRIPTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONSULTING E	& ASSOCIATES LTD.	PROJECT	LU	GAS P	LA	NT	TEST HOLE NO. <u>H76-D21</u> (cont.)
RIG METHOD START January 11, 1976 FINISH PROJECT NO. cs J161 ELEVATION AIR TEMPERATURE Wp-D W - O W_1-A 0 0 0 0 DBRNTHATOW 0 0 0 0 0 Janstration 0 0 0 0 0 DBRNTHATOW 0 0 0 0 0 Janstration 0 0 0 0 0 DBRNTHATOW 0 0 0 0 0 DBRNTHATOW 0 0 0 0 0 DBRATHATOW 0 0 0 0 0	LOGGED BY SGM	DRAWN BY BT	CHECKE	D F	RST	D	ATE	February, 1976
PROJECT NO. cs 3161 ELEVATION AIR TEMPERATURE Wp-D W - O WL-A S S S S S S S S S S S S S S S S S S S	RIG	METHOD	START	J a nua	ary 11, 1976	FI	INISH	
Wp-D W-O W(-A) Image: Second Seco	PROJECT NO. CS 3161	ELEVATION			AIR TE	APER/	ATURE	
permafrost	$ \begin{split} & W_{p} - \boxdot W - \oslash W_{L} - \bigtriangleup & \begin{matrix} & & & & \\ \bullet & DYNAMIC & CONE & & & \\ PENETRATION & & & & \\ blows/ft. & & & \\ 20 & 40 & 60 & & \\ MOISTURE & CONTENT & & & \\ 20 & 40 & 60 & & \\ \hline & & & & & \\ 20 & 40 & 60 & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	DESCRIPTIC)N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABORATORY TEST DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
Bottom of Hole at 32.0 Peet.	┟┼┼┼┝╋┼┼┥╴║║	permafrost		UF				
		Bottom of Hole at 32.0) Feet.					

			TE	ST		нс)L	E		L	0 G
CONSULTING ENGINEERING & TEG	TD. PRO	JECT									TEST HOLE
		TAG	LU	G	AS	S P	L	A N	Т		NO #76-D22
GGED BY SGM DRAWN BY BT		CHECKE	D	RST	,			DAT	ΓE	Fe	ebruary, 1976
6 Heli Drill METHOD Penetrati	Cone ion Test	START	Ja	nuary	10,	, 1976		FIN	ISH	Ja	anuary 10, 1976
OJECT NO. CS 3161 ELEVATION	N					AIR TE	MPE	RAT	URE		
			Š,				وس	N	0	z	
			1 ∠ L	М 1 А	BOR	ATORY	TYF		AN	OITIO	
DESCR	IPTION	-	APH			DATA	ي ع	3	NSO	CON	REMARKS
20 40 60 H B B			5	ISU	251	DATA	AMP		щщ Ш	ж Ш	
			ICE NB	>			S	AMF	COR R	CQ	
			-				+	1 "	$\left - \right $		
										•	
NL SILT some fine s	sand		YX v	r							
5											
			ט	F		•					
								ľ			
10											
									.		
											•
								·			
15											
- permafrost											
20 Bottom of Role at	t 19.0 Fee	t.									
			1								
								1			PLATE

.

.

GU 202-0372

Lange and L

GU 202-0373

الإسار الأسبية الأسبية

.

GU 202-0373

. _

.____]

.___]

.

1]

.

· · · · ·

`] ·

60 H76-D4-U6 @ 26-28'. Rate of Strain= 0.0018"/min.

ſ

• #

MTL-4								
					PRO	DIECT Tac	lu Gas Pla	ant
					LA	B. ORDER CS3	510T	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CONSULTING	A AGOULIAI		SA	MPLE CI	De la C	
		CONSULTING E	NGINEERING &	TESTIN		CATION Bar	ge DOCK S:	
					HÇ	DLE H/6-D5	DEPTH	4/-4/.3
	····				TEC	CHNICIAN RU	DATE	April 197
Sp	ecific Gr	avity of Soil S	Soli ds G _s =2_	70(es	^t Heigl	ht of Soil Sol	ids H _s =	.913 ins.
Vo	id Ratio	e (End) =	-		-		•	
l vo	id Ratio	e(Start) =						
Vo	id Ratio	e (Start Di	mensions) =	.76	9			
				W+. 5	ail	١.		Def'i.
e (1	End) = W'	%(End) x G _s	H _s =(- _G	x Arec	x 2·5	$(\overline{4})^{ins.}$	e = previous	$e \pm \frac{p_{0}}{H_{e}}$
-	Time	Losdon	Corr. Dial	Defle	tion	Deflection	Void Patio	Drassura
	l ring La rual		Bonding(ing)	Dene		L		FIGSSUIG
301		Pan (gms)	redding (ins.)	(11)	5.)	''5	<u> </u>	Kg/cm. = 1/11.
			1.487	0		0	.769	
L		.96 psi	1.470	.01	7	.019	.750	.07
		5.0 psi	1.456	.01	4	.015	.735	.36
		11.3 psi	1.441	.01	5	.016	.719	.81
		24.9 psi	1.432	.00	9	.010	.709	1.79
								1
			••••••••••••••••••••••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·		+
			Core Sam	ple	Тес	t Sample	1	<u>+</u>
Bu	1k Dens	sity(pcf.)	118.3		1	20.0	<u> </u>	+
Dr	v Dens	ity (pcf)	93.2			96 5		
Mo	isture	Content (e)	26.0			2. E		
Mo	isture	Content	20.9			44;3		
	after	test) (%)				25.8	· · · · · · · · · · · · · · · · · · ·	+
`		,,,,,,	L					+
		l					1	L
					П	1 + 11		
					# 1	Compr	essive Index	:
		<u>╷╷╷╷╷╷╷╷╷╷╷</u>				Swellin	ng Pressure	=T/ff
						Pre-C	ons. Load	=T/ft. ²
		┽╴╄╶┼╌┨╞┺┼┫┝╋╢╋			#			
					<u> </u>	<u>+ </u>		
•				┝┥┿╪╪╪╧╝╢	╫┥──┤			
						●┼┼┼┼┼┼┼		
0					#			
5		╪╌┇╶╏╡┋┊╡┊╡┊╏						
œ		╈╌╋╶╋╺╋╧╋╧┥┥┥┥┥┥┥			₩	╶╂╌╀╾╉┽╏┼╏┼╏		
					#			
Ð								
0								
>			╘╼╍┼╸╂╌╁╴╁┽┤	┽╉┼╉┼╋╋╋		╾╀╌╄╌╄┼╊╀╊╫		
				+++++				
				╤┲┼┼┼╂╂	#			
		╤┽┽╪╪╪╪┊╽╢╢╢		<u>+++++</u>				
			┝╼╍┾╸╁╺╁╺╁╺╁	┼╂┼╂╫╫	 -	╶┼┼┟╎┟╎╏		
			┝──┼─┼┼╂┼┨					
0	• <u>•</u> ••••••••••••••••••••••••••••••••••	<u>م</u>	└ <u>───└───</u> └ <u>──└──┴─┴</u>					
•		0	•				10	100
			Pressure	s Kg.	/ cm² (1	ions/ft ²)		

. 1 . • . . κ.

-

į.

TL-4					Loo			
					PRC	DIECT Tag	giù Gas Pi	
					LA	MDIE CI	<u> </u>	
		CONSULTING E	NGINEERING	TESTING	JO	CATION Bai	rae Dock S	ite
		CONSULTING E		I ESTING	10	TE H76-D8	DEDTU	42-43-51
					TEC	THNICIAN RC	DEPIN	Apri1/76
					1120	JANICIAN AC		
Spe	cific Gr	avity of Soil S	Solids $G_s = 2$.70 (es	Heig	ht of Soil Sol	ids H _s =_ <u>.8</u>	<u>97</u> ins
Voi	d Ratio	e (End) =						
Voi	d Ratio	e(Start) =						
Voi	d Ratio	e (Start Di	mensions) =	<u>.775</u>				
~ ~ ~	- d) - 140 0	(15-1)	н -1_	Wt · S	oil	\ine		+ Def'l.
6(6	(nu) = w 7		"s-\G	is x Area	x 2·5	4 /	e - previous	- H _s
T	'im e	Load on	Corr. Dial	Deflec	tion	Deflection	Vold Ratio	Pressure
int	erval	Pan (gms)	Reading (ins.)	(ins	.)	H _S	e	Kg/cm.=T/ft-
		0	1.552	0		0	.775	0
		.92 nsi	1.537	.015		.017	.758	.07
		1 88 not	1 /00	020		042	706	25
		10.2 ~~	1 107	.030		012	602	72
		25 2 pot	1 165	.012		025	.003	1 02
		77.2 har	1.400	.022		.025	.058	1.02
	1 -		Core Sa	nple	Tes	t Sample		
Bul	K Dens:	ty(pcf)	119.9	 -	1	18.2		
Dry	Densi	ry (pcf)	94.9	 -		94.2		_
M01	sture (content(%)	26.4	-		23.5		
MOI	sture	Content		 				
(af	ter te	st)(%)				25.5		
	-++	┼╌┼┼┟┟╋╿┨╿║╢╢	╟──┼─╃╶╄╼╃╄		$\parallel - +$	Compr	essive Index	2
		╷╶╏╶╴╴╴╴╴╴					a Prassure	= TAT
					 -	Pra-C	ons. Load	= T/f+ ²
		╈╌╋╶╄╼╋╄╋┿╋┿╋╋						
	╞╞╞	┿╾┼╼╅╏╧╏╿╿╢╢╢			╂Т			
6)								
-	┝╾┼╌╀╴	┼╌┟╴┟╴┟┝┝╎┠╷╋┿╋		╏┼╅┼╂╫╋	╂}	╶╶╏╶╏╸╋╏╏╏╿╏		
0	$F \rightarrow F$							
		<u>┽╴╂┼╂┼╂┼┠┼┠┼</u> ╋╢						
0								
			╟──┠─┠╶┠╶┠					
					╂───┼			
P				╏┼╏╎╎╎╏╎╏		╾╂╶╁╴╂╎╂╎╂╎		
ŝ						╾╋╾╁╴╊┼┨┾╂┼╫		
-		┼╶┼╶┟┝╃╎┼╎╄┿╇┦	╟──┼──╀╶╀╶╀	<u><u></u> <u></u> + + + + + + + + + + + + + + + + + + + </u>	∦∓	┈┟╴┝╶┠╶┠╶┠╹┨╿┨╿		
		╪╴╪╪╪┼╪┿╪┿	╏╴╴┼╸┠╶┠╶┠╶╿	<u>┇╡┇╎┆╎╏╎</u> ╽	#			
			┢╴╌┼╴┼╌┼╶┼╶┼			┈╆╌┟╴╁┼╂┼╂┝╃╢		
					₩∓			
		<u> </u>		┇┊┇┇╡	#			
		┼╌╂╎╴┠┤╉╎╂╎╂┿╋╇			H = T	<u>──}─}─} </u>		
0	·01·	0	••		0		10	100
		· ·			•	2		
			Pressur	e Kg./	′ cm • (`	Tons/ft7)		
			Pressur	e Kg./	′ cm [*] (`	Tons/ft [*])		

- 4

	0	R.M.H		4 AS	SOCIATES LTD.	SU LABOI	J MM AR RATORY	Y T	O	F STI	NC	9	- PR.		Taglu Barge Januar	Gas P Dock cy, 19	lant Site 76
	SAMPI	LE	DAT	A					CLA	S S I F T E S	ICA TS	TIO	N		OTHE	R TI	STS
	1187 HOLE	DEPTH (++)	SAMPLE NO	CLASSIFICATION	SOIL	DESCRIPTI	ON	ATT	ERB DILSVI	LASTICITY S	TE	XTU (%)	RE	WET Density (Pcf)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	
	H76-D1	15- 16.5	<i>51</i>	ML	SILT, sandy plastic,dar	,fine graine k grey,layer	d, non ed, wet				4	88	8				
	H76-D2	15- 16	U2	ML	SILT, sandy sizes,non p organic str	,trace clay, plastic,layer ingers,grey	occ.gravel ed, occ.							142.2	113.1	25.7	
-	H76-D2	16- 17	<i>U</i> 3	ML	SILT, sandy sizes,non p organic str	,trace clay, plastic,layer ingers,grey	occ.grave ed, occ.	2			3	91	6	103.0	80.2	28.4	
	H76-D2	17- 18	U 4	SM	SAND, fine plastic,gre	grained,silt sy,wet	y,non			-				106.9	78.8	34.7	
	#76-D2	24- 24.5	U8	SM	SAND, fine plastic,gre sizes to 4*	grained,silt ay,wet,numero diameter	y,non us gravel							132.2	104.6	26.4	
	H76-D2	28- 29	CI	5 M	SAND, silty plastic,dar	,fine graine ck grey, froz	d,non en							110.6	80.7	31.7	frozen sample
-	H76-D3	4-5	C1	CL	CLAY, silty	;, low plasti	c,grey					·		95.9	62.2	54.0	
	#76-D3	19.5 -20.5	C6	SP	SAND, silty plastic, da	g, fine grain ark grey	ed,non							116.9	88.4	32.2	frozen sample
ſ	H76-D3	24- 24.8	C7	SP	SAND, silty plastic,day organic mat	g,fine graine ck grey, lami cerial, strat	d, non nated with ified							113.1 	77.1	46.6	frozen sample
l	H76-D3	24.8 -25	C7	SP	SAND, silty plastic,day organic mat	;, fine grain rk grey,lamin terial, strat	ed, non ated with ified							106.1	74.4	42.6	frozen °ample
-	H76-D4	16- 17.5	U 2	ML	SILT, sandy grey, strat	y, non plasti tified	c,dark							114.4	81.3	40.7	Drained triaxial c'=0, g= 35 0
-	H76-D4	26- 28	<i>U</i> 6	ML	SILT, very non plastic	sandy, fine c,dark grey	yrained							116.0	93.0	24.7	Drained triaxial c'=0, g '= 350
-	H76-D4	30- .32	U 8	ML	SILT, very non plastic	sandy, fine c,dark grey	grained,		`					112.5	86.7	29.8	
-	H76-D4	32- 33.4	<i>U</i> 9	CL	CLAY, silty stratified, organics	y, low to med , grey, trace	ium plasti of	c	•					114.7	86. 4	32.8	
	H76-D4	37.5 -38.5	<i>U</i> 10	CL	CLAY, silty stratified organics,oc	;, low to med , grey, trace cc.fine grain	ium plasti of ed sand	c	•					118.0	94.4	25.0	PLATE B-51

€	R.M.H		4 48	SOCIATES LTD.	SUMMA LABORATOR	RY Y 7	C)F STI	N	3	28 10 04	CATION	Taglu Barge Januar CS3161	Gas P. Dock : y, 197	lant Site 76
SAMP	LE	DAT	•				CLA	SSI TES	ICA	TIO	N		OTHE	R' T	ESTS
	<u> </u>	-	VION			AT	IMI	ERG TS	TE	XTU (%)	RE			=-	
TEST HOLE	08F1 (++)	L W V	CLASSIFIC	SOIL	DESCRIPTION	ainoil	PLASTIC	PLASTICITY	SAND	5117	CLAY	DENSIT (PCF)	DENSIT DENSIT (PCF)	MOISTUI CONTEN (5)	
H76-D4	42- 43.4	110	ML	SILT, trace grey, wet	clay, low plastic,de	I.I.K						122.1	98.6	23.6	
H76-D4	43.5 -45	U12	SM	SAND, fine non plastic	grained, trace silt, , dark grey,saturated	'						122.3	101.3	20.7	
H76-D5	29- 30.5	52	ML	SILT, trace grey	sand, non plastic,				41	56	3				
H76-D5	47- 47.3	C1	ML	SILT, sandy frozen	, non plastic,grey,							120.0	96.5	24.3	Thaw Strai =2.4% M_=0.038
H76-D6	15.5 -17	U 3	ML	SILT, trace grey	sand, non plastic,				6	87	7	114.3	92.4	23.7	
H76-D6	18.5 -19.3	C2	ML	SILT, trace grey, cross	sand, non plastic, -bedded							113.6	80.5	41.1	frozen sample
H76-D6	19.3 -20	C2	NL	SILT, trace cross-bedde and organic	sand, non plastic,gr d, laminae of silt matter	ey,				'		100.9	65.3	54.4	frozen sample
H76-D7	12 -13.5	5 1	ML	SILT, sandy plastic	, fine grained,non				22	60	4				
H76-D7	22- 23.5	U 1	SM	SAND, silty	, non plastic							110.6	76.7	44.2	
H76-D7	42- 43.5	56	NL	SILT,sandy, plastic,bro	fine grained,non wn,wet				36	60	4				
#76-D7	62- 62.6	CI	CI	CLAY, silty grey,med.pl to 3/4",bro and ice cry	,trace of sand,dark astic,fine sand incl. wn,occ.organic sand stals							103.1	69.8	47.8	frozen sample
H76-D7	62.6 -63.1	C1	CI	CLAY,silty, grey,med.pl to 3/4", br and ice cru	trace of sand,dark astic,fine sand incl. own,occ.organic sand stals		1.12 •					110.4	81.0	36.3	frozen sample
#76- D7	63.1 -63.8	C1	CI	CLAY, silty grey,med.pl to 3/4",bro and ice cry	,trace of sand,dark astic,fine sand incl. wn,occ.organic sand stals							106.2	77.2	37.6	frozen sample
H76-D8	25- 26.5	U1	NĽ	SILT,sandy, plastic,occ	fine grained, non asional organics, wet							115.6	89.3	29.5	
H76-D8	42- 43.5	C1	SM	SAND, silty coal and sh frozen	,fine grained,occ. ale fragments,brown							118.2	94.2	25.5	Thaw Strain =1.6% N= 0.014

Ι.

PLATE B-51

•	PE.M.H		4 AS		SUMMAR LABORATORY	Y 7	C)F STI	N	G	-10 -10 -04 -10	OJECT CATION TE BNO	<u>Taglu</u> Barge Janua CS316	Gas 1 Dock ry, 19 1	Plant Site 976
SAMP	LE	DAT	Α				CLA	SSI	FICA	TIC	N		OTHE	R T	ESTS
TEST Hole	DE PTH (++)	SAMPLE NO	CLASSIFICATION	SOIL	DESCRIPTION	AT 1 4	ERB IMI ULSVII	ERS XIDIA	TT QNVS	XTU (%)	RE	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	
H76-D10	29- 30.5	נט	ML	SILT,non pl occasional	astic,brown,laminated organics, wet							87.6	49.5	77.0	
H76-D10	52- 59	C2	CL	CLAY, silty occasional	,sandy,low plastic gravel sizes	27	14	13							
H76- D11	13- 1 4. 5	52	ML	SILT,sandy, brown	fine grained,grey-				2	88	10				
H76-D11	22- 24	U 4	SP	SAND, fine	grained,trace silt							108.2	74.6	45.0	
H76-D11	31- 31.8	<i>c1</i>	ML	SILT,sandy, bedded,poor	finely laminated,cross ly graded							108.1	78.8	37.1	frozen sample
# 76- D11	31.8 -32.4	C1	ML	SILT,sandy, cross-bedde	finely laminated d,poorly graded							111.1	81.4	37.4	froz e n sample
#76-D11	32.4 -33	<i>C1</i>	ML	SILT,sandy, cross-bedde to grey bed	finely laminated, d, poorly graded,brown ding, sand layers							107.1	80.5	33.1	frozen sample
#76-D12	31.5 -32.5	U 5	ML	SILT,sandy, stratified	non to low plastic				14	81	5	107.4	76.3	40.8	
H76-D12	35- 35.7	C6	SP	SAND, fine medium brow	grained,silty,dense n							111.5	81.7	36.4	frozen sample
¥76-D13	35- 35.5	C1	SM	SAND, silty plastic,bro frozen	,fine grained,non wn,occ.organics,							104.5	69.9	49.5	frozen sample
H76-D 13	35.5 -35.8	<i>c</i> 1	SM	SAND, silty plastic,bro organics,fr	,fine grained, non wn, occasional ozen							113.0	82.5	39.6	frozen sample
476- D13	35.8 -36.1	C1	SM	SAND, silty plastic,bro frozen	, fine grained,non wn,occasional organics		•					113.0	82.7	36.7	frozen sample
#76- D13	36.1 -36.5	C1	SM	SAND, silty plastic,bro organics,fr	,fine grained,non wn, occasional ozen							110.4	81.4	35.6	
176-D14	34.3 -34.8	C 5	SP	SAND, fine occasional	grained,stratified silt lense							111.4	81.4	36.8	frozen sample
176-D14	34.8 -35.3	C 5	SP	SAND, fine occasional	grained, stratified silt lense							112.1	84.1	33.3	frozen sample

i

PLATE B-5

												L,	OJECT	Taglu	Gas	Plant	1
	R.M.H	ARDY	4 45		S	SUMMA	RY	(J F					Barge	Dock	Site	-1
	C8456.71	******		**************************************	LABC	RATO	YF	TE	ST	IN	G		TE	Janua	ry, 19	976	_
										108 NO. C53161							
SAMP		DAT	A	1 1					TE	STS				OTHE	R T	ESTS	- 1
- 4	Ŧ	H.	CATIO	5011	DESCRIPT			LIMI	TS		(%)	IRE		1	u i		L
4 ICH	0EPT (++)	WVS	11155	5011				ASTIC	STICI1	AND	11	E	ENSI (PCT	DENS:	DIST ONTE SNTE		1
			CLA		<u>.</u>			12					•	ļ	žŬ		1
H76-D14	35.3 -36	C 5	SP	SAND, fine occasional	grained, st silt lense	tratified							115.1	85.3	34.9	frozen sample	Ì
H76-D15	15-	<i>S</i> 1	ML	SILT, sandy,	fine grain	ned	-	1	+	6	82	12					- L
	10.5			iaminated,	grey												Ì
																	-1_
									ſ								Ĭ
																	1
						•			<u> </u>								ł
						-											l
										<u> </u>	 						
																	Ļ
					····	· · · · · · · · · · · · · · ·			ļ	ļ							1
									1 · .								L
			<u> </u>					<u> </u>									4
																•	L
																	1
															1		L
						· ·											1
																	L
				,				+									1
																	L
								1									Ì
								· ·									
																· · · · · · · · · · · · · · · · · · ·	Ī
																	-
																	Ì
																	1
								ľ					l				ľ
																PLATE B-54	

-

APPENDIX C

BIGHORN CHANNEL BORROW AREA BOREHOLE AND LABORATORY TEST DATA

TABLE C-1 TEST HOLE CO-ORDINATES; BIG HORN CHANNEL AREA

(U.T.M. Zone 8)

L.,

1

i.

× .

,

• •

-

Test Hole	N (metr	res) E
H76 BH1	7,697,680	505,580
2	7,697,890	505,850
3	7,697,985	506,005
4	7,698,170	506,090
5	7,698,220	505,850
6	7,698,515	505,865
7	7,698,110	505,915
8	7,697,880	506,140
9	7,697,630	505,715
10	7,697,560	505,515
11	7,698,890	505,805

			TES	Т	но	LE		L	LOG		
CONSULTING E	& ASSOCIATES LTD.	PROJECT	LU	G A S	S P	LAN	١T		TEST HOLE NO. <u>#76-bh1</u>		
OGGED BY SGM	DRAWN BY BT	CHECKED	ST	DA	DATE February, 1976						
RIG Heli Drill	METHOD	START	Januar	y 13,	FINISH						
PROJECT NO. cs 3161	ELEVATION				AIR TEN	PERA	TURE				
W _P -□ W - O W _L -△ (199) HIdag HOISTURE CONTENT 20 40 60	DESCRIPTIO)N .	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOF	ATORY DATA	SAMPLE TYPE AND NUMBER SAMPLE CONDITION	CORE RUN AND	CORE CONDITION	REMARKS		
5 ML ML ML ML ML ML ML ML ML ML	ICE WATER SILT little fine sand rapid dilatancy trace fine sand SAND fine, silty, tra medium sand, layered fine to medium gravel silt, dark grey, layer, wet	d, saturated, ace to little d, wet ained, little very silty on plastic, sizes	UF	Gr. S Plate	Size e C-22 Size e C-23	51 52 53 54 55 56	202 202 202 202 200 202 200 202 200 202 200 202 200 202 200 20				
b 30						57	10%	5	PLATE		

ł

i

.

and the second second

and the second second

	LTING E	& ASSOCIATES LTE	PROJECT	TEST GLU G	HOL	E L	OG TEST HOLE NO. <u>#76-8#1</u>
LOGGED BY SGM		DRAWN BY BT	СНЕС	KED RS:	<i>T</i>	DATE Fe	(cont.) ebruary, 1976
RIG Hell Drill		ELEVATION	ISTAR	January	y-13, 1976	PATUOT	<u> </u>
Wp ⁻ W - O W _L -▲ MOISTURE CONTENT 20 40 60	DEPTH (feet) [9] SOIL GROUP SYMBOL	DESCRIP	ION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ABORATORY	SAMPLE CONDITION	REMARKS
	- 45 	<u>SAND</u> trace of silt fine grained sand occasional grav medium grained Bottom of Hole at 4	. medium brow sizes al sizes		<u>U1</u> U2 C1 C2 S8	50% 100 x 100 x 100 x 100 x 100 x 100 x 100 x 100 x	

. i

		TEST	HOLE	LOG
CONSULTING E	& ASSOCIATES LTD.	TAGLU GA	AS PLANT	TEST HOLE NO. <u>H76-BH2</u>
LOGGED BY SGM	DRAWN BY BT	CHECKED RST	DATE	February, 1976
RIG Heli Drill	METHOD Shelby Tube	START January 1	3, 1976 FINISH	
PROJECT NO. cs 3161	ELEVATION		AIR TEMPERATURE	-30° C
Wp- I W - O WL-A (199) HIdgo MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	SAMPLE CONDITION CORE FRUN AND CORE FRUN AND	REMARKS
	ICE			
5	WATER	UF		
	<u>SILT</u> low plastic, grey, sandy, dark grey, low medium plastic, layer	to ed, wet Gr. Pla	Size te C-24	6
	CLAY silty, trace of sam to medium plastic, brow grey, soft to firm medium plastic, silty of medium sand, soft	, low n to , trace to firm	<i>sż</i> 801	E .
	SAND fine grained, silty to brown some silt, layered, b	, grey rown Gr. Pla	Size te C-25	
	l" rounded pebble medium to fine graine	a	55 C1	PLATE

and and a star of a set

and a state of the state of the

and the second second

-

		TEST	HOL	E L	OG
CONSULTING ENGINEERING & TEST	TD. PROJECT	GLU G	AS PLA	ANT	TEST HOLE NO. <u>H76-BH2</u> (cont.)
LOGGED BY SGM DRAWN BY BT	CHEC	KED RST		DATE Fel	bruary, 1976
RIG Heli Drill METHOD Shelby	rube STAR	T January	13, 1976	FINISH	
PROJECT NO. CS 3161 ELEVATION			AIR TEMPE	RATURE	-30° C
WP- W - O WL-A WDISTURE CONTENT 20 40 60	PTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	BORATORY	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
SM SAND medium to f	ine grained,	Nbn	C2	0% V	
	y pocket and		C3	75% II	
pebbles to 1/2	aminae		-		-
uniform, mediu	m grained		C4	0% V	
35 brown, frozen	silty layers,				
			C	100 11	
40					4 4
Bottom of Hole	at 40.0 Feet.				
╶┼╌┼╌┽╂╌┽┨╌┼╾╃	• •				
·┼┼╎┼┼┊╡┼┆ │ │ │					
<u>→↓↓↓↓↓↓</u> ↓↓↓					-
╾┼╂┼╂╂╊┽╍┽╴╎╏╏╎					
· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					
╾┽╄┼╄┼┲┽╍╉╴║║║║					
┼┼┼┼┼┽┥					
╶┼┼┼┼┼┾┾┾╸╽╏╏					
╶┾╉┼╂╬╬┿╋╴╏╿╏					
╾┼╌╂╌┼╆╌┿╼┿╾╴╴╎╴╎╴╎					
╾ ╡╊╶┼┫╕╡╍╋╍╋ ╴╴╏╴╏╴╏					
╾┼╌╉╌╎╶┨╌┨╴╢					
┝┽╂┼┼┼┼╪╪╸│┃┃┃					-
┝╍┼╍╂╌┼╌┼╌╀╌╀╴╴╎╴╏╴╏					
┝┽╉┾┼┼┼┿╋╴╽╏╏╽					
		•			
					PLATE

•

			_				_					TE	S	T	нс)LI	Ξ		L	OG	
E	j		R .	M.I	HAR	1 G	EN	ASSOCIAT	ES LTD. TESTING	PRO	JECT TAG	LU	I	G A	S P	LA	A N	T		TEST HOL NO. <u>. 1176-811</u>	
OGGED	BY	, 	1	ov			C	RAWN BY	BT		CHECKE	D	R	ST			DAI	ΓE	Fel	bruary,	. 1976
RIG	Hel	li Di	rill	1			,	METHOD CR	REL		START	Ja	nua	ry 12,	1976		FIN	ISH			
PROJE	CT	NO.		r	cs 3	161		ELE	VATION					,	AIR TE	MPE	RAT	URE		~30°	С
W _P -⊡ #OISTU 20	W RE	- © cor	₩ •0	-A NT	DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG	DE	SCRIPTIC	ON		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	RATORY DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	RI	EMARKS
					-	ML		grass cover <u>SILT</u> low p fine sand	lastic, gro	ey, tr	ace of		Nbn								
			+	$\left - \right $	-											171	\bigtriangledown	50%			
+			+		- 5			sandier								\vdash	\bigtriangleup				
+-+-	₩ 		\uparrow		•	CL		CLAY silty	nse	ow to	medium							100			
					-	to CI		plastic ,	layered									*	1		
					- 10 - -			ice cry thin ice	stals to 1, e lenses	/8" di i	ameter,		Vs, Vx			C2	Χ	53%	IV		
		_			- 15 			particl very sil	es of organ ty	nics t	o 1/2",		< 5%	G r. S Plate	ize			100	TT		
++-			\downarrow		-													*			
	 				-			silty, high pl lenses t	dark greu, astic, occa to 1/8"	mediu Isiona.	m to l ice		Vx, Vs			C4	X	53%	IV		
					- 20 -			silty,	low to me	edium	plastic					C5					
+	+			$\left - \right $	-		//	1 1/2" o	dia., brown	n 		P	_								
┼╂╴	┼╂			┝─┤	•			Bottom of "	10 =+ 73 A	1 Fast	•										
	\dagger	+			-			BULLOM OI H	JIE AT 22.0	, reet	•										
					- 25																
	Π																				
	\square							•													
																			ſ	PLATE	C-5

ł.

ł

-

A Real Property in the second se

[

		TE	ST I	HOLE	LOG
CONSULTING E	A ASSOCIATES LTD.	TAGLU	JGAS	PLANT	TEST HOLE NO. <u>_#76-b#4</u>
OGGED BY MR	DRAWN BY BT	CHECKED	RST.	DATE	February, 1976
NG Heli Drill	METHOD	START Ja	nuaru 13, 19	76 FINISH	
PROJECT NO cs 3161	ELEVATION		AIR	TEMPERATURE	
WP- W - O WL-A (199) HT HI HT HI HI HT HI HT HI HI HT HI HT HI HI HT HI HT HI HI HI HI HT HI HT H	DESCRIPTION	C GRAPHIC LOG	ULABORATO	A AND NUMBER SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND	CORE CONDITION CORE CONDITION
	<u>ICE</u>	a the second second	ICE		
5 Pt	<u>WATER</u> <u>PENT</u> amorphous granular	r, silty,	UF		
	non woody				
ML to SM	<u>SILT</u> and sand, grey bro plastic, fine grained sizes, layered	own, non d sand		S1 X 675	
15	greyish brown, non	plastic,	Ca. Sizo		
	soft to firm, wet,	sandy	Plate C-	27 52 80	*
20	CLAY silty little can	d, brown.			
	low plastic, soft	rained		53 33	*
25	trace to little silt, moderate dialtancy, we	, brown, ret	Gr. Size Plate C-	28 54 200	
				55 53	1 1 1 1
					PLATEC-6

	Т	ES	т но		-	L	.0 G
CONSULTING ENGINEERING & TESTING	PROJECT	. U	GAS P	LA	4 N 1		TEST HOL NO. <u>H76-bh</u> (cont
GGED BY MR DRAWN BY BT	CHECKED		RST		DATE	Fe	ebruary, 1976
Heli Drill METHOD	START	Janua	ru 13, 1976		FINIS	н	:
OJECT NO. CS 3262 ELEVATION			AIR TE	MPE	RATU	RE	····
DESCRIPT	ON	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABORATORY TEST DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	% RECOVERY CORE CONDITION	REMARKS
SM SM SM fine to medium	grained,	UF		56		R	
moderate dilatancy.	wet (cont.)			–			4
		:					4
				S 7	LX 1	od *	
35 diameter	sizes to 2"				$\left\{ \right\}$		-
				5 8	X,	58	
						+	4
Bottom of Hole at 37	.0 Feet.						
40							
}}							
╶╉┼┾╄╋┼╋╶╽║║							
-+-++++++++++++++++++++++++++++++++++++						•	
}}_							
╶╂┼╂╂┼┼┽							

ļ

. • .

,

ł

		TEST HOLE LOG
CONSULTING ENGI	ASSOCIATES LTD. BINEERING & TESTING TAG	LU GAS PLANT NO. <u>H76-BH5</u>
LOGGED BY SGM DR	RAWN BY BT CHECKED	D RST DATE February, 1976
RIG Heli Drill MI	TETHOD START	Januaru 14, 1976 FINISH Januaru 14, 1976
PROJECT NO. CS 3161	ELEVATION	AIR TEMPERATURE -40°C
WP-D W-O WL-A (199) HTA30 HTA30 MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NISCLAIC LOG VISUAL ICE % VISUAL ICE % AND AND AND AND AND AND AND AND AND AND
	<u>ICE</u>	
	WATER	UF
10 MZ	<u>SILT</u> and medium to fine sand, trace of clay, grey clayey	Gr. Size Plate G-29 S1 100
25 25	clayey	52 100 x
	<u>SAND</u> fine to medium grained, trace of silt	
20 20 SM	<pre>sand, trace of clay sand, trace of clay <u>SAND</u> siltu, fine grained, grey, trace of clay, occasional gravel sizes to 1" dia., layered</pre>	2
25	medium to fine grained	Gr. Size Plate C-30
30 SP	trace of silt, fine to medium grained	55 50% PLATE

-

•

						TE	ES	Т	нс)L	E		L	0 G		
	M.HARE	DY &	ASSOCIATES LTD.	PRO	JECT TAG	LI	J	G A	S F	٢	AN	IT		TEST HOLE NO. <u>H76-BH5</u> (cont.)		
LOGGED BY S	7.M	C	DRAWN BY BT	CHECKED RST						DA			DATE February, 1970			
RIG Heli Drill			METHOD	START January 14, 19					1976		FIN	SH	Ja	nuary	14, 19	76
PROJECT NO.	s 3161		ELEVATION						AIR TE	MPE	RATURE			-40°	с	
W _P -□ W - O W _L - MOISTURE CONTEN	DEPTH (feet)	SOIL GRAPHIC LOG	DESCRIPTIO	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICF %	LABO	RATORY DATA	SAMPLE TYPE AND NIIMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	R	EMARI	٢S
		SP	<u>SAND</u> fine to medium g trace of silt	raine	d,		UF									
	-+									56	X	50%				
- Q	$\overline{+}$		graded, clean	poor	19			Gr. S Plate	Size C-31	<i>s</i> 7	X	100 %				194
	-+															
0										58	X	100 %	· •	Hole s some l	loughed 10 feet.	in
	45		Bottom of Hole at 41.5	Feet										•		· ·
╅╋┿	†													PLAT	E	9

ļ

÷.

Γ.
		TES	ST HOL	E L	o G
CONSULTING E	A ASSOCIATES LTD.	TAGLU	GAS PL	ANT	TEST HOLE NO. <u>#76-вн6</u>
LOGGED BY MR	DRAWN BY BT	CHECKED	RST	DATE FO	ebruary, 1976
RIG Heli Drill	METHOD	START Jan	uary 14, 1976	FINISH Ja	anuary 14, 1976
PROJECT NO. cs 3161	ELEVATION			ERATURE	-40° C
Wp- □ W - O WL-A (++++++++++++++++++++++++++++++++++++	DESCRIPTION	ICE GRAPHIC LOG	S JLABORATORY JLABORATORY JLABORATORY	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	ICE		CE		
5	WATER	U	F		
10					
15					
20	bottom of channel	ind			
P C C C C C C C C C C C C C C C C C C C	brown, occasional part. rounded gravel to 1/2"	icles of dia., wet	Gr. Size Plate C-32	67%	
	CLAY silty, little sand occasional gravel size	, , , , , , , , , , , , , , , , , , ,	51	200	
Э 30 SM	SAND silty, medium to c grained, occasional gr - very silty	oarse avel sizes	54	5 50%	PLATE

-

ŧ

		<u></u>			-						TE	ΞS	Т	нс	L	E		L	0 G	
)	c	ONSI	JLTIN	iG	EN	ASSOCIATES LTD.	PRO	JECT TAG	LI	J	GΑ	S P	Ľ	AN	T		TES NO	T HOL . <u>H76-BH</u> (cont.
LOGG	D E	37		MR			C	RAWN BY BT		CHECKE	D	1	RST			DAT	E	Fe	bruary.	, 1976
RIG		Heli	i Da	rill			1	METHOD		START	Ja	inua	ry 14,	1976		FIN	SH	Ja	nuary 1	14, 1976
PROJ	ECT	NO		CS	316	1		ELEVATION						AIR TE	MPE	RAT	URE		-40° (2
₩ _P - MOIS1 2		- C 40			DEPTH (feet)	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG	DESCRIPTIO	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	ATORY DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	RE	MARKS
						SM		<u>SAND</u> fine to medium gr	aine	d, grey		UF			<i>S</i> 5	Χ	50%			
																Γ				
								fine grained, silty	, br	own										
	<u>e</u>												Gr. S Plate	1ze C-33	56	IX	25%			
					- 35										\vdash	\wedge				
	<u> </u>	+-	-+		ŀ															
	<u> </u>			_	-															
	; •	+								<u> </u>					┝─	-				
					-	SP									57	$\left \right\rangle$	03			
		+			40			fine to medium grai	ned,	, brown,			Gr. S	ize	-	\mathbf{k}	-		Hole :	sloughin
	╞┼╴	++			ł			wee, some graver st	203				Plate	C-34	58	Ň	6/%		11 / 1	reet.
				-							ł									
					F			Bottom of Hole at 41.5	Feet	t.										
																1				
					45										.					
					L															
					Ļ															
				_	-															
		+			-				•											
		+			\vdash															
	\vdash	+			-															
		+			-															
		++		+	-															
		+			+															
					-															
					-															
		+	+	-	-															<i>C</i> .11

)

|

[_____

			TEST	HOL	E L	0 G
CONSULTING	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT TAG	LU G <i>i</i>	AS PL	ANT	TEST HOLE NO. <u>_H76-BH7_</u>
LOGGED BY MR	DRAWN BY BT	CHECKE) RST		DATE F	ebruary, 1976
RIG Heli Drill	METHOD	START	January 1	14, 1976	FINISH J	anuary 14, 1976
PROJECT NO. CS 3161	ELEVATION			AIR TEMPE	RATURE	-40° C
Wp-DW-OWL-A (ie) HId30 MOISTURE CONTENT 20 40 60	DESCRIPTIO)N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ORATORY	SAMPLE CONDITION CORE RUN AND RECOVERY CORE CONDITION	REMARKS
	ICE					
5	WATER	-	UF			
	<u>SILT</u> sandy, brown, no layered , wet to sat trace of organics	n plastic, · urated,		, 51	50%	
	<u>CLAY</u> silty, brown, mo grey, medium to high firm to stiff, occas inclusions to 1/4" o	ottled, dark a plastic, sional of organics		52	872	
20 CI	<u>CLAY</u> (till-like) silt dark grey, medium p. firm to stiff, occ. particles to 1/4" or fine sand layers	ty, brown to lastic, asional f coal,		\$3	100	
25				54	67%	
3	<u>SAND</u> fine grained,	ey brown, d dilatancy,	Wbn	55	672	PLATE

•

٦

, i

				TES	Т	но	LE		L	OG
	HARDY	& ASSOCIATES LTD.	PROJECT	LU	G A	S P	LAI	NT		TEST HOLE NO. <u>H76-BH7</u> (cont.)
LOGGED BY MR		DRAWN BY BT	CHECKED	<u> </u>	RST		DA	TE	Fe	bruary, 1976
RIG Heli Drill		METHOD	START	Janua	ry 14	, 1976	FI	NISH	Ja	nuary 14, 1976
PROJECT NO. CS	3161	ELEVATION				AIR TEN	PERA	TURE		-40° C
W _P -⊡ W-⊙ W _L -∆ MOISTURE CONTENT 20 40 60	DEPTH (feet) Soil GROUP SYMBOL)N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	LABOF	RATORY DATA	SAMPLE TYPE AND NUMBER	CORE RUN AND	CORE CONDITION	REMARKS
	5₽	<u>SAND</u> fine grained, no. layered, wet, trace	n plastic, of silt	Nbn			c1	80%	III	VTM core barrel
	- 35						C2	40%	III	
	- 40	occasional gravel :	sizes to 1/2				C3	50%	111	
	-45	Bottom of Hole at 43.0	Feet.							
	-								ł	PLATE

)

i

and the second sec

a state of the second second

and the second

-

and the second

Γ

		TEST	HOL	E L	OG
CONSULTING ENG	ASSOCIATES LTD. BINEERING & TESTING	TAGLU Ø	GAS PL	ANT	TEST HOLE NO. <u>H76-BH8</u>
OGGED BY SGM DI	RAWN BY BT	CHECKED R	ST	DATE F	ebruary, 1976
NG Heli Drill M	METHOD	START January	15, 1976	FINISH J	anuary 16, 1976
ROJECT NO. cs 3161	ELEVATION		AIR TEMPE	RATURE	
WP-D W-O WL-A 108MS 108 NOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ABORATORY	SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
5 MZ 10 1 1 1 1 1 1 1 1 1 1 1 1 1	ICE WATER SILT trace of fine sand, grey, clayey dry, stiff, trace of i sand, layered little organics, media peat layers to 1/2" t	fine um brown, hick	Sr. Size Slate C-35	100	
	<u>CLAY</u> silty, low to medium dark grey, layered trace of medium sand, silty, medium plastic	soft,	53	200 2 502	
25 5M	SAND fine to medium grai trace of silt , layered	ned,	55	5 902	

							T	ES	Т	нс	DL	E		L	OG		
	CONS	ULTIN	VG I	& ASSOCIATES LTD. ENGINEERING & TESTING	PRO	JECT TAG	LL	J	GA	S F	۶۲	AN	١T		TES NO	T HOL . <u>H76-BH</u> (cont	.E
LOGGED BY	SGM			DRAWN BY BT		CHECKE	D		R.ST			DA	TE	Feb	ruary,	1976	
RIG Heli	Drill			METHOD		START	Já	апиа	ry 15,	1976		FIN	ISH	Jan	uary 1	6, 1976	
PROJECT N	0. cs	3161		ELEVATION						AIR TE	MPE	RAT	URE				
w _P -⊡ w -	⊙ w _l -&	PTH (feet)	GROUP SYMBOL	DESCRIPTIO	N		GRAPHIC LOG	C ICE TYPE	LABOR TEST	ATORY DATA	AMPLE TYPE	LE CONDITION	E RUN AND RECOVERY	LE CONDITION	RE	MARKS	
20 40	60	B	SOIL	SOIL			ICE	۳> ۲			S	SAMP	CORI 8	СQ			
		 - -	SM	<u>SAND</u> fine to medium g. trace of silt , layer	raine :ed	d,		UF			56	X	80%				
				3" clay layer inte 3" clay layer inte	rbedd	leđ			- -		S 7	X	100 %				
		- 35 -		organic clay lumps	in f	ine									. •		
		-		sand matrix, silty		· .		Nbn			58	Х	100				
		- 40 -		organic clay layer	inte ine a	rbedded nd					59	X	100				
		-		coarse gravel at in	nterf	ace											•
Ó		- 45 -		trace of fine and of gravel	s to . COAIS	1/8" e					51 0	X	50%				•
		- - 50		Bottom of Hole at 46.5	Feet.	•											
		-				•											
		-					-										
																•	
														F	LATE	<u>C-15</u>	

The second second

and the second second

Γ

and the second second

		TES	ST HOL	E L	0 G
CONSULTING E	& ASSOCIATES LTD.	PROJECT TAGLU	GAS PL	ANT	TEST HOLE NO. <u>н76-вн9</u>
LOGGED BY SGM	DRAWN BY BT	CHECKED	RST	DATE Fe	ebruaru, 1976
RIG Heli Drill	METHOD	START Jan	ary 15, 1976	FINISH Ja	nuary 15, 1976
PROJECT NO. cs 3161	ELEVATION	,	AIR TEMP	ERATURE	
PTH (feet) GROUP SYMBOL		Z E GRAPHIC LOG RC ICE TYPE	A LABORATORY	AND NUMBER PLE CONDITION IE RUN AND RECOVERY RE CONDITION	REMARKS
	2011	U CE	1 [COR COR	
	ICE SILT medium brown, tra sand	ace of fine + Vx + + Vz	<i>E</i>		
	clayey, trace of sa	and, wet UF	n Gr. Size Plate C-36	502	
	<u>SAND</u> fine to medium gr trace of silt, coal a sizes to 1/2" dia.	rained,	Gr. Size Al	50%	-
	medium to fine grai to 1/4" dia.	ined, pebbles	Plate C-3/	50%	-
	gravel sizes more silty		A3	50%	-
	trace of fine grave	el, siltu	74	50%	
	trace of silt, wet		45	50%	PLATE

.

.

· · · · · · · · · · · · · · · · · · ·		TEAT					
		IESI	HOL	E.			
CONSULTING ENGINEERING & T	ESTING PROJECT	SLU GA	AS PL	AN	IT		TEST HOLE NO. <u>H76-BH9</u> (cont.)
LOGGED BY SGM DRAWN BY BT	CHECKE	D RST		DAT	E	ŗ	Pehruary, 1976
RIG Heli Drill METHOD	START	January .	15, 1976	FIN	ISH	,	Tanuary 15, 1976
PROJECT NO. CS 3161 ELEVAT	ION	·	AIR TEMP	RAT	URE		
W _P -⊡ W-O W _L -△ (1991) W _P -⊡ W-O W _L -△ (1991) HI HI HI HI HI HI HI HI HI HI	RIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ORATORY	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARKS
SM SM SAND fine to of silt	medium grained, trad	PWbn					
	fine grained		26	\leftarrow	502		
	and yrundd		-	ρ			
35	,						-
0			A7	X	50%		
				Γ			
Bottom of Hole	at 37.0 Feet.						
40	•						-
·┼╂┼┼┼┼ ┦ │ │ │							
╶╄╶╋╺╋╺╋╹ ╴┥╴┥╴┥							
┽┾╆╆┾╆┿┿			r T				
┽┽┼┼┼┼┼							
	•						-
╶┼╂╌┼╂╌┽╃╶┽┫							
┽╂┼┼┽┼┽							
┽╂┼┼┼┼╪╋╴╽║║							
┽┼┼┼┼┼┽							-
┿╃┿╁╅┿┽╃╴╽╎╽							
┽╂┼╂╂╪╪╪╴╽║║							
┽╂┽╂╂┼┾┽╴╏╏╏							i
						P	LATE

-

		TE	ST HOL	E L	. O G
CONSULTING E	& ASSOCIATES LTD. NGINEERING & TESTING	PROJECT TAGLU	GAS PL	ANT	TEST HOLE NO. <u>_#76-8#1</u> 9
LOGGED BY SGM & MR	DRAWN BY BT	CHECKED RST	······································	DATE F	ebruary, 1976
RIG HELI DRILL.	METHOD	START JAN	UAPY 15, 1976	FINISH	
PROJECT NO. cs 3161	ELEVATION		AIR TEMP	ERATURE	- 40° C
$W_{P} = W = O W_{L} - \Delta$ $ \begin{array}{c} \hline Dynamic Cone \\ Penetration \\ Blows/Ft. \\ 20 40 60 \end{array}$ $ \begin{array}{c} \hline H \\ A \\ B \\ B$	DESCRIPTIO	Z ICE GRAPHIC LOG NDC ICE TVDE	LABORATORY	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	ICE MATER		TE		
→	<u>SILT</u> little fine sand, clau, low to non plas	trace of tic, wet	Gr. Size S. Plate C-38	1 100	
15	grey to brown, laye	pred	s	2 100 x	
	sandy		s		
20 5M	<u>SAND</u> fine grained, tr wet	ace of silt,	Gr. Size	4 100	-
25					
30	fine grained, brow	vn, wet '	5	75 100 %	PLATE

						, <u>, , , , , , , , , , , , , , ,</u>			TE	ΞS	Т	нс		Ε		L	0 G
	F	CONSI	HAR		EN(ASSOCIATES LTD.	PRO	JECT									TEST HO
	/							TAG	Ll	J	GΑ	S P	Ľ	۹N	Т		NO. <u>H76-B</u> (cont.
LOGGED E	3Y 5	вам в	MR		D	RAWN BY BT		CHECKED)		RST			DAT	E	Fe	ebruaru, 1976
RIG	Heli 1	rill			N	THOD		START		Janu	ary 15	, 1976		FINI	SH		
PROJECT	NO.		cs 31	61		ELEVATION						AIR TE	MPE	RAT	URE		-40° C
Wp- I W Dynam Penet Blo 20 MOISTURE 20	ic Cone ration ws/Ft. 40 60 CON1 40 60		DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG	DESCRIPTIC	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOR TEST	DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARK
			-	SM		SAND fine grained, b	:own,	wet		UF							
													5 6	Х	67%		
	+++		-35														
	╋		-														
┝─┼╌╫╌┼╴			-			fine grained, br ew n	, wet				Gr. S.	ize	67	\bigtriangledown	5.34		
	+										Plate	C-40	-	\triangle	538		
			40			laver of clav, medi	um pla	stic									
		_	-														
	+++		-														
	+		-			possibly permafrost	inte	rface					58	Д	50%		. • •
┠─┼─╂─┼╴	┼╌┼╶╂		-			Bottom of Hole at 43.	2 Feet	±.									
	┼┽╀	-	-45										•				
			-														
			-														
┝╌┼╌╄╌┼╴	┼┼┼		L														
┝╌┾╌┽╌┽	┨╌┨╌┨		-														
┝╍┼╍┼╌┼	╉┽╋		-														
┝╌┼╌┠╶┼╴	╆┼╂	+	-														
	+++		-														
			-														
						•											
			_						•								
┝╌┼╶┠╌┠	╂╌┠╶┠	_	-						•							ļ	
																	PLATE

ł

Anna a su

L

-

•

		TE	ST HOL	E L	.0 G
CONSULTING E	& ASSOCIATES LTD.	PROJECT	GAS PL	ANT	TEST HOLE NO. <u>176-BH11</u>
OGGED BY MR	DRAWN BY BT	CHECKED	RST	DATE	February, 1976
RIG HELI DRILL	METHOD	START JAN	UARY 15, 1976	FINISH	
PROJECT NO. cs 3161	ELEVATION		AIR TEMP	PERATURE	
$W_{P} = \Box W = O W_{L} - \Delta$ $DYNAMIC CONE$ $ENETPATION TEST$ $blows/ft.$ $20 40 60$ $MOISTURE CONTENT$ $20 40 60$ US	DESCRIPTION	L GRAPHIC LOG	HABORATORY HABORATORY HI HABORATORY HI HI HABORATORY HI HI HI HI HI HI HI HI HI HI HI HI HI	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
	<u>ICE</u>		ICE		
5	WATER		UF		
10 ML	- bottom of channel <u>SILT</u> fine, sandu, brown layers of fine sand, tr wet	, occasional cace of clay,			
15	trace of sand '		GRAIN SIZE S PLATE C-41	1 100 %	
	fine sandy, brown,	wet possible	s	2 47	-
	<u>CLAY</u> silty, trace of sa grey mottling, low firm, occasional inc organics	nd, brown plastic, lusions of		75	Redrilled hole to get mast boulder sizes
25 ML	<u>SILT</u> , little sand, dark brown, low plastic, spongeu	k grey to , firm,		100 x	
SM 30	<u>SAWE</u> , trace of silt, ru grained , layered	ust, fine ' reu to brown	Grain Size Plate C-42	55	

						T	ES	T	нс)L	E		 	06		
	M.HAF	NG E	& ASSOCIATES LTD. NGINEERING & TESTING	PRC	DJECT TAG	LL	J	G A	S P	LA				TEST NO.	HOL <u>H76-BH</u>	.E
LOGGED BY	र		DRAWN BY BT		CHECKE	D	RS	r			DA.	TE	Fe	bruary,	1976	÷
RIG HELT DRILL			METHOD		START	JA	NUA	<u></u>	1976		FIN	ISH				
PROJECT NO.	CS	3161	ELEVATION						AIR TE	MPE	RAT	URF		·	· · · · · · · · · · · · · · · · · · ·	
W _P -⊡ W-⊙ W _L - ● DYNAMIC CONE PENETRATION TESS blows/ft. 20 - 40 60 MOISTURE CONTEN 20 40 60	DEPTH (feet)	SOIL GROUP SYMBOL	DESCRIPTIC	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	RATORY DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REM	MARKS	
		SM	SATUR fine grained, si brown and dark grey, Bottom of Hole at 50.4	lty, wet	layered t.		UF	Gr. S: Plate	ize C-43			50%				╸╶╶╴╴╴╴╴╸╺╸╺╺╺╺╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╴╴╴╴╴╴
													P	LATE	C-21	

ł

L

1

۰.

. •

1

-

.

_____] . . ___] ____]

GU 202-0373

1 · · · · · · · · · · ·

]

1

1

• •

· · · }

*****- 1 ~**`** 1

~**]**

T

.]

. _____

.

1

. .____ . Sandara and a state -. -.....

•

1

•

·....

1

. .

.

. ____

_____ . . _____ .

____]

CS3161

8 - - - WALL

_____] _____ . J 1 _____

OU 202-0375

.___] . .___]

. . . السب 1

					SUMMAR	RΥ	C)F				OJECT ^{TA}	nglu G Big H	as Pla	int int-Chann	
	CONSULT:		& A33		LABORATORY TESTING			January, 1976								
SAMPLE DATA							CLA	SSII TES	FICA	TIO	N OTHER TESTS					
57 916	11H	ON	ICATION	SOIL	DESCRIPTION				TE	(%)	RE		17 517 CF)	TURE TENT		
U H			CLASSIF				LIQUI PLAST PLASTIC FLASTIC	NVS	2117	CLAY	Den 3		MOIS CONT			
H76-BH1	10- 11.5	51	ML	SILT, littl	e fine sand,saturated				3	85	12					F.
H76-BH1	19- 20.5	53	SM	SAND, fine silty,layer	to medium grained, ed, wet				70	22	8					
H76-BH2	10- 11.5	<i>s</i> 1	NL	SILT, sandy grey, layer	, low plastic,dark ed				18	72	10					,
H76-BH2	21- 22.5	53	CI	CLAY, silty medium plas soft to fir	,trace sand, low to tic,brown to grey, m	27	14	13								
H76-BH2	26- 27.5	54	SM	SAND, fine to brown, 1	grained, silty,grey ayered				64	29	7					
H76-BH3	4-5	W1	ML	SILT, trace grey	sand, low plastic,	26	22	4								
H76-BH3	15- 16.5	С3	CL to CI	CLAY, very plastic,bro organics	silty,low to medium wn, layered,trace				16	72	12					
H76-BH4	15- 16.5	52	NL to SM	SILT, very non plastic	sandy,fine grained, ,layered				37	54	9				•	
H76-BH4	22- 24.5	54	SM	SAND, fine silty,brown	to medium grained, ,wet				73	20	7	•.				
H76-BH5	12- 13.5	51	ML	SILT, very grained, tr grey	sandy,fine to medium ace to little clay,				40	42	18					
H76-BH5	·24- 25.5	54	SM	SAND, fine clay, occas layered, gr	grained, silty, trace ional gravel sizes, ey				61	28	11					
H76-B R5	36- 37.5	57	· SP	SAND, fine	grained, silty				91	9						
H76-BH6	22- 24	53	SM	SAND, fine gravel size silty,brown	to coarse grained, s to 2° diameter, ,wet				86	12	2					
H76-BH6	33- 35	56	SM	SAND, fine	grained, silty,brown				72	28						
H76-BH6	40- 41.5	58	SP	SAND, fine some gravel	grained, silty,brown sizes	1	•		97	3						
		L				<u> </u>									PLATE C-4	4

-

.

						Γ							Taglu Gas Plant						
						SUMMARY OF LABORATORY TESTING					PROJECT Big Horn Point-Channel								
		COMBULT	ARDY		PPOT ESSIGNAL BERVICES					2	DATE January, 1976								
												NO.	CS316	1					
	SAMPI	. E	DAT	A		CLASSIFICATI						OTHER TESTS							
•••							AT	ATTERBERG TEXTU						1	1				
	TEST HOLE	DEPTH (++)	SAMPLE	CLASSIFICATI	SOIL	DESCRIPTION		PLASTIC	PLASTICITY V	QNVS		CLAY	WET DENSITY (PCF)	DRY DENSITY (PCF)	MOISTURI CONTENT (%)				
	H76-BH7	18- 19.5	53	CI	CLAY, silty medium plas stiff, coal	,fine sand layers, tic,grey to brown, particles	30	17	13										
	H76-BH8	13- 14.5	52	ML	SILT, sandy layered, or	, fine grained, ganics				3	82	15							
	176-BH9	6- 7.5	<i>S</i> 1	ML	SILT, claye wet	y, trace sand,brown				3	81	14							
-	H76-BH9	13- 14	A1	SM	SAND, fine trace silt, sizes	to medium grained, occasional gravel				52	42	6							
	H76-BH10	7- 8.5	<i>s</i> 1	ML	SILT, sandy plastic, we	, clayey, low to nor t	2			16	77	7			· ·	•			
	H76-BH10	22- 23.5	54	SM	SAND, fine	grained, silty, wet				70	24	6							
L	H76-BH10	37- 38.5	57	SM	SAND, fine	graineđ, silty, wet				82	18								
Land	H76-BH11	12- 13.5	<i>S</i> 1	ML	SILT, sandy	, fine grained,trace	9			2	88	10							
-	H76-BH11	20- 22	53	CL	CLAY, silty plastic, oc	,trace sand, low casional organics,	27	17	10				•						
	H76-BH11	28.5 30	55	SM	SAND, fine	grained, silty,layer	red			63	37								
	H76- BH11	38 39.5	56	SM	SAND, fine	grained, silty,layen	red			75	25								
														·					
													~						
																PLATE C-45			

i.
Sec	tion	Volume	Base of over	burden 25'	25'	-35'	35'.	-50
		of O/B yd ³ O-X	Processed Volume yd ³	Vol. of Waste yd ³	Processed Volume yd ³	Vol. of Waste yd ³	Processed Volume yd ³	Vol. of Waste yd ³
	9-BH4	83,844	184,527	55,119	91,031	19,310	95,762	49,332
в-в	BH4-11	73,889	114,400	45,600	57,933	12,289	66,275	14,058
	11-вн8	59,496	88,721	18,820	47,363	3,896	52,995	7,227
	2-2	100,837	74,875	5,205	50,336	6,864	53,554	15 ,99 6
	2-BH6	14,963	131,022	9,108	37,482	5,111	35,521	7,535
	BH6-1	30,707	57,165	7,795	27,378	0	24,255	5,145
	1-8	92 , 250	35,640	18,360	29,040	18,960	33,413	27,337
	8-BH5	98,963	86,973	44,805	59,091	17,650	75,802	22,642
	вн5-10	38,080	22,511	8,973	23,548	0	23,669	7,070
A-A	10-13	223,243	38,214	24,950	85,758	11,694	91,408	36,436
	13-16	129,956	37,453	16,591	40,363	20,792	0	0
	14-18	52,080	200,459	36,211	75,075	15,925	45,680	9,690
	10-BH1	21,837	178,189	37,798	60,836	12,905	72,348	15,346
	BH1-BH10	74,667	71,803	21,447	40,975	8,692	40,605	12,128
	BH10-19	19,556	12,952	4,622	9,044	1,919	3,996	1,515
	19-20	215,861	85,201	32,318	74,234	22,173	44,896	17,030
Total	S	1,330,229	1,420,105	387,722	809,487	178,180	760,179	248,487
For 5	0' excava	tion:						
	Tota	l Volume of	Processed Mat	erial		2,989,771		
	Tota. Tota	I Volume of	Waste Material Suit	able for Dr		814,389		

TABLE C-2. BORROW CALCULATIONS FOR BIG HORN POINT CHANNEL

APPENDIX D

BIGHORN BLUFF AREA BOREHOLE AND LABORATORY TEST DATA

TABLE D-1 TEST HOLE CO-ORDINATES FOR BIG HORN BLUFF AREA

Test Hole	N (met	res) E
H76 BB1	7,698,550	505,470
2	7,698,713	506,185
3	7,699,030	506,230
4	7,698,995	506,440
5	7,699,125	.506,365
6	7,698,820	506,115

(U.T.M. Zone 8)

[_____]

1.

1 L

.

									_				T	ES	Т	нс)L	E		L	OG	
E				c	0N5	SUL	AF	VG	EN	ASSOCIATES LTD.	PRC	DJECT	LU]	GAS	5 P	LA	۹N	т		TES NO	Т НО . <u>#76-вв</u>
LOGG	ED	81	,	Ľ	<i>v</i>				4	DRAWN BY BT		CHECKE	D	R	ST			DAT	ΓE	Fe	bruary,	1976
RIG	E	lel	i D	ril	1					METHOD Wash		START	Jan	uar	y 16,	1976		FIN	ISH			
PROJ	EC	T	NO.		c	:s .	316			ELEVATION						AIR TE	MPE	RAT	URE		-40° C	
WP- MOIST 2		E 4	- © co	W ON T	ENT	r	DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG	DESCRIPTI	ON		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	ATORY DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	RE	MARK
			Τ	Τ		T		SM		SAND and silty, fine	, med	lium		Nbn				∇	100			
										ICE massive, vertica (silt < 5%)	l str	ingers	- Antonio -	ICE (95	+%)		<i>c</i> 1	Ň	*	IV		
	4	,¢	_	╉			5	ML		<u>SILT</u> some medium to clayey, low plast	fine ic, p	ebbles		Nbe 20%	Gr. S.	ize	C2 C3		100 100 200	III III		
							10		All the state of the second	ICF				ICE	Plate	D-7						
								ML		<u>SILT</u> sandy, fine gra of coarse sand, bro plastic <u>CLAY</u> (Till) silty, s plastic, brown, occ gravel sizes; some	ined, wn, 1 andy, asion fine	ow ow medium mal to	· + + + + + + + + + + + + + + + + + + +	ICE 60% Vx 20%			C4		200 X	II		
			10-				25			coarse sand ice content de	creas	ing	+ + + + + + + + + + + + + + + + + + +	Nbe			W1	X				
		6	/ -			 - - -	20				•	:	+ + + + + + + + + + + + + + + + + + +				W2	X				
						+++++++++++++++++++++++++++++++++++++++				Bottom of Hole at 21	.0 Fe	et.										
						+-: + +	25															
						+	0														PLATE	D-1
					,													L	I			

ł

and desired in the second

L

	TEST HOLE LOG
CONSULTING ENGINEERING & TESTING	PROJECT TEST HOLE TAGLU GAS PLANT NO. <u>H76-BB2</u>
DIGGED BY DV DRAWN BY BT	CHECKED RST DATE February, 1976
G Heli Drill METHOD 3" CRREL	START January 16, 1976 FINISH
ROJECT NO. CS 3161 ELEVATION	AIR TEMPERATURE -40° C
VP-DW-OWL-A (19) HI OISTURE CONTENT 20 40 60 VP-DW-OWL-A (19) HI HI HI HI HI HI HI HI HI HI	ICE GRAPHIC LOG VISUAL LOG VISUAL LOG VISUAL LOG SAMPLE TYPE SAMPLE CONDITION CORE RUN AND CORE CONDITION
ML SILT sandy, trace layered	$\begin{array}{c} clay, brown, + v_{x} \\ + 100 \\ + 202) \\ 1 \\ \hline 1 \\ 1 \\$
ML SILT little sand, brown, layered	20% soil C3 100%III trace clay, Vs 30% C4 100%IV 50% C5 100%II Vs 100%II Vs 10% C6 100%II Vs
10 grey brown, lay	ered $(Vr) = \frac{Vr}{153}$ C7 100%II + Vx C9 100%II + 20% et 11.5' C10 100% II
ICE silt layers, 3	+ 40% at 11.5 cit 0% v cit 10% i cit 10%
Q ML SILT clayey, trace occasional coarse organics, dark gr	e of sand, fine sand, trace o ey. (14) wx
25	LES (ML) ICE+
CI CLAY medium plasts medium sand, trac grey brown	$\begin{array}{c} c, trace of \\ re of coal, \\ + \\ + \\ + \\ \end{array}$
Bottom of Hole at	28.5 Feet. PLATE

j

.

.

									T	ES	Т	HC)L	Ε		L	OG
		F	2.M.I	HAF		/ &	ASSOCIATES LTD.	PROJECT								Τ	TEST H
								TAG	LU	J	GAS	S P	L	A N	т		NO. <u>H76-E</u>
								L									
LOGGE	DBY		DV	/			RAWN BY BT	CHECK	D	1	RST			DAI	E	Fe	bruary, 1976
RIG	Heli	Dr		2761			AETHOD CRREL/AIR	START		Tanu	ary 16,	, 1976		FIN	SH		408 0
W		<u>,</u>	cs	5161	٦g	6	ELEVATION		0	T	r	AIR TE	T		URE		-40- 0
wp c			L 23	(i e	SYME	Ľ			2	а 2 8			YPE YPE		AND	TION	
				Ē	٩ ع	NH C	DESCRIPTIC	 A1	PHIC	ΞŪ	LABOR	ATORY			N N N N N	IONO	05440
				Ŧ	GRO	GRAG	DESCRIPTIC	'IN	GR/	SUAL	TEST	DATA	MPL		REC	С Ш	REMARI
MOIST	URE C	ONT	ENT	DEP	اتح ا	E			LCE	NR0			S	AMPL	% ORE	COR	
		Ť	<u>}</u>		Š	0 0	MOSS grass cover		4+	Vx.				S			
				-	ML		SILT		[+]	Vr Vr							
				•	Pt		PEAT silty, black]+				AI	\bowtie	80%		
			/		ML		<u>SILT</u> clayey, sandy, to organics, low plasti	race of c									
		~		Ĺ.					[+]								
	ĺ						trace of organics.	occasional	 					ŀ			
	စု						gravel sizes to 1/	'2" dia.	+				AZ	Ϋ́			
	ò					J			+				<u>c1</u>		1 <i>0</i> 0	III	
- + + + + + + + + + + + + + + + + + +	-+		_	Ļ	ΓI	\mathbb{V}	<u>CLAY</u> silty, trace of low plastic, gravel	fine sand, sizes to	+ +	VX 80%			H#2		100	*	
				- 10		\mathbb{V}	1/4" dia., brown to	grey	+								
+ + +	-+	$\left - \right $	_	-		V	gravel sizes (till-like)		+ 				H				
	╶╁╌┼╼┥	┝╌╂	+	-					[+]						1003	111	
		\square		-			brown to grey, low plastic, silty, sa	to medium and, occasio	[+]	40							
				f			al gravel sizes								·		
				-15					+				ci		100	I	
									++				-				
				Ļ		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u>ICE</u> c l ay so il inclusi	ons		ТСІ 901	+						
				Ļ	┢	5 A 194	ICE clay, trace of sa	 nđ		IC	\$ +						
+ + +				- 20	CP.		SAND fine and 1	abe been		70							
		$\left \right $		-	ſ		clean, non plastic	ynt Drown,		NDI							
	} <u> </u> _	┝┼	+-	-			silty	rainea,					W3	\bowtie	200		
	b	\vdash	+	F			increasing grey co siltu	lor, more				•	W4	\boxtimes	200		
				h													
				- 25	CI		CLAY silty, snadu. lo	w plastic.					W5	Ŕ	100		
					sc		grey to brown						W7		100		
				L			Louiz crayey, sirry, a	ary grey									
+ + + + + + + + + + + + + + + + + + +	+++			-		.	Bottom of Hole at 27.	0 Feet.									
				30											•		PLATE

~

Law Part -

· · ·

										•	TE	ES	T	HC)L	E		L	OG	
E)-	(CONS	HAF	NG	EN	GINEERING & TESTING	PRO	ыест - ТА	G١	_ U	G	AS	Ρ	LA	N,	г	ТЕЅТ Н NO. <u>#76-</u>	OL - B B
LOGG	ED	BY		SGM	<u>.</u>			DRAWN BY YK	1	снескет)		RST			DAT	ΓE I	Febr	ruary, 1976	
RIG	H	əli	Dri	11				METHOD 3 3/8, Air Flus	sh	START	J	anua	ry 17,	. 1976		FIN	ISH	Ja	naury 17, 197	'6
PRO	JECT	N	0.	cs	3161			ELEVATION						AIR TE	MPE	RAT	URE	-	-50° C	
W _P -		N - (E (40	O V CON	NL-A	DEPTH (feet)	SOU GROUP SYMBO	SOIL GRAPHIC 1.06	DESCRIPTIO	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOR	DATA	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARI	ĸs
						P1 M		<u>PEAT</u>		ſ	+ +	Vx 40%								
					Ţ			<u>SILT</u> little fine to clayey, occasional	medi: grave	um sand, el sizes	; + + . +	40.0								
		\bot			1			brown			+++		Gr. S:	ize						
┝╌┝╸		0	<u> </u>		4			zones of ice r	ich s	soil	+ +		Plate	D-8	Al	\succ			4	
┝─┼─	┨┤	_			-5						+ _ +									
┝─┼─	┞┤				+			trace of clay			+++	20%			122					
┝╌┼╴	•	+-			4						+ 1				AZ	P				
\vdash		┿			+						+ +									
	Ŧ	}│-	+	┠─┼╾	+			low to medium pla layers	stic	clay	+_+				A3	×			4	
\vdash	╉┼	+	+		+10						++	35%								
┝┼╴	╂╌┼	+	+		╉						++									
┝╍┼╌			+		+	Ci		<u>CLAY</u> (till-like) sil	ty, .	little	+++++++++++++++++++++++++++++++++++++++	40%				\ge				
┝┼╴	++	+	+	┠╌┼╸	+			fine to medium sand gravel sizes to 1/2	, oc " di	casional a.,	+ + _+									
┝┼╸	╏┤	+	+		+			dark grey, low to m plastic	ediu	m	+ +									
			+-		+15		V				+++++++++++++++++++++++++++++++++++++++	35%			AS	\bowtie			1	
					Ť						+ + + -								1.	
					Ţ		V				+									
							V				• + -				A 6	\bowtie]	
					-20		V	high ice content			+ + + +									
\square	┞				†		V	sandy	•		+_+					L,				
┝┼╴		ͽ			+		V				+ - . +				AZ	ř	+		- ·	
\square	$\downarrow \downarrow$				4						++									
\vdash	\downarrow				4		V	very sandy			++	403				L			4	
┝┿	╞	0			+25		V	1			+ - + +				A8	ŕ	+		1	
┣- <u>┣</u> -	┨┤	+	+		+		1				+ + +					•				
\vdash	┠╌┤	+	+		+		V	some fine to coar	se s	anđ	+ +	259			A9	\vdash			- ·	
\vdash	$\left \cdot \right $	<u> </u>	+		+		V	1			+ + +				Γ					
\vdash	╉┤	+	+	$\left \right $	+		V				+									
	1 1		1		30		¥	1	~		+	209			1	L.		L	PLAIE	4

1.1

		T	EST H	IOLE L	.0 G
CONSULTING	& ASSOCIATES LTD.	PROJECT			TEST HOLE
		TAGLI	JGAS	PLANT	NO. <u>176-885/</u>
	· ····				
LOGGED BY SGM	DRAWN BY YK	CHECKED	RST	DATE Fe	ebruary, 1976
RIG Heli Drill	METHOD Air-Flush	START Ja	nuary 16, 197	6 FINISH Ja	anuary 16, 1976
PROJECT NO. CS 3161	ELEVATION	ø		TEMPERATURE	1
MOISTURE CONTENT 20 40 60	DESCRIPTIO	Z ICE GRAPHIC LO	W & LABORATO U LABORATO U TEST DAT UNA UNA	E A A AND NUMBER AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
Pt	<u>PEAT</u> fine fibrous, d	lark brown,	Vr 50*		
	isolated cobble		504 50 603		
5 ML to	<u>SILT</u> very sandy, cla to low plastic, med	yey, medium + lium brown, +	Vx, Vs		
	high ice content	+	40% Gr. Size Plate D-	A2 C2 100%TI	
	isolated cobble high ice content	+			
20	- trace of medium s.	and ["	H	A3 📉 🔤	
Ġ	trace of medium c high ice content	oarse sand, +	H H		
		+	701		
0		+ +			
	low plastic, dark	e of sand, +			
	occasional coarse	sand sizes +	50% Gr. Size Plate D-1	10 46	
20		+		A7 🔀	
	clayey, low to med	lium plastic			
	coarse sand partic	21e +		C5 03 A8	
		+ +			
	-			A9	1
		+	201	C6 100%III	· [
30		+			PLATE
		l+		A1d×	

eren eren eren

100

.

.

-

Bottom of Hole at 30.5 Feet.

		Т	EST	HOL	Εl	_0 G
CONSULTING E	ASSOCIATES LTD.	PROJECT TAGL	U GA	S PL	ANT	TEST HOLE NO. <u>H76-BB6</u>
OGGED BY DV	DRAWN BY BT	CHECKED	RST		DATE	Febru a ry, 1976
NG Heli Drill	CRREL and METHOD Air Wash	START	January 16	, 1976	FINISH	
PROJECT NO. CS 3161	ELEVATION			AIR TEMP	ERATURE	-40° C
NP- W - O WL-A (1991) HI day HI day	DESCRIPTION	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % S3 008	RATORY JIAN	AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY	REMARKS
C ML	SAND silty, trace of fine to medium grain brown SILT sandy, clayey, m brown, low plastic, coarse snad, gravel	f organics, in med, light medium trace of to 2"-3"dia	Nbn Vs 302 ICE 703	c.		II V
5 CL	<u>CLAY</u> (till-like) sandu plastic, gravel size gravel encountered 3"-4" dia. rock silty, sandy, occa gravel sizes	u, silty, low es d, low plast asional	Vs, Vr 403			-
10						
	dark brown to dar low to medium play silty, trace of f. occasional gravel 1/2" dia.	k grey stic, grey, ine sand, sizes to	30%	N	2 80% 	
20	grey little fine sand	•		P	74 80%	
25	3" thick gravel 1	layer				
	• Bottom of Hole at 2	27.0 Feet.				PLATE

. .

.

Γ.

1

1

.

. · · ·

GU 202-0373

.

. •

____]

•

GU 202-0373

.

0	R.M.H		4 AS		LÁB	SUN OR/	MMAR TORY	Y ר	C TES)F ST	IN (G		OLECT 7	aglu Big Ho Lanuar CW3161	Gas Pl rn Poi 9. 197	ant nt - Chan 6
SAMP	LE	DAT	A						CLA	SSI	FICA	TIC	N		OTHE	R T	ESTS
	ž,	110	CATION	SOIL	DESCRIF	710		ATI	IMI	ERG TS	T	(%)	RE	<u>ل</u>	LE -		
H OH		¥ž S	CLASSIFI					110011	PLASTIC	PLASTICI INDEX	GNA 2	111s	CLAY	DENS!	DENS (PC	MOIST CONTI	
H76-BB 1	5.2- 6.0	C3	ML	SILT, sandy grained, oc low plastic	, fine to casional , clayey	medi: grave.	um l sizes,	27	13	14	41	36	23				
H76-BB4	3- 4.5	A1	ML	SILT, sandy grained, cl sizes	, fine to ayey, occ	medi asion	ım al grave	2			28	48	26				
Н76- ВВ 4	8~	A 3	ML	SILT, sandy clayey, occ more clayey	, fine to asional g	medi: ravel	ım grain sizes,	ed 32	15	17							
H76-BB5 .	6- 6.5	A2	ML to CL	SILT, very medium plas	sandy, cl tic, brow	ayey, n	low to	· · ·			41	37	22				
H76-B B5	18- 18.5	A6	ML to CL	SILT, less medium plas	sandy, cl. tíc,brown	ayey,	low to				29	46	25			. ·	
H76-BB6	2.5- 4	C2	CL	CLAY, sandy occasional	, silty, gravel si	low p. zes	lastic,	25	14	11							
								-									
					<u></u>	<u></u>											
														••			
					<u></u>												
	~																
					<u> </u>												

i e

APPENDIX E

POTENTIAL ALTERNATE BORROW SOURCE BOREHOLE AND LABORATORY TEST DATA

TABLE E-1 TEST HOLE CO-ORDINATES; POTENTIAL ALTERNATE BORROW SOURCE

Test Hole	N (met	res) E
H76 G-1	7,642,240	498,360
2	7,692,460	498,450
3/3A	7,692,490	498,210
4	7,691,630	497,650
5	7,691,170	497,765
6	7,690,805	497,790
6A	7,690,820	497,755
9/9A	7,692,040	497,690
12	7,692,300	497,660
13	7,691,850	497,630
13A	7,691,960	497,580
14	7,691,280	497,280
15	7,691,860	497,300
16	7,692,060	497,360

(U.T.M. Zone 8)

.

;-

. *

ĺ.

.

						00	~					TES	ST	но	L	-		L	OG
)-	C	005	ULT	ING	E	NG	INEERING & TESTING	PRO	JECT TAG	LU	G A	S P	LA	۸N	Т		TEST HO NO. <u>1876-0</u>
LOGGE	ED 8	IY	so	GM 6	DV			DF	RAWN BY BT		CHECKE	י כ	R.ST			DAT	E	Fe	bruary, 1976
RIG	He	11	Dril	11				м	4" ID CRREL, ETHOD MALMAC		START	Decer	nber 19	, 1975		FINI	SH	De	cember 19, 19
PROJ	ECT	NC).	cs	316	1	-		ELEVATION				·	AIR TEI	MPE	RAT	URE	-	30° C
W _P -1 MOIST	URE 0	- C	w сом тио	EN1	DEPTH (feet)		SOIL GROUP SYMBOL	SOIL GRAPHIC LOG	DESCRIPT	ON		ICE GRAPHIC LOG	A LABO	RATORY T DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REMARK
					<u> </u>		ľ	1 . 4 J # .	ICE			IC	E						
					- 2	M	L		<u>SILT</u> clayey, trace is sand, medium grey, lense of fine sand	o litt occasi to l"	le fine onal thick	"1 10 20			C1 C2		100 % 100 %	I III	Cuttings fr above bit-pr with compres
					- 3														••
					- 4 5 6	 C1			<u>CLAY</u> silty, low play of fine sand, grey	itic, t	race								
					+ 7 + 8 + 9														
					-10				Bottom of Hole at 10	.0 Feet									· · · · · · · · · · · · · · · · · · · ·
											•								
					+														
	T	\square	IT	Γ	T														PLATE -

·

RMHARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING TAGLU GAS PLANT TEST HOLE TAGLU GAS PLANT TEST HOLE OPRAWN BY MT METHOD STATE JANDARY 3, 157C PROJECT TEST HOLE NOT CONSULTING ENGINEERING & TESTING METHOD STATE JANDARY 3, 157C PROJECT TEST HOLE NOT Consultion of the state of the st		-	TEST HO	DLE L	. O G
GGED BY MR DRAWN BY BT CHECKED RST DATE Pebruary, 1976 S Mell Drill METHOD START Jammary 3, 1976 FNISH. IOJECT NO. CS 3161 ELEVATION AR TEMPERATURE -30° C p	CONSULTING ENGINEERING & T	PROJECT	U GAS P	LANT	TEST HOLE NO. <u>#76-62</u>
S MeI Drill METHOD START Jammary 2, 1376 FMISH IOJECT NO. cs 3161 ELEVATION AR TEMPERATURE -30° C p=D W - O W_L - 4 i	OGGED BY MR DRAWN BY B	T CHECKED	RST	DATE F	ebruary, 1976
DUECT NO. cs 3161 ELEVATION AR TEMPERATURE -JO* C $p^-\Box$ W - O WL-A (i)	RIG Heli Drill METHOD	START	January 3, 1976	FINISH	
P-D W-O WL-A Image: State of the stat	PROJECT NO. CS 3161 ELEVAT	TION	AIR TE	MPERATURE	-30° C
Image: Second state of the second s	NP-□ M-0 ML-A (100 KINE CONTENT 20 40 60	CRIPTION	DIHAN UHAN UHAN UHAN UHAN UHAN UHAN UHAN U	SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	ICE ICE ICE ICE ICE ICE ICE ICE	greyish brown, non plastic, very soft latancy ained, silty, brown, , medium dense, wet (to 1/2") layers brown trace to little fine greu, medium plastic ff (till-like)	ICE UF Grain Size Plate E- 24 Grain Size Plate E- 25	S1 97% S2 100 % S3 53% S4 67% S5 53% S5 53% S5 53% S7 67%	N = 9 blows/foot N = 14 blows/foot N = 13 blows/foot
30 PLATE	30 as above	·			PLATE

		TEST HOLE LOG
CONSULTING E	& ASSOCIATES LTD. NGINEERING & TESTING	DJECT TEST HOLD TAGLU GAS PLANT NO. <u>H76-G2</u> (cont.)
LOGGED BY MR	DRAWN BY BT	CHECKED RST DATE February, 1976
RIG Heli Drill	METHOD	START January 3, 1976 FINISH
PROJECT NO. cs 3161	ELEVATION	AIR TEMPERATURE -30° C
WP-D W-O WL-A (100) HTA3 HTA3 HTA3 HTA3 HTA3 HTA3 HTA3 HTA3	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % SAMPLE TYPE SAMPLE CONDITION CORE RUN AND CORE CONDITION CORE CONDITION
	CLAY silty, trace to litt sand, brown-grey, medium firm to stiff (till-lik SILT very sandy, trace of	le fine plastic se) f clay,
35	dark grey, non plastic, lenses interbedded, wet	clay 59 532 N = 8 blows/for
	trace of coarse sand	510 67% N = 8 blows/fo
40	Bottom of Hole at 40.0 Fee	et.
	•	
		• PLATE

(

i

τ.

2

a tananging a yang di

. .

and the second s

_

	TEST HOLE LOG
CONSULTING ENGINEERING & TESTING	PROJECT TEST HOLE TAGLU GAS PLANT NO. <u>H76-G3/03</u>
OGGED BY SGM DRAWN BY BT	CHECKED RST DATE Febraury, 1976
NG Heli Drill METHOD 3" CRREL	START January 3, 1976 FINISH
PROJECT NO. CS 3161 ELEVATION	AIR TEMPERATURE -25° C
$N_{P} = \Box W = O W_{L} = \Delta$ $(\begin{array}{c} 000 \\ 1$	ICE GRAPHIC LOG VISUAL ICE TYPE VISUAL ICE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE CONDITION CORE RUN AND CORE CONDITION
PT PEAT fine fibrous, med reindeer moss, grass	lium brown, + Vx
<u>SAND</u> fine to medium gr grey, poorly graded,	rained, silty
5 Jier light grey, silty,	fine grained $Plate E-26$ Cl $\frac{1}{2}$ 11
	C2 02 V
┿╋╌╋╌╄╌╄╌╋╴╎╴┋┋┋	
┿╼╆╌┼╌╊╌┼╌╃╴╴┃╴┋┋┋║	
clay lense	
10 10 grey to brown	ined, light
drier, trace of cla	ay, mottled, $C6 \times \frac{100}{2}$ IV
	C7 100 TIT
gravel piece (1" d	iameter)
	clo Ox v Sheared off when
Bottom of Hole H76-G3	
	du modium + Grain Size
20 plastic, occasional	$\begin{array}{c} \text{gravel} \\ \text{for } \\ \text{gravel} \\ \text{for } \\ \for } \\ \text{for } \\ \for \\ \for } \\ \for \\ \$
Sizes to 1/2" diamen	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 40 \\ 1 \\ 1 \\ 1 \\ 40 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
+++++++ [2]	
more ice rich	$+ V_{VS}$ $C13 = 50% III$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	nd, silty + (50%) layey, low + (
plastic fine grained sil	ty, trace of +
clay, dark grey	
Bottom of Hole at 30 4	Feet. $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$

		_									T	ES	Т	Н	OL	E		L	OG		
	-)	R .	NS	ULTI	NG	Ē	ASSO	NG & TESTING	PRC	JECT	,								TES	ат но	
										TAG	ίLι	J	GΑ	S F	<u>ר</u> ו י	A N	T		NC	<u>H76-</u> (Gđ
LOGGED	BY		SGM				DRAWN B	Y BT		CHECKE	ED		RST		÷	DA	ΓE	Fei	bruary,	1976	-1994
RIG H	Heli .	Drill	1	······	·		METHOD	WALMAC 3" CRREL		START		Jan	uary 4	1, 1976	5	FIN	ISH				
PROJEC	T NO			cs 31	161 ਜਿਸ	T-	1	ELEVATION						AIR T	EMPE	RAT	URE		-30° C		
w _P -⊡ '	₩ - 0	w _L	-▲	(feet)	UP SYMBC						PHIC LOG	TYPE ICE %	LABOF	ATORI	TYPE	CONDITION	N AND	NDITION			
OISTUR	E CC	NTE	NT	DEPTH	IL GRO			DESCRIPTIO			CE GRA	VISUAL	TEST	DATA	SAMPLE	APLE	RE RU	ORE CO	RI	EMARK	5
20	40	*			So So	S S					Ľ					SAA	ပို	ŭ			
				-	ML		SILT Small medit	little fine sand l pebbles (fine um grey, ice ric)	, tra grav h	nce of rel),	++ + + + + + + + + +	Vx 15%)									
				-	SM		SAND	silty, non plas	stic,	fine	+++										
┽┽┼	╶╂┤	+	$\left \right $	- 5			grain of or	ed sand sizes, l ganics	rown	, trace					<u>c1</u>	Х	100	IV			
┿╉┤	╶┼┼	+	$\left \right $	-			- gre	ding to silt				Nbr							· ·		
╈╉	++	+	┝╌╂	-	ML		SILT	ittle clau, brow													
+				•																	
				- 10								VS, 30%)			C2	Z	100	TI			
																		-			
┥ ┥ ┥				-			med	lium grey				Vx, Vs									
┾╋╋	╶╁╶╁╴	╉╌┤	+	-			ice	lenses to 1/2"				15- 209					100				
╉╍╂╸╂	┼┽	╉╌╂	-+	-15											C3	Ą	*				
				-			bec gre	oming very claye Y	y, đ	arker					•						
┝╋			+	- 20			ver	u claveu				Nbr			C4		Q0 I	Ţ			
┝╋╋			+				rou	nded cobble to l	1/2'	dia.					C5	Y	v	-			
┝┠┼	╋╋	╉╌┼	+	ļ	CI		CLAY S	ilt, trace of se	nd . 1							,	001				
				- 25			mediu ver thio	m plastic tical ice fissur ck	es to	o 1/8"					C6	4		TV			
┝╋╋			+				sil gra	ty, trace of san vel sizes to 1" o	d, br dia.	own,					C7	1	20 1	I			
	╂╌╂╌	┝╌┼╴	+				Bottom	of Hole at 28.5	reet.		<u></u>	+-			-/		6	+			•
	<u> </u>			301				· · · · · · · · · · · · · · · · · · ·										<u> </u> P	LATE .	<u>E-5</u>	

,

+

m

1

and the second

A second s

-

								TI	ES	Т	нс	DL	E		L	OG	<u> </u>	
	R.M.	ULTIN	IG E	A.	ASSOCIATES LTD.	PRC	DJECT TAG	LL	J	G A	S P	۲L.	A N	Т		TES	ST Н . <u>#76-</u> а	OL.E
LOGGED BY	MR			D	RAWN BY BT	•	CHECKE	D		RST			DAT	E	Fe	ebruary	, 1976	
RIG Heli Dri	i11			N	METHOD		START	J	anua	ry 4,	1976		FIN	SH				
PROJECT NO.	cs .	3161			ELEVATION						AIR TE	MPE	RAT	URE		-20° (• • • • • • • • • • • • • • • • • • •	
W _P -⊡ W - ⊙ V MOISTURE CON 20 40 6	V _L -& TENT 0	DEPTH (feet)	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG	DESCRIPTIC	N		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOF TEST	RATORY	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	R	EMARK	s
				Friday C. Burger	<u>ICE</u>				ICE									
		- 5			r bottom of channel				UF									
		- 10	ML		<u>SILT</u> clayey, fine san soft, non to very lo wet	d, bi w pla	cown, astic,					51	X	<u>100</u>				
		- 15 			fine sand, brown, non plastic, mediu highly plastic cla interbedded	wet,s m dil y lay	oft, latancy, Jer			Grain Plate	Size E -28	52 	X	100				
		- 20	CI CH OL VIX		<u>CLAY</u> silty, medium to firm to stiff	high						53	Х	100 %				
		-	EUL COMPACE		of non-woody peat, se dark brown, organic crumbly	oft c, od	lour,				(S4	X	67%		N = 8	blows/	foot
		- 25 - -	STATISTICS STATISTICS CH		<u>SAND</u> silty, trace of brown, non to very lo spongey, moist	clay ow pl	, dark astic,					S5 SPT	Х	67%		N = 12	blows/	foot
┿╋┿╋	╌┼╌╉	.		1	<u>CLAY</u> brown, highly pla to very stiff	astic	, stiff											· [
		<u> </u>	CI	2	CLAY (till-like) cont.								\mathbf{X}			PLATE	<u> </u>	<u> </u>

		TEST HOLE	E LOG
CONSULTING	& ASSOCIATES LTD. ENGINEERING & TESTING	PROJECT TAGLU GAS PLA	TEST HOLE NO. <u>H76-G5</u> (cont.)
OGGED BY	DRAWN BY BT	CHECKED RST	DATE February, 1976
RIG Heli Drill	METHOD	START January 4, 1976	FINISH
PROJECT NO. cs 3161	ELEVATION	AIR TEMPE	RATURE -20° C
Wp-□ W-0 WL-△ (199) HI HI HI HI HI HI HI HI HI HI	DESCRIPTIO	ICE GRAPHIC LOG VISUAL ICE TYPE VISUAL ICE TYPE SAMPLE TYPE SAMPLE TYPE	SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION SAMPLE SAMPLE CORE CONDITION
20 40 60 60 CI 35 35 40 40	<pre>CLAY (till-like) silt sand, brown, occasion sizes to 3/8" dia., m plastic, stiff to ver dark greyish brown sional layers of w medium plastic cla interbedded, trace material as above</pre>	y, trace of al gravel edium y stiff with occa- et sand, a lenses, of organic	80% N = 19 blows/fo
	Bottom of Hole at 42.0	Feet.	

t

i.

.

.

											TE	ES	Т	но	L	E		L	0 G	
E			R.	M.I	JLTIN	IG I	ENC	ASSOCIATES LTD.	PRO	JECT TAG	LL	J	GΑ	S P	L	A N	т		TEST NO	HOLE
OGGED	BY		м	R			D	RAWN BY BT		CHECKER)		RST			DAT	Έ	Fe	bruary, 1	976
RIG	Hel	i D	ril	1			TN	AETHOD		START						FINI	SH			
PROJEC	TN	10.		cs	3161			ELEVATION						AIR TE	MPE	RAT	URE		-20° C	
	W -	O CON	WL	-A	DEPTH (feet)	L GROUP SYMBOL	L GRAPHIC LOG	DESCRIPTI	ON		CE GRAPHIC LOG	VRC ICE TYPE VISUAL ICE %	LABOI TEST	RATORY	SAMPLE TYPE	MPLE CONDITION	RE RUN AND	ORE CONDITION	REM	ARKS
20	40		60			SOI	SOI				ž					SA	ပိ	0		
						Pt	144	PEAT					,							
	\square	1	T	Π				24.44												
							1. the 1. the of 1.	<u>MASSIVE ICE</u>				ICE								
	╞╌┠╴	+-	+		- 5		10.00								C7	$\overline{\mathbf{N}}$	674	TV	1	
+	++	+	+	+	+		1 1. J. C.									Ň	<i>0/ *</i>	10		
+-+-	┝╌┠	+	+-		-		1													
++-	++		+	-	Ļ		£										1			
+			+		Ļ															
					10													1		
	IT		ſ		10															
	\square	T	T		T															
	$\uparrow \uparrow$	T	T	1	T											1				
+++-	+	+	+	1	t															
++-	┼╊	+	+	+	t															
+		+	+-	+	-15															
++	++	+-	+-	+	+															
	\downarrow	+	+	-	Ļ						• •						1			
++			1		Ļ	SM	[]]	<u>SAND</u> fine grained, s	silty,	brown		VC							1	
					L						[:				C2		200 2	11	1	
ŀ	IT					CI		CLAY very silty, san	dy		+	Vx	(70%)		\vdash		Ļ	┼──	1	
	Π	Τ	Γ		[²⁰	SM		clay inclusions		brown -	+	1×	(50%)		C3		200 X	11		
TT	Π	T	Τ	Γ	Г			CLAY (+ill-like) eil	tu +	race of	[+]	Vx								
++	TT	1	T	T	t			sand, dark brown, a	edium	plastic	+]			-			_	-	
++-	++	+	+	+	t			}			+				C4		200			
	┼┼	+	╋	+-	ł	1	//				++				\vdash		*		4	
++	┼┼	+	+	+-	-25		//				Ŀ	4								
	++	+	+		Ļ		V	1			ŀ	4								
	\square		\bot	\bot	Ļ		V	1			+	Η								
					L		V	occasional round	ed par	ticles	+	1]	
	IT	Γ					V	of gravel to 1"	dia.,	one 3/8"	+	VX.	Vs							
				1	Т		V/	ice lense			1.1	1-1			<i>С5</i>		100	II		

					TEST	HOLE		_0 G
	CONSUL	ARDY	& ASSOCIATES LTD.	PROJECT T A	GLU GA	S PLA	NT	TEST HOLE
LOGGED BY	SGM		DRAWN BY YK	СНЕС	KED RST			
RIG Heli	Drill		METHOD WALMAC, CRREL	STAR	T January 4.	1976 5		bruary, 1976
PROJECT NO.	cs 31	61	ELEVATION			AIR TEMPER	ATUPE	
W _P -⊡ W - ⊙ MOISTURE CO	WL-A	DEPTH (feet) OIL GROUP SYMBOL	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE STAPHIC LOG VISUAL ICE YPE VISUAL ICE TYPE		AMPLE CONDITION 1 ORE RUN AND 5 & RECOVERY CORE CONDITION	REMARKS
		MI MI	PEAT fibrous <u>SILT</u> clayey, medium some organic inclus: grained sand sizes, organic material, 10 occasional gravel trace of clay, gre	brown, ions, find trace ow plastic sizes	$ \begin{array}{c} + & Vx \\ + & Vx \\ + & Vx \\ + & Vx \\ + & + \\ + $	C1 C2	70% IV 90% II	
	20	5	grey brown, rock f	rægments		C3 C4 C5	40% IV 90% II 80% TV	
	25	SP	<u>SAND</u> fine, brown grey of silt and clay clayey silt lamina	, trace tions	+ (203) + + + + VDR	C6 C7 C8	02 V 02 V 02 V	
	30	2	Bottom of Hole at 28.0	Peet.				PLATE 5-9

I.

÷.

a start and

.

-

.

.

[_____

-

		TEST	HOL	E L	.0 G
CONSULTING ENGINEERING & TES	TD. PROJECT	.U GA	S PL	ANT	TEST HOLE NO. <u>#76-g9</u>
LOGGED BY SGM DRAWN BY BT	CHECKED	RST		DATE F	ebruary, 1976
RIG Heli Drill METHOD Splitspor	on START J	January 5, .	1976	FINISH	
PROJECT NO. CS 3161 ELEVATIO	<u>N</u>		AIR TEMP		-30° C
W _P -□ W - O W _L -△ (•••) HL d MOISTURE CONTENT 20 40 60 W - O W _L -△ (•••) HL d HL d	IPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % Sal	DRATORY JI	AND NUMBER SAMPLE CONDITION CORE RUN AND RECOVERY CORF CONDITION	REMARKS
		ICE			
MATER MATER		UF			
ML <u>SILT</u> medium gro uniform, trace matter at top	ey, low plastic, e of organic , wet				-
15 SM SM SAND fine grain 15 11111111111111111111111111111111111	ned, trace to	Gr. Plat	Size 52 :e E30	2 100%	
20 SN SAND fine to congravelly, well wet SAND fine grain clayey, poorl	Darse, very silty, l graded, dense, ned, very silty, y graded, dark wared	Gr. Plat	Size 5: se E-31	3 100% 6 0%	
rapid dilat.	ancy	Gr. Plat	Size S! e E-∠32	5 100%	
25	dium sand. claueu				
clayey, sil 30 fine sand,	t layers clean	Gr. Plat	Size e E-33=	5 1005	PLATE

		TE	ST HO)LE	LOG
CONSULTING E	ASSOCIATES LTD.	ROJECT TAGLU	GAS P	LANT	TEST HOLE NO. <u>H76-G9</u> (cont.)
DGGED BY SGM	DRAWN BY BT	CHECKED	R.ST	DATE	February, 1976
IG Heli Drill	METHOD Splitspoon	START Ja	nuary 5, 1976	FINISH	
ROJECT NO. cs 3161	ELEVATION	······································	AIR TE	MPERATURE	-30° C
Vp-⊡ W - O WL-▲ (10000) HLd 30 OISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG	ULABORATORY	SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY	CORE CONDITION
SM.	<u>SAND</u> medium to fine gr silty, dark gr	ained, [ey, wet	UF		
				57 100	
35					
40	some fine grave! , c	Jayey graded		58 02	
SW 2	SAND well graded, fine sizes SAND fine, poorly grade	to coarse d, silty		59	
45	Bottom of Hole at 44.0	'eet.			

-

ì.

a and a second se

and the store of

ſ

.

.

	· · · · · · · · · · · · · · · · · · ·		
CONSULTING ENGINEERING	TATES LTD. PROJECT	TEST HOLE L	TEST HOLE NO. <u>HZ6-G9A</u>
OGGED BY SGM DRAWN BY	YK CHECKE	D RST DATE F	l Pebruary, 1976
RIG Heli Drill METHOD	START	January 5, 1976 FINISH	<u></u>
PROJECT NO. CS 3161	ELEVATION		-30° C
Wp-□ W-0 WL-4 (1907) HIGSTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE % ALOLANOBA SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND CORE RUN AND	REMARKS
		UF	
	rey, some sana ana ciay, we		
15			
est	imated interface	┤││	
SAND f.	ine, silty, medium grey,wet	ALE XOX	
╶┼╍╆╌┼╶╂╌╿╴┠┋┋╢			7
	layer of grayelly sand,	Gr. Size SI X 75%	
	vel sizes to 3/4" dia.		
┼╂┼┼┼┼ ┽┤ ┃ [[]	•		
	asional gravel sizes		
┽╊┽┾┽┿┿╋╶╻╹╹╵╴			
	or Mole at 22.5 Feet.		
┽╉┼╂╉┼┾╋╴╽║║			
···			
			PLATE

		TEST HOLE LOG	
CONSULTING E	ASSOCIATES LTD.	TAGLU GAS PLANT NO.	Г НОЦІ <u>#76-</u> д10
LOGGED BY MR	DRAWN BY BT	CHECKED RST DATE February,	1976
RIG Heli Drill	METHOD	START FINISH	
PROJECT NO. CS 3161	ELEVATION	AIR TEMPERATURE	
WP-D W-O WL-A (1997) HEAD HEAD HEAD HEAD HEAD HEAD HEAD HEAD	DESCRIPTION	LICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE CONDITION CORE RUN AND CORE RUN AND CORE CONDITION	MARKS
	ICE	ICE	
5	WATER ,- bottom of channel		
10 SM	<u>SAND</u> very silty, brown, fine grained sand size	Saturated,	
20 SN	GRAVEL sandy, little si wet, gravel sizes to 3, SAND silty, trace of clubrownish grey, soft, s non plastic Bottom of Hole at 20.0 Fe	t, dense, 4" dia. Gr. Size Plate E-35 Gr. Size Plate E-35 Gr. Size $Plate \leq -36S375$ % 75% et.	

i.

.

Γ.

.

.

.

,---

.

and the state of the state

-

CONSULTING ENG	ASSOCIATES LTD. GINEERING & TESTING	TEST HOL	E LOG TEST HOLE NO. <u>#76-6101</u>
OGGED BY MR D RIG Heli Drill N	DRAWN BY YK CHE METHOD STA	ECKED RFT ART January 5, 1976	DATE February, 1976 FINISH January 5, 1976
PROJECT NO. CS 3161 WP- W - O WL-A (199) HId30 HID300 HID30 HID300 HID300 HID30 HID300 HI	DESCRIPTION	AIR TEMPE	MPLE CONDITION ORE REUN AND CORE CONDITION CORE CONDITION SCORE CONDITION
20 40 60	ICE WATER SAND very silty, brown, fine gran sand sizes, saturated SAND medium to coarse grained trace of silt, brown, partic of sub-rounded gravel to 1" wet to saturated SAND very silty, fine grained brown, trace of clay, layer Bottom of Hole at 19.0 Feet.	Z - ICE UF uined vined sd, icles dia, sd, red	50x 75x
		•	PLATE <u>E-14</u>

			TEST	- но	LE		LOG	
CONSULTING E	& ASSOCIATES LTD. ENGINEERING & TESTING	PROJECT	LUG	GAS P	L-A N	T	TEST HOLE NO. <u>#76-G12</u>	
LOGGED BY DV	DRAWN BY BT	CHECKED) <i>RS</i>	ST	DA	TE	February, 1976	
RIG Heli Drill	METHOD	START	January	; 17, 1976	FIN	ISH		
PROJECT NO. CS 3161	ELEVATION			AIR TEN	PERAT	URE	-20° C	
W _P - □ W - O W _L - △ (1000 HL d) (1000 HL d) HL d) H	DESCRIPTIO	N	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE %	ABORATORY	SAMPLE TYPE AND NUMBER SAMPLE CONDITION	CORE RUN AND % RECOVERY	REMARKS	
5 5 10 10 01 01 01 01 01 01 01 01	WATER SILT organic SILT trace of sand, no plastic, grey, wet trace of sand, raps grey, low plastic grey, some fine san clay, low plastic CLAY highly plastic, s blue	on to low id dilatancy nd, little	UF	r. Size late B- 37	s1 52 53 58	67% 67% 80%		
30	Bottom of Hole at 28.0	Feet.				*	PLATE	

i.

ţ

and the second sec

an statement

. . .

and the second

								TEST HOLE LOG									O G				
CONSULTING ENGINEERING & TESTING								PRC	PROJECT TEST F TAGLU GAS PLANT NO. #26-									TEST HOLE NO. <u>#76-613</u>			
DRAWN BY BT									.	CHECKED)	F	ST			DAT	E	Feb	ruary, 1976		
RIG	Heli	Dr	<i>i11</i>				T.	ETHOD	Splitsp	oon		START	J	anua	ry 17	, 197	6	FIN	SH		
PROJE		10.		cs	316	1	_		ELEVATI	ON						AIR 1	EMP	RAT	URE		-20° C
	W -	O CON	WL-,	A	DEPTH (feet)	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG		DESC	RIPTIC	DN		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABO	RATOR DAT	SAMPLE TYPE	SAMPLE CONDITION	CORE RUN AND	CORE CONDITION	REMARKS
					-10	ML		WATER es SILT	timated 1 trace of	ake bot	tom.	tratified		UF							
	00-				-15	EM			fine, sil	trace c	2" _1	ayer			Gr. S. Plate	ize E-38	s.	2	502 702		
					20 - -	ml Sm		<u>SILT</u> <u>SAND</u> si	medium gr fine, med ilt lense ace of fr	ey lium gra	eÿ, s vel	silty			Gr. S Plate	ize E-3	9	3	40	9	
					-25	CI		<u>CLAY</u> trac stra thic SAND	fine gra	um ~ to e sand, andy le	low medi nses siltu	plastic, ium greu, to 1/2"					s 	• X 5 X	40	2	
					30	CI	V	CLAY	little f.	ine san	d (4	cont.)						Ť	1	1	PLATE6

		TES	T HOL	E L	O G
CONSULTING E	ASSOCIATES LTD. PR	OJECT	GAS PLA	ANT	TEST HOLE NO. <u>#76-G13</u> (cont.)
LOGGED BY SGM	DRAWN BY BT	CHECKED	RST	DATE P	ebruary, 1976
RIG Heli Drill	METHOD Splitspoon	START Janu	ary 17, 1976	FINISH	
PROJECT NO. cs 3161	ELEVATION		AIR TEMPE	RATURE	-20° C
Wp-□ W-O WL-▲ (100000 dn000 HId30 1000 MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE F	LABORATORY	SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	<pre>plastic (cont.) SAND fine to medium grai. of silt, grey fine,grained, grey Bottom of Hole at 41.5 Fe</pre>	et,.	56	502	
					PLATE E-17

.

-

t

.

k.

Landers C. +

, **Г**

-

		TEST	HOLE L	0 G
CONSULTING ENC	ASSOCIATES LTD. GINEERING & TESTING	AGLU GAS	PLANT	TEST HOLE NO. <u>#76-614</u>
LOGGED BY DV D	DRAWN BY BT C	HECKED RST	DATE Fe	ebruary, 1976
RIG Heli Drill	METHOD S	TART January 18, 1	976 FINISH	
PROJECT NO. cs 3161	ELEVATION	A	R TEMPERATURE	
WP- W - O ML- A WD - MU- A MOISTURE CONTENT 20 40 60	DESCRIPTION	ICE GRAPHIC LOG NRC ICE TYPE VISUAL ICE &	AND NUMBER SAMPLE TYPE AND NUMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
	ICE MATER SILT non plastic, trace of 1	UF		
25 CT	<u>CLAY</u> silty, medium plastic, medium grey		S1 100 \$ 112 100	Piston samples
20 57 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SAND medium grained, dark bu little gravel to 3/4" dia. subrounded SILT sandu, gray, low plast		U3 702 54 702	Shelby tube
25 SM	SAND some gravel, sub-angul to sub-rounded, light brow fine to medium grained, si	ar n, Gr. Siz Plate B	e 55 20% IV	
30	-	•		PLATE

			TEST HO	LE L	.0 G
CONSULTING	ASSOCIATES LTD.	PROJECT	LU GAS P	LANT	TEST HOLE
					(cont.)
LOGGED BY DV	DRAWN BY BT	CHECKED	RST	DATE Fe	bruary, 1976
RIG Heli Drill	METHOD	START	January 18, 1976	FINISH	
PROJECT NO. CS 3161	ELEVATION		AIR TEI	PERATURE	
Wp-⊡ W-O WL-A (I I I A A A A A A A A A A A A A A A A A	DESCRIPTIO	N	DI LABORATORY ULABORATORY ULABORATORY ULAU ULAU ULAU ULAU ULAU ULAU ULAU ULA	SAMPLE TYPE AND NILMBER SAMPLE CONDITION CORE RUN AND % RECOVERY CORE CONDITION	REMARKS
SM	<u>SAND</u> (cont.)		UF		
┝╍╬╌╂╌╂╌╂╍╄╍╋╸╴╏	fine to medium, lit	tle gravel			4
	brown	or sire,		56 X 67%	
35 ML	SILT grey brown, some	fine sand,			-
	slightly sensitive to	shaking		57 50%	4
	sandu, little clau,	Taurand			
	Juingy fittie ciugy	Tayored		58 100	1
					4
	Bottom of Hole at 40.5	Feet.			
┝┿╋╋					
┝╋╋╋╋					
┝┽╉┽╊╋╋╋					
╾┽╋┽┟┼╄┽╉					
			·		
┝┽╃┼╀┼┼┽╅					
┝┽╃┽┼┼┼┼┽╴╽╵			•		
┝┽╂┼╉┼╋┿╋╴║╎		•			
┝╅╂┽╂╂╂╋╋					
					PLATE

•

i.

. .

the U.A. opt

the state of the s

·

4

٢.

.

.

a starting of the starting of

									TE	S	Т	НО	LI	E		L	0 G									
CONSULTING ENGINEERING & TESTING							PRC	JECT TAG	LU GA		GAS	S PL		ANT			TEST HOLE NO. <u>#76-g15</u>									
LOGGED BY SGM DRAWN BY 3T							CHECKE	2	F	RST			DAT	Έ	Fel	bruary, 1	976									
RIG Heli	Drill			M	ETHOD Sp	litspoon		START	Ja	nuai	ry 18,	1976		FINI	SH											
PROJECT NO. CS 3161 ELEVATION										AIR TEN	MPE	RAT	URE		-25° C											
Wp-⊡ W-0 MOISTURE CC 20 40	₩ _L -&	DEPTH (feet)	SOIL GROUP SYMBO	SOIL GRAPHIC LOG	[DESCRIPT	ION		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABOR	ATORY DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	REM	ARKS								
		-		a Present " Tradition	<u>ICE</u>					CE																
		-5			<u>WATER</u>					UF		· · ·														
		10 	OL :		<u>SILT</u> orga saturate	anic, dense, ed	grey	•					-		100			-								
		15 	ML		<u>SILT</u> trad brown, 1	ce of organi non plastic	ics, me , wet	adium					<i>S</i> 1	X	*											
		<u>20</u> 			sandy	, fine grain	ned			G P	r. Si: late	ze E-41	52	X	*											
		- 25 	SM CI		<u>SAND</u> find <u>r</u> gravel <u>CLAY</u> (till occasion medium p	9, grained, 1 pieces 11-like) tr nal gravel s plastic	silty ace of izes,	sand, stiff,	•			:	<i>5</i> 3	X	60% 100 %											
		30		Δ		•											PLATE _	E-20								
_																T	ES	Т	нс	DL	E		L	OG		
---------------------------	----------------------------------	----	--------	----	------------	----	-----------	--------------	-------------------	------------------	---------------------------------	----------------------	--------------------	---------------	---------------------	-----------------	------------------------------	------------------------------------	----------------	---------------------------	------------------	----------------------------	----------------	--------	--------	---
	CONSULTING ENGINEERING & TESTING									PRO	PROJECT TE TAGLU GAS PLANT N						TES NO	T HOL <u>H76-G15</u> (cont.)	Ξ							
LOGGED BY SGM DRAWN BY BT										CHECKE	D	R.	ST			DAT	ΓE	Fe	bruary,	1976						
RIC	;		Ħe	li	Dı	il	1				THOD	Splits	poon		START	Ja	nua	ry 18,	1976		FIN	ISH				_
PR	0J	EC	T	N) .			<u>cs 3</u>	161			ELEVA	TION						AIR TE	MPE	RAT	URE		-25° C		
MO	ST		W E		:ON		-& NT	DEPTH (feet)	SOIL GROUP SYMBOL	SOIL GRAPHIC LOG		DES	CRIPTI	ON		ICE GRAPHIC LOG	NRC ICE TYPE VISUAL ICE %	LABO	RATORY DATA	SAMPLE TYPE AND NUMBER	SAMPLE CONDITION	CORE RUN AND % RECOVERY	CORE CONDITION	RE	MARKS	
									CI		<u>CLAY</u> (stif	till-lik f.:occas	e)medi ional gr	um-pl avel	astic, . sizes —		UF									
	•				_				sc		SAND	fino	ined -		dort-					<i>s</i> 5	\mathbf{N}	50%		1		
	-	_									Bottom	ofi Hol	e at 32.	5 Fee	t.	g				-						
					<u> </u>			-35																		
								[•											
																									-	
T	T														1.											•
T	T							Ē																		
T	Τ							[
T	T							Γ				••••														
T	1							Γ			•															
T								-											•							•
T	T	1			Π		Π							-												
T	T							-																		
\dagger	†	-			Η		\square	-											r							
\dagger	1	1	-					-																•		
\dagger	+	-†				_		-																		-
\dagger	╉	+	1					-																		
+	+	+	-	-				-								•										
\dagger	+	+	\neg			-		-								.										
+	+	+	+	-	\square		-	-															┝		······	_
1										[- 1	1		PLATE	E-21	•

.

÷

5

and the second second

L

-

and the second s

, 199

<u> </u>		Т	EŞT	HOL	E L	. O G
CONSULTING E	ASSOCIATES LTD.	PROJECT TAGL	UGA.	S PL	ANT	TEST HOLE NO. <u>#76-016-</u>
OGGED BY SGN	DRAWN BY BT	CHECKED	RST		DATE F	ebruary, 1976
NG Heli Drill	METHOD	START J	anuary 18,	1976	FINISH	
ROJECT NO. cs 3161	ELEVATION			AIR TEMPE	RATURE	
Np-□ W - O WL-A (1008W/S d10089 HI d3 HI d	DESCRIPTIC	N.		ATORY JIMWY	SAMPLE CONDITION CORE RUN AND RECOVERY CORE CONDITION	REMARKS
	<u>ICE</u>		ICE			
5	WATER	•	UF			
10						
ML	<u>SILT</u> medium grey, slig brownish, some clay,	yhtly layered			1100	
				51	X ····	
20	layering inclined (! layers to 1/2" thick,	55°), organic , stratified		52	100 ¥	
ф 5 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7	sandy <u></u>	ilty, grey		53	70%	
25 Ø.				54	30%	
30	occasional gravel s	11265	Grain Plate	Size E-42	100	PLATE E-22

. ;

R.M.HARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING TAGLU GAS PLANT	1								
CONSULTING ENGINEERING & TESTING TAGLU GAS PLANT	I TRAF								
TAGLU GAS PLANT	TEST HOLE								
	NT NO. <u>H76-G16</u> (cont.)								
GGED BY SGM DRAWN BY BT CHECKED RST DATE FO	ebruary, 1976								
RIG Heli Drill METHOD START January 18, 1976 FINISH									
OJECT NO. CS 3161 ELEVATION AIR TEMPERATURE									
	2								
	2								
	S REMARKS								
	5								
	5								
SP :::: SAND fine grained, occasional UF									
CI GIAVEL SIZE (CONT.)	-								
CH CLAY medium to high plastic.									
dell grey, silty, layered									
high to medium plastic, dark () S6 X 50%									
	-1								
Bottom of Hole at 36.5 Feet.									
╺╊┼╋┾╊┿╋╶╎╎╎╴╴╴╴╸╴╏╏╽╴╴╻╏╿╽									

-

-

Accession of the second

- Carrier

.____

]

.

. _ :_] . .

GU 202-0373

 $\overline{}$

.

GU 202-0373

-\$..... J _____

E 1 - 1 - 1 - 1 - 1

1

· · · · ·

a a constant and a second and a

. _____}

____} 1

1

GU 202-0373

1

____]

السبية الاست السبية الاست الاست.

0.001

.......

D10=_

D30=

D...=

C_U **C**_c

NOTE: UNIFIED SOIL CLASSIFICATION SYSTEM

REMARKS:__

0.5

0.1

0.01

GRAIN SIZE

DATE TESTED Feb at $\frac{1}{\omega}$, -' 14 տ 16

8888.

MMA.

MM.

الاست 1 . .)

GU 202-0375

7 7 1 7 7 7 7 7 7 7 **7**

]

GU 202-0373

•	R.M.H.		A AS	SOCIATES LTD	SUMMARY OF LABORATORY TESTING						3	PROJECT Taglu Gas Plant LOCATION Alternate Borrow Area Bate January, 1976						
SAMPI	. E	DAI			CLAȘSI						TIO	N OTHER TESTS						
			ē				ATT	ERB	ERG	TE	XTU (%)	RE			-			
110H 10H	889TH (++)	SAMPLI	CLASSIFICA	SOIL	DESCRIPTION			PLASTIC	INDEX	SAND	516	CLAY	WET DENSITY (PCF)	DRY DENSIT (PCF)	MOISTUR CONTEN			
H76-G2	12.5 14	S 2	ML	SILT,clayey very low pl slight dila	,greyish brown, n astic,very soft, htancy				13	69	18							
H76-G2	15.5 17	53	SM	SAND,fine g non plastic	rained, silty,bro ,medium dense,wet	own,				50	40	10						
H76-G3	4-5	C1	SM	SAND, fine grey	grained, silty,li				78	14	8							
H76-G3A	19- 20	C11	CI	CLAY , silty plastic,occ to 4" diame	, sandy layer,mediu asional gravel si ter				32	41	27							
#76-G5	13.5 15.0	S 2	ML	SILT,fine s plastic,hig interbedded	and, brown,soft,n hly plastic clay l,wet				2	81	17				· · · · ·			
H76-G5	29.5 31	S 6	CI	CLAY(till-) sand,brown, sizes to 3, to very sti	CLAY(till-like), silty, trace of sand, brown, occasional gravel sizes to 3/8" Ø, med. plastic, stiff							28						
876-G9	15- 16	S2	SM	SAND,fine g	grained, silty,gre		i		50	42	8							
#76-G9	19- 20	53	SW	SAND, fine	to coarse, very s	silty,				77	18	5				•		
#76-G9	22- 25	<i>s5</i>	SM	SAND,fine g clayey, lag	yrained,very silty gered	,,				45	42	13						
¥76-G9	28 -30	S 6	SM	SAND, fine clayey, lay	grained, very sij gered	lty,				46	39	15						
₩76-G9 λ	19- 19.9	<i>s</i> 1	SN	SAND, fine occasional diameter	grained, silty,we gravel sizes to i	ət l"				70	22	8						
1 76-10	18- 19	53	GW	GRAVEL, wei little silt diameter	ll graded, sandy, t,gravel sizes to	14"				89	11					70% Grave sizes 19% Sand 11% Silt		
H76-G10	19- 20	53	SM	SAND, fine clayey	to coarse,silty,					67	20	13						
₩76-G12	13- 14.5	<i>s</i> 1	ML	SILT, claye	y,trace sand,layes	red		•		1	87	11						
#76- G13	14- 14.5	S 1	ML	SILT,claye	,trace sand, layer	red		•		2	87	11						

-

	R.M.H	ARDY	4 85	SOCIATES LTD.	SUMMARY OF									PROJECT Taglu Gas Plant LOCATION ^{Alternate} Borrow Area							
	LABORATOR											3	DATE January, 1976								
SAMPI	LE	DAT	•		CLASSIFICATIC TESTS								N	<u>NO</u>	OTHE	R TESTS					
		-	TION					ATTERBERG TEXTUR													
TEST HOLE	DEPTH (f +)	SAMPL	CLASSIFICA	SOIL	DESCR	N	LIQUID	PLASTIC	LASTICITY	SAND	51LT	CLAY	WET DENSITY (PCF)	DENSIT (PCF)	MOISTUR CONTEN'						
H76-G13	22- 23.5	53	SM	SAND,fine g layered	rained,	very si	ilty,				65	31	4								
#76-G14	25- 26.5	S 5	SM	SAND,fine g gravel size	rained, s to 3/4	gravel 4" dian	lly,silty meter				83	13	4								
H76- G15	19- 20.5	52	ML	SILT,clayey	SILT, clayey, trace sand						2	90	8								
#76-G16	28- 30	S4A	SM	SAND, fine grey	grained	,silty,	,clayey				57	27	16	1 							
																	· · · · · · · · · · · · · · · · · · ·				
	•																				
					• • • • • • • • • • • • • • • • • • •																
				· · · · · · · · · · · · · · · · · · ·													•				
						- 															
									•												
						•			•							. 1	PLATE	E - 44			

-

APPENDIX F

SOIL AND ICE CLASSIFICATION SYSTEMS

			MODIFIED		CLASSIF	ICATION SYSTEM FOR SOILS					
	MAJOR	DIVISION	GROUP SYMBOL	GRAPH SYMBOL	COLOR CODE	TYPICAL DESCRIPTION	LABORATORY CLASSIFICATION CRITERIA				
	N SE	CLEAN GRAVELS	GW		RED	WELL GRADED GRAVELS, LITTLÊ OR NO FINES	$C_{U} = \frac{D_{60}}{D_{10}} > 4 C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1 \text{ to } 3$				
O SIEVE)	VELS HALF COAI RGER THAI SIEVE	(LITTLE OR NO FINES)	GP		RED	POORLY GRADED GRAVELS, AND GRAVEL- SAND MIXTURES, LITTLE OR NO FINES	NOT MEETING ABOVE REQUIREMENTS				
OILS 7 THAN 20	GRA GRA RE THAN SRAINS LAI	DIRTY GRAVELS	GM		YELLOW	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4			
AINED SC HT LARGEN	N N N N N N N N N N N N N N N N N N N	(WITH SOME FINES)	GC		YELLOW	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7			
ARSE-GR	WZ		sw		RED	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	$C_{U} = \frac{D_{60}}{D_{10}} > 6 C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1 \text{ to } 3$				
HAN HALF	NDS N HALF FI N HALF FI SIEVE		SP		RED	POORLY GRADED SANDS, LITTLE OR NO FINES	NOT MEETING ABOVE REQUIREMENTS				
(MORE 1	SA MORE THA	DIRTY SANDS	SM		YELLOW	SILTY SANDS, SAND-SILT MIXTURES	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE P.I. LESS THAN 4			
			sc		YELLOW	CLAYEY SANDS, SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7			
÷	ILTS "A" LINE LIGIBLE GANIC VTENT	W ₁ < 50 %	ML		GREEN	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	CLASSIFICATION IS BASED UPON PLASTICITY CHART (see below)				
200 SIEVE		₩ ₁ > 50 %	мн		BLUE	INORGANIC SILTS, MICACEOUS OR DIATO- MACEOUS, FINE SANDY OR SILTY SOILS					
r PASSES	S CHART RGANIC	₩ _L <30%	CL		GREEN	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS					
GRAINED BY WEIGH	CLAYS CLAYS NE "A" LI ASTICITY (ASTICITY (ASTICITY (CONTEN	30 %< ₩ _L < 50 %	CI		GREEN- BLUE	INORGANIC CLAYS OF MEDIUM PLASTI- CITY, SILTY CLAYS					
FINE-		W _L > 50%	сн		BLUE	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS					
(MORE TH	SANIC TS & AYS "A' LINE CHART	₩ _L < 50%	OL		GREEN	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	CONTENT HAS NOT BEEN DETERMINED, IT IS DESIGNATED BY THE LETTER "F", E.G. SF IS A MIXTURE OF SAND WITH SILT OR				
		W _L > 50%	он		BLUE	ORGANIC CLAYS OF HIGH PLASTICITY	CLAY				
	HIGHLY OR	GANIC SOILS	Pt		ORANGE	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COLOR OR ODOR, AND OFTEN FIBROUS TEXTURE				
		SPECIAL S	SYMBOLS			50	1	СН			
	;	EDROCK UNDIFFERENTIATED)			DEN ENTIATED)	40 FOR SOILS PASSING NO. 40 SI		ине мн			
1111111111111	S	ANDSTONE					OL	он			
	s	HALE		_			40 50	60 70 80 90			
		MESTONE				1. ALL SIEVE SIZES MENTIONED ON T E.11.	HIS CHART AR	EU.S. STANDARD, A.S.T.M.			
	c	ONGLOMERATE				2. BOUNDARY CLASSIFICATIONS PC GROUPS ARE GIVEN COMBINED G GRADED GRAVEL SAND MIXTURE 12%.	DSSESSING CH ROUP SYMBOI WITH CLAY B	ARACTERISTICS OF TWO .S, E.G. GW-GC IS A WELL INDER BETWEEN 5 % AND			
	c	DAL				R.M.HARI	ure F.	OCIATES LTD.			

Γ.

. .

Γ.

Γ.

-

CATEGORY	GROUP SYMBOL	SUBGROUP SYMBOL	GRAPHIC SYMBOL	DESCRIPTION				
		F		Undifferentiated				
		NÉ		Poorly bonded or friable frozen soil				
Non-visible ice	N	Nbn		Well bonded frozen soil with no excess ice				
		Nbe		Well bonded f rozen soil with excess ice. Free water present when sample thawed				
		Vx	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Individual ice crystals or i n clusions				
Visible Ice	V	Vc		Ice coatings on particles				
less than one inch thick	, v	Vr		Random or irregularly oriented ice formations				
		Vs		Stratified or distinctly oriented ice formations				
Visible Ice	TCE	ICE + soil type	e	Ice greater than one inch thick with soil inclusions				
greater than one inch thick		ICE		Ice greater than one inch thick without soil inclusions				

Figure F.2 GROUND ICE CLASSIFICATION -. .

4

a

R.M.HARDY & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING