
INVESTIGATION A

CAPE DORSET, N.W.T.

Granular Program

1

1

I

CAPE DORSET

TABLE OF CONTENTS

Acknowledgements Executive Summary

INTRODUCTION	- 1
Purpose	1
Geotechnical Investigation Procedure	_ 1
Specifications & Terminology	1 2
Volume Estimates	7
Restoration & Regulations	8
TERRAIN ANALYSIS	9
Regional Setting	9
	10
	11
Permafrost Distribution	12
GRANULAR SOURCES & ASSESSMENT	13
Existing Sources	13
Potential Sources	16
Quarry Sites	19
SITE INFORMATION SUMMARY	21
Table 1: Granular Inventory	22
GRANULAR NEEDS ASSESSMENT	23
Table 2: Capital Projects	
- Granular Material Breakdown	24
Granular Needs Assessment Tables	27
COST ESTIMATES	38
Crushing	38
Screening	40
Site 2 Access	42
GRANULAR RESOURCE EVALUATION	43
Supply and Demand	43
Summary	45
RECOMMENDATIONS	46
	Purpose Geotechnical Investigation Procedure Specifications & Terminology Volume Estimates Restoration & Regulations TERRAIN ANALYSIS Regional Setting Geology & Geomorphology Drainage Permafrost Distribution GRANULAR SOURCES & ASSESSMENT Existing Sources Potential Sources Quarry Sites SITE INFORMATION SUMMARY Table 1: Granular Inventory GRANULAR NEEDS ASSESSMENT Table 2: Capital Projects - Granular Material Breakdown Granular Needs Assessment Tables COST ESTIMATES Crushing Screening Site 2 Access GRANULAR RESOURCE EVALUATION Supply and Demand Summary

References Glossary of Terms

LIST OF APPENDICES

APPENDIX A

Detailed Geotechnical Information, Laboratory Test Results, Site Plans and Cross-Sections

APPENDIX B

Site Photographs

APPENDIX C

Source Location Map

Photographs

Site photographs are located in APPENDIX B, along with a photo index. Where possible, photo locations and views are drawn on the site plans, as seen below.

12

ACKNOWLEDGEMENTS

This study was produced in association with various departments within the G.N.W.T. and local community representatives. The following are the individuals and organizations associated with this report.

Acknowledgements

Sandy Murray Project Officer, Department of Transportation, G.N.W.T., Yellowknife.

Geotechnical Advisor, Department of Indian and Northern Affairs, Ottawa.

John Spencer Municipal Engineer, Municipal and Community Affairs, Baffin Region, Iqaluit.

Chuck Gilhuley

Bob Gowan

Senior Administration Officer, community of Cape Dorset, N.W.T.

Sandy Reynolds Contractor, Island Equipment Ltd., community of Cape Dorset, N.W.T.

Jim Nicholson

Debbie Maracle

Divisional Secretary, Department of Public Works, Engineering Division, G.N.W.T., Yellowknife.

Project Officer, Department of Public Works,

Engineering Division, G.N.W.T., Yellowknife.

EXECUTIVE SUMMARY

The Municipality of Cape Dorset is a mature and growing community that needs a reliable and convenient source of all types of granular material.

This report presents the results of a geotechnical study, conducted under the objectives and guidelines of the Community Granular Program, to determine the 20-year demand for granular materials and the best means of satisfying that demand.

In summary, the 20-year demand for granular materials in the community is nearly 161,000 cubic meters. This demand is primarily for local capital projects and maintenance of community facilities.

In general, granular materials sufficient to meet the 5-year forecast demand are available in the Cape Dorset region. Existing sources can be expected to be depleted by 1993/94. Development of potential sources will satisfy the community's foreseen needs to 1994/95 and beyond.

Sometime after 1994/95, a quarry/crushing operation will have to be considered. Therefore, a review of the situation facing the community should be made in 1993/94 so that this important step may be made in a deliberate and well planned fashion.

Implementation of a Granular Resource Development and Management Plan by the Hamlet of Cape Dorset, based on the technical recommendations of this report and local concerns, is recommended at the earliest possible date.

1. INTRODUCTION

The geotechnical studies undertaken by the Community Granular Section are an integral part of the Community Granular Program. The goals, principles, definitions and methodology of these reports are discussed in this section.

1.1 Purpose

The Community Granular Program, Engineering Division, D.P.W., provides the capital resources for identifying, laboratory testing, developing, and restoring granular sources for all non-taxed based communities in the N.W.T. The objective is to process, stockpile, and manage granular supplies to ensure materials are available for planned community development projects, ongoing maintenance, and private use, at a reasonable cost.

To meet this objective, geotechnical investigations are planned for various communities throughout the N.W.T. and are priorized on the basis of the granular needs in the communities. These needs are derived through an analysis of the 5 year capital plans and the 20 year capital needs assessment of every GNWT Department, the N.W.T. Housing Corporation, the Federal Government and where available, the private sector. Highly speculative needs such as resource development projects (i.e. oil and gas) are beyond the scope of these studies.

The intent of this report is to precisely define the community's available granular resources and its granular needs over a 20 year horizon and develop options for the management of those resources that ensure the community's long term needs are met. The report and recommendations will enable the community, through the consultative process, to develop a comprehensive Granular Resource Development Plan that will provide control of the extraction, development, use and restoration of non-renewable granular resource areas.

1.2 Geotechnical Investigation Procedure

This granular materials study is a multi-phased investigative and assessment process that may be broken down as follows:

Terrain Analysis

- regional setting
- geology and geomorphology
- drainage
- permafrost distribution

Resource Description and Assessment

- review of pertinent information
- air photograph interpretation
- ground reconnaissance and sampling
- material quantity assessment
- material quality assessment
- ground ice and permafrost assessment
- evaluation of all sources
- access routes
- source summary

Granular Needs Assessment

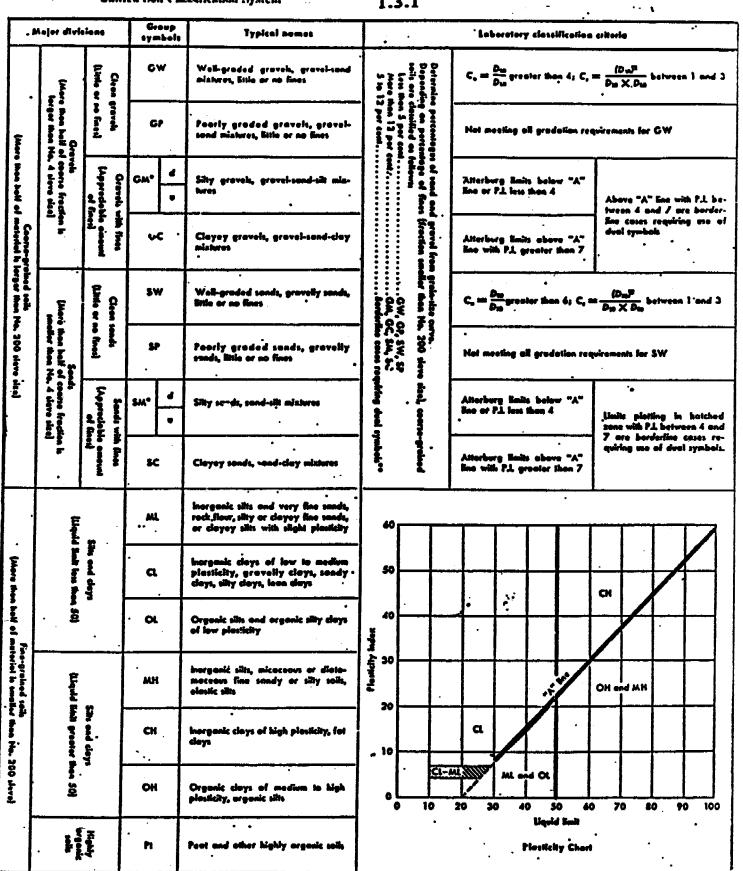
- granular material breakdown
- 5 year needs assessment
- 20 year needs projections
- needs summary

Recommendations

- comparison of resources and needs
- development of options
- development of estimates
- selection of options

1.3 Specifications and Terminology

A number of systems have been devised for classifying granular materials that are based on soil characteristics and engineering properties of the material. The Community Granular Section uses the following standards, criteria and specifications to describe the material in the granular sources discussed in this report.


1.3.1 Classification of Soils

The Unified Soil Classification System (USC) is used to identify various types of soils through visual description in situ and in the laboratory and through tests such as Atterburgh Limits and sieve analysis. The USC system is shown on the following page.

Unified Soil Classification System

. •

1.3.1

Dry Sieve Analysis: AASHTO T27-82: Sieve down to No. 4 (4.75 mm) using sieve nest indicated in specification. Prepare grain size curve on standard form.

Lab Crushing:

Crush to required maximum size using laboratory jaw crusher. Size will be given on sample information.

- Atterberg Limits: AASHTO T89-81 Method A. T90-81: Report summary list of sample numbers with liquid limit, plastic limit, and plasticity index. Report on standard form.
- Visual Description and Classification: Give a brief visual description of sample content as per example. Classify the material as per Unified Soils system and AASHTO system including group index. Report on standard form.
- Natural Moisture Content: AASHTO T265-79: Supply summary list showing sample number and moisture content. Also complete lab data copies.
- Magnesium Sulphate Soundness, AASHTO T104-77 (1982): Report the loss on each coarse fraction and the total loss by the weighted average based on the grading of the original sample.
- Los Angeles Abrasion, AASHTO T96-77: Depending on the sample, use the appropriate grading, and report the loss as a percentage.
- Modified Proctor Standard Proctor, AASHTO T99-81: Report results of five (5) points and prepare proctor curve on standard form.

1.3.2 Engineering Properties of Materials

Granular materials have been separated into various "types" for the purposes of this report. Each type is based on the intended end use of the material and conforms to the American Association of State Highways and Transportation Officials (AASHTO) specifications, as follows:

Туре

Specification

Embankment	
Sub-base	
Base	
Surface	
Concrete Aggregate	- fine
	- coarse

AASHTO M 57-80 AASHTO M 57-80 AASHTO M 147-65(80) AASHTO M 147-65(80) AASHTO M 6-81 AASHTO M 80-77(92)

All granular material samples are subjected to standard laboratory tests to ensure conformance with these specifications. The tests are:

Washed Sieve Analysis: AASHTO T11-82:

Report grain size analysis on standard form showing all calculations, eg. original dry, dry after washing amount retained per sieve and percent error. Use following sieve nest.

100 mm	4 in.	4.75 mm	No. 4
75 mm	3 in.	2.36 mm	No. 8
67.5 mm	2 1/2 in.	2.00 mm	No. 10
50 mm	2 in.	1.18 mm	No. 16
37.5 m	1 1/2 in.	0.60 mm	No. 30
25 mm	1 in.	0.425 mm	No. 40
19 mm	3/4 in.	0.300 mm	No. 50
16.5 mm	5/8 in.	0.150 mm	No. 100
12.5 mm	1/2 in.	0.075 mm	No. 200
9.5 mm	3.8 in.		

- Petrographic Analysis, MTC LS-609: Using coarse aggregate report PN number and flakiness index.
- Fractured Face Count, MTC LS-607: Report as percentage of original sample mass. Refer to AASHTO T4-35, Section 2.
- Flat and Elongated Particle Count, MTC LS 608: Report as percentage of original sample mass.
- Hydrometer Analysis: AASHTO T88-81: Supply all lab data and grain size curve. Plot results of grain size on Contractor's standard grain size distribution curve.
 - Washed Sieve Analysis: Minus 0.075 mm: AASHTO T11-82. Organic Content: AASHTO T267.

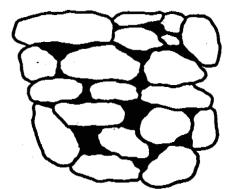
It is important to note that all samples may not have to be subjected to the full range of test procedures.

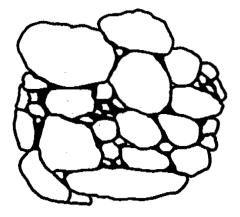
It should be noted also that ground thermal analysis and the engineering properties of permafrost unique to northern periglacial environments are taken into consideration in all situations.

1.3.3 Environments of Deposition

The properties of any granular material vary with its gradation, moisture content, vertical position in relation to the surface of the ground, and geographic location. Time and climate influence the weathering process of mechanical and chemical disintegration that breaks the material down into progressively smaller particles. The term gradation refers to the relative size of these particles in a deposit.

Size distribution is related to environments of deposition that indicate the texture and composition of a granular deposit. The amount of each size grouping in a deposit is one of the major tools used in judging, analyzing, and classifying a source for use as a construction material. Granular deposits contain particles ranging in size from boulders through clay, as indicated below.


203. (8)					mn 0. (0.0)	 074 mm 003 in.)
Boulders	Cobbles	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Silt & Clay (Fines)


Gravel and sand particles are the most desireable and are found in glacio-fluvial deposits and post glacial beaches. Silt and clay particles, called 'fines', are undesirable over 15 percent because they tend to hold water which in periglacial environments, as in the N.W.T., results in high ice content and greater frost susceptibility. However, a lower limit of 5% is often acceptable to aid in compaction. Fines are often found in deltaic and lacrustine deposits, some fluvial sediments, and tidal flats. Post glacial/fluvial processes during the Quarternary period have also influenced the type of gradation in granular sources in the N.W.T.

Mechanical weathering is the dominant process acting on the rock strata of the precambrian outcrops throughout the N.W.T. Since the regolith produced from the weathering process occur "in situ", most granular deposits in the N.W.T. are "poorly graded" with a high percentage of "oversized" particles.

The suitability of a deposit for construction purposes is directly related to the particle distribution or grain-size curve. This curve indicates if a deposit is "well-graded" or "poorly graded", two terms that are used extensively in this report.

A 'well graded' granular deposit has an equal amount of each gravel and sand size and little or no fines. These deposits are referred to as 'clean' and are excellent quality materials for 'pitrun' construction purposes. Eskers and raised beaches are prime examples of 'clean' deposits. A 'poorly graded' granular source has an excess of some particle sizes, a shortage or lack of others, or has nearly all particles the same size. These sources need processing to improve and upgrade their quality. Screening and washing can be used to remove undesirable particle sizes. Talus slopes, alluvial fans, and varved clays are prime examples of this type of deposit found in the N.W.T.

Poorly-graded materials with all particles the same size or with a lack of certain particle sizes (left drawing) have more voids and are less stable than well-graded materials where the voids are filled by the smaller particle (right drawing).

1.4 Volume Estimates

Volumes of granular material sources as described in this study are classified as being proven, probable, or prospective.

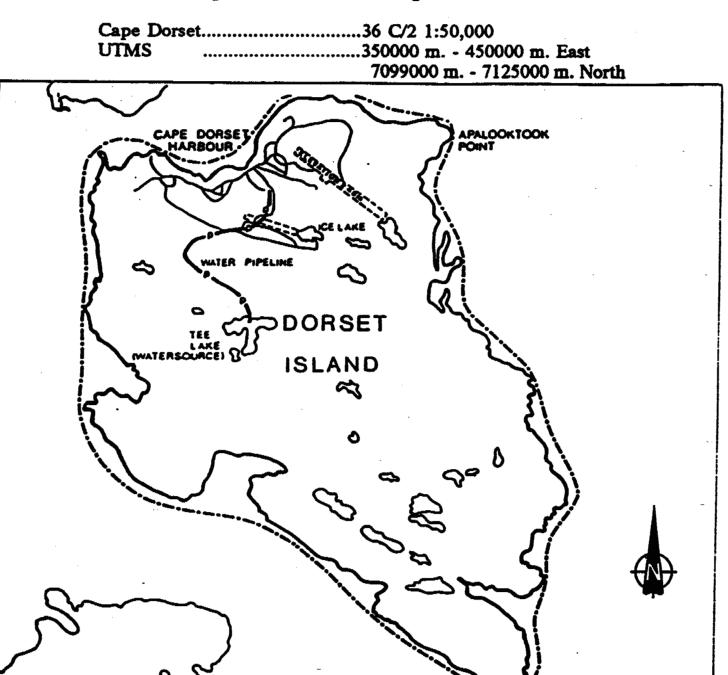
A proven volume is one where existence, extent, thickness and quality is supported by ground truth information such as a test-pitting, exposed stratigraphic sections, bore hole drilling, and aggressive sampling and ground truth reconnaissance.

A probable volume is one whose existence, extent, thickness and quality is inferred on the basis of direct and indirect evidence such as airphoto interpretation, geophysical data, terrain analysis, and limited sampling and ground thruth reconnaissance.

A prospective volume is one whose existence, extent, thickness and quality is suspected on\ the basis on limited direct evidence, such as airphoto interpretation, remote sensing information, or imaging radar techniques. There is no sampling or ground truth reconnaissance.

1.5 Restoration and Regulations

Pit planning, design, and restoration are important aspects of granular resource development. Environmentally, the development of any granular sources offers the potential for drainage and erosion problems, habitat destruction, and the disturbance of wildlife. In many communities in the N.W.T., excessive scarring of the surrounding terrain is a major concern. These reports take into account the economic and environmental factors of pit abandonment and reclamation. Guidelines to minimize the impact of pit development and quarry operations are available in the INAC (1982) publication "Environmental Guidelines Pits and Quarries". At all stages of pit planning, design and operation, methods that ensure final pit restoration are stressed.


Permafrost can be expected throughout the N.W.T. and results in a variety of environmentally sensitive problems related to pit abandonment and restoration; thus pit development in permafrost environments must be planned well in advance and special techniques used during the extraction of material.

Territorial land use regulations are to be followed in all development plans, without exception, especially in the areas of land use permits, explosives, and pit abandonment.

2. TERRAIN ANALYSIS

2.1 Regional Setting

The community of Cape Dorset is located on Dorset Island off the Foxe peninsula, southwest of Baffin Island (Fig 1). The community is part of the Baffin Region of the N.W.T. Geographical location is 64 degrees 14 minutes north latitude and 76 degrees 32 minutes west longitude.

Dorset Island

Area: 21.2 km²

1 25 0 00

SCALE

2.2 Geology and Geomorphology

Cape Dorset is located within the Frobisher Upland, a highly eroded ancient mountain system comprising the S.W. portion of Baffin Island. The uplands rise abruptly from the sea to 1000 meters then slope southward into Hudson Straight. The hamlet is situated in two valleys of the Kingnait Hills separated by a bedrock ridge.

The bedrock generally consists of extremely old Precambrian gneiss and metamorphic sediments of the Proterozoic era. These crystalline rocks were emplaced during the Kenoran and modified during the Hudsonian orogeny. Folding and granitic intrusions occurred from the late Aphebian era.

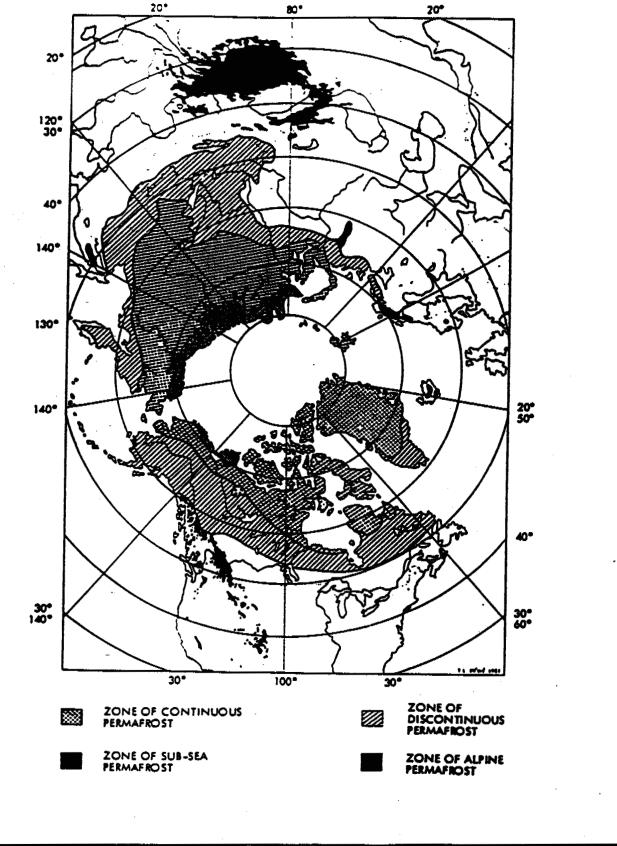
These rocks approximate quartz monzonite in composition. The quartz is clear or milky. They are essentially quartz, plagioclase, and mocrocline; mafic minerals seldom exceed 5 per cent. The interlocking texture is indigenous to this region and results in a wide range of grain sizes. Quartz diorites were also present in the study region.

Rock outcrops are heavily faulted and closely jointed which has produced "block like" or "linear blocks" of very hard rock amid thick weathered regolith.

The topography is very rugged with elevations in excess of 300 meters. The community lies within two valleys that extend inland and end abruptly against precipitous bluffs of the Kingnait Hills. Fluvial and glacial processes have covered the valley floor with surficial granular deposits.

The main geomorphic processes are "solifuction" and "frost wedging". This mechanical weathering has produced large "talus" slopes at the base of the larger outcrops. These fan like features are formed by the accumulation of weathered material from frost action and then slow downward movement by gravity. They are typically composed of weathered, angular gravels to boulders referred to as "colluvial sediments".

Bedrock sediments occur below the 180 meter contour level and occupy low areas between bedrock highs. They are primarily composed of ice rich, coarse gravels and sands that have been reworked by fluvial and marine action. Onshore/offshore overlap by receding ocean levels has produced a number of post glacial and modern beaches that contain impressive accumulations of gravel/sand deposits. Marine silts and clays comprise much of the tidal flats that surround the community. Varved clays were observed among the ancient lake beds within the valleys. The study region lies within the zone of continuous permafrost. The distribution of permafrost is uniform but the thickness of the active layer varies considerably. Segregated ice crystals were observed during sampling. Some permafrost features are restricted to the active layer only, while others are more deep-seated and involve either the aggradation or degradation of the permafrost thermal regime. Thermokarst depressions and topography is common in and around the community.


2.3 Drainage

Surface drainage is controlled by the bedrock valleys and the permafrost table. Drainage is oriented in a south to north direction from the highlands to the coastal margins. the drainage pattern could be considered radial braided and erosion in culvert ditches and housing pads is prevalent.

Lakes occupy small closed depressions and are intersected by short, rapid flowing, braided streams. The water supply for the community is Tee Lake which is post glacial and is located approximately 1.6 kilometers south of the community.

The tidal range at Cape Dorset varies from 7.5 to 11.1 meters and at low tide a muddy tidal flat is exposed in front of the settlement. A land causeway intersected by small narrow rip tides connects the Island of Cape Dorset with Mallik Island. The causeway is completely covered at high tide.

Permafrost Distribution 2.4

	- SEPT. 1989 - SEPT. 1989 FRED COLLINS. Approved by D.P.W. ENGINEERING	CAPE DORSE Distribution of different to in the Northern H	ypes of permatrost terrain
Territories Public Works	Scale N.T.S.	Project No. 69-9170-803	P12 2.4
			- 4g

3. GRANULAR SOURCES AND ASSESSMENT

This section provides an overview of the various existing and potential granular sources within the study area. Each source is described in terms of location, material type, volume, appropriate use of material, production methods and access requirements. Site details and test results for the sites can be found in Appendix A. Photographic records are included in Appendix B.

It is intended that this section be read in conjunction with the Site Location Map, Appendix C. The figures and sketches related to specific sources, site access, and cross-sections are located in Appendix A.

3.1 Existing Sources

There are a number of "borrow" areas in the vicinity of Cape Dorset that were active in the past. It is estimated that approximately $41,000 \text{ m}^3$ of granular materials of various types is available from these sources. The following is a brief discussion of each source.

3.1.1 Site A (Tank Farm Area - Fig. 1)

This site is located approximately 3 km N.W. of the hamlet, directly east of the existing tank farm (Photo 8). The site is highly recommended for development and is readily accessible by an all season gravel road that passes through the source. The source can be separated into two section. The major area of coarse gravel is to the northeast of the tank farm (Area 1) and is approximately 90 x 45 meters. This area is a raised storm beach that gradually widens into a large post glacial beach (Photo 12 and 13) that is approximately 100 x 40 meters (Area 2). The depth varies throughout the site from 0.7 and 2.2 meters. If an average depth of 1.5 meters is considered, this area contains some 10,000 cubic meters of very coarse gravel and 5,000 cubic meters of coarse sand. Figure 2 is a detailed cross section of the deposit as indicated by test pit CAP - 03 - FC.

As 'pitrun', the material could only be used as embankment but the grain curves indicate that with screening, select grades could be produced. If screened to 2' minus approximately 15% would be lost as oversize; 40% would be lost if screened to 1' minus. There is a great deal of oversize material (Photo 10) that could be used during the construction of the marine dock. This site is highly recommended for development. A 'grizzly' screener could be located at the west end of the site and select grades of material stockpiled.

3.1.2 Site B (Ice Lake - Fig. 3)

This site is located just south of Ice lake behind the new curling rink, approximately 1.5 km from the hamlet office and is between the south shore of the Lake and a rock bluff (Photo 4). The pit is a combination talus slope and beach ridge and was used to supply material for the old airport and a "berm" located on the west side of the lake. The pit still has approximately 2100 cubic meters of fine, well drained, poorly graded gravel remaining. This source could be used as surfacing material for the roads. The area is easily accessible but care is needed to ensure the integrity of Ice Lake.

3.1.3 Site 14 (Airport/M.O.T. Site - Fig. 7)

This site was the material source used by M.O.T. for the new airport construction and is an extensive area of land adjacent to the north side of the air strip. The area extends north and east and shows signs of heavy use (Photo 62).

The material consists of coarse gravel to sand with at least 40% oversize (cobbles to boulders - Photo 63). The remaining matrix is 50% coarse gravel and 50% clean, well graded sand. The grain curves are "gaped" indicating that there are two grades of material in about equal grain sizes. It is estimated that there is in excess of 9,000 cubic meters of granular material remaining, some of which could be used as "pitrun". This site is a prime source of material for future screening and crushing operations as well as embankment material. It is estimated that 3,000 m³ could be screened for use as select grade.

In the past, the site was accessed by crossing the airstrip, however, present access is by a rather long road (+3 km) that circumvents the airstrip to the northwest through Site 13.

3.1.4 Fractured Bedrock Source (FBS)

This source is an active pit that presently supplies the community with embankment material. Approximately 5000 cubic meters have been removed as of September 1989. The source covers the northern extension of the surrounding foothills and consists of paleozoic outcrops exposed on the surface or just below it. The material is a brown/green soft, friable shale that is readily accessible as it is adjacent to the existing road (Photo 22). When subjected to L.A. Abrasion tests, up to 50% of the material is lost. Weathered quartzite and gneiss are found in thin layers between massive shale beds (Photos 23 - 26). There is approximately $6,500 \text{ m}^3$ of granular material remaining at this source. Processing of the material through screening would produce approximately $1,500\text{m}^3$ of select material.

3.1.5 Site 13 (Fig. 5)

The access road from the tank farm to site 14 passes through to a large source of course gravels and sands (Photo 18 and 19) that the community is just beginning to use. The major portion of the site is coarse gravel with 40% oversize material.

A smaller section of the site extends along a ridge that gradually rises from the north side of the road and is approximately 60×40 m. The material is a coarse, well drained gravel containing approximately 20% oversize.

The deposit can be developed using a D8 Cat with a ripper and is readily accessible. This is a good source of embankment material and is a prime candidate for a crushing operation. The site has a probably volume of $8,500 \text{ m}^3$ of material. Processing could produce approximately $3,000 \text{ m}^3$ of select grade.

3.1.6 Site 3 (Fig. 8)

This was a small talus remnant approximately 30 m x 30 m that is adjacent to site 2. The site is poorly drained, severely scarred and has been depleted. The small amount of material remaining should be used for immediate restoration.

3.1.7 Site 6 (Fig. 9)

This area is adjacent to and east of the sewage lagoon. Bedrock is very near the surface but there should be sufficient material available for restoration.

3.1.8 Site 15 (Fig. 10)

This source is located east of site 6 and contains material that is 70% coarse to medium grained, poorly sorted sand and 30% coarse gravel. A marine clay layer was encountered that created drainage problems. The area has provided embankment material in the past however, the site is now depleted. Any remaining material should be used for restoration.

3.2 Potential Sources

These sources are granular deposits that contain quantities of good quality material sufficient to warrant development. In all cases, access will have to be constructed prior to development.

3.2.1 Site 2 (Fig. 11 - 13)

Site 2 is located beneath the "Kingnait" Foothills, just south of Site 4 and is the largest of available sources. The deposit consists of accumulated "colluvium" from the surrounding terrain. Talus slopes merge and form an alluvial fan that is elevated above the valley floor. Flow channels from the surrounding foothills cut into this elevated plane in a northeast - southwest direction. One such drainage channel separates the deposit into two separate sections that are referred to as 2A(west) and 2B(east). Both areas are similar in texture and composition; however, 2A contains a greater volume of material. Test pits indicate that this deposit consists of poorly graded, well drained, subrounded, emdium to coarse, clean sand with less than 2% "fines". Note CAP-04-FC in Appendix A (Fig. 14) and photo's #31 - #40 in Appendix B. The material of 2B is slightly coarser but is not as well drained. In all, sixteen test holes were dug to an average depth of 1.0 meters; a maximum depth of 2.2 meters was achieved through the use of a backhoe. On average, permafrost was encountered at a depth of 1.0 meters but this varied considerably with each test hole.

As mentioned, a drainage channel separates Site 2 into two separate sections. The western section, 2A, is approximately 12,000 square meters with an estimated volume of 18,000 cubic meters. There is little or no organic mat over 2A.

The eastern section, 2B, has a thicker organic cover and is smaller in size, approximately 10,000 square meters. The material is slightly coarser than 2A with an estimated volume of 15,000 cubic meters. The average test hole depth is shallower than at 2A and drainage channels are more numerous.

This site is regarded as the prime source of future embankment and subbase material for use by the community. The entire area is approximately 22,000 square meters with an estimated volume of 33,000 cubic meters of poorly graded sand. Processing will be required to produce select material (11,000 m³ could be screened).

3.2.2 Site 10 (Fig. 15)

This is a large potential source located on the western side of the island, south of the present sewage lagoon and directly beneath the Kingnait Hills. A ridge separates the all season access road to the sewage lagoon and the site.

The site is in a small valley that consists of a series of storm beaches and colluvium from the adjoining talus slopes of the Kingnait Hills. The rock is deeply weathered and remains 'in situ'. The valley acts as a modern spillway for the present drainage system that has brought down coarse gravels and sands from the surrounding hills. A small creek still flows through the valley. Sample CAP-06-FC shows the material to be a coarse, well graded gravel. It is estimated that 8000 cubic meters of material can be recovered. Screening the material could provide upwards of 5,000 m³ of select grade.

The site can be accessed in three ways. An ice road can be constructed around the peninsula, a land route can be attempted over the western end of the ridge, or an access road can be constructed from Site 2. Regardless, accessing the site will be difficult and expensive.

3.2.3 Site 4 (Fig. 17)

This abandoned borrow pit is discussed here because it provides the easiest means of access to the largest potential source in the area (Site 2). It also is an excellent area for stockpiling material.

The site is 45m x 90m and is bounded on the north by Site 15, on the east and west by bedrock outcrops and is separated from Site 2 on the south by a 2m high rock ridge. An all season road passes through the site, ending at the ridge. There are approximately 1,000m³ of coarse sand remaining in the area. This sand could be used as embankment material to construct a ramp over the ridge and into Site 2.

3.2.4 Tidal Flats (Fig. 18)

The tidal range at Cape Dorset is approximately 9.70 meters. At low tide a large expanse of silty material, 150.0×35.0 meters, is exposed. It is completely covered at high tide. The area was sampled in 1988 by DPW, in conjunction with pre-engineering for a proposed docking facility.

Test results indicate that the exposed tidal flat varies considerably in texture and composition. Generally, the material consists of 30% gravel, 55% sand and 15% 'fines'. The material is extremely wet and would have to be stockpiled and thoroughly drained before use in any major construction project. Assuming that the 'fines' content is 15% or higher throughout the site, approximately 4,000 cubic meters of material could be extracted and used as 'blend' material for a crushing project.

3.2.5 Mallik Island

This island lies to the west of Cape Dorset and is separated from Cape Dorset Island by as little as 500m in some places. The island is joined at low tide by a 2.5m wide "causeway" that is dissected by numerous swift flowing tidal runs. (photos 58 - 59). At mid-tide, this natural structure is inundated.

Mallik Island consists of a large glacial moraine that forms a central plateau (photo 55). The terrain alternates between wet, low lying, linear, sandy, post glacial spillways of the moraine and dry, shallow, sloping, sandy gravels of the plateau. Materials on the sandy plain consists of 70% clean, poorly graded sand, 20% weathered gneiss (3" minus), and 10% oversize. The material in the drainage areas consists of angular, well graded, poorly drained, gravels. Permafrost was encountered at a depth of 1.0 meters on the plateau and 0.6 meters in the spillways. There is estimated to be more than 10,000 cubic meters of general fill and embankment material available from this source; however, it would not be cost effective to develop this source due to the difficulties in accessing this site.

3.3 Quarry Sites

As indicated previously, Cape Dorset is situated in two valleys, surrounded by very rough, mountainous terrain and the ocean. It is inevitable that the community will eventually be forced to establish quarry and crushing operations to meet the need for granular materials. The following sites were found to be the most appropriate for use as quarries.

3.3.1 Site Q₁

This site is located on the south side of the old airport along the access road to Ice Lake and Site B (Photo 2). Sample CAP-05-FC was taken from this ridge to ascertain the composition and texture of the rock. The site has an adequate working face and Site B could supply a 'blend' material. However, the proximity of Q_1 to the residential subdivision being constructed on the old airstrip tends to limit the site's usefulness.

3.3.2 Site Q₂

This site is located on the south side of Site 6, which is a depleted pit. The site meets all the criteria for a quarry operation and has a good access road from the west.

M.A.C.A. indicates that the hamlet is expanding to the west as is evident by the construction of the new subdivision. Land use may be a problem, however, the rock face does continue to the west along the length of Site 6 and the western end of Q_2 may be sufficiently removed from future development to allow for a quarry operation.

3.3.3 Site Q₃

The area is located to the north of and adjacent to Site 14 (Fig. 7). This site is a prime location for a quarry operation as it meets all the necessary criteria. The site actually contains numerous rock outcrops that would be suitable for development. A 'blend' material would have to be hauled to the site.

This site is still the best source of 'pitrun' material for use in a crushing operation and has the largest potential quarry 'face' of the three sites. The longer haul distance will make material from this source somewhat more expensive than material from Q_1 or Q_2 .

3.3.4 Blend Sources

Given the type of rock and granular material available in Cape Dorset, a material with a high percentage of fines must be mixed with the crushed rock to produce a 'select' grade of material.

The material from the tidal flats will be most appropriate assuming it is properly stockpiled and drained before use. 'Blend' material can also be taken from the west side of Site 2. The following table is an inventory of all existing and potential granular resources in the vicinity of Cape Dorset. Associated with each site is the U.S.C., distribution, volume, grade, and processing required. Samples were taken when and where possible; test results are available for viewing in Appendix 1.

4.1 TABLE 1: GRANULAR INVENTORY, CAPE DORSET 1989

			VOLUME	1	
SITE	USC	DESCRIPTION	(m3)	GRADE	PROCESSING
- 1		Difficult access/low volume			Rejected
. 5		Zoning restriction			N/A
9		Tank Farm		-	N/A
12		Subdivision			NA
	•				
3		Depleted			Restore .
6		Depleted			Restore
7		Depleted	***		Restore
8		Solid waste site			Restore
15		Depleted			Restore
		Depleted - Site 2 access			Restore
FBS	GP-wet .	Poorly graded coarse gravels	6,500 proven	Embankment	Pitrur/stockpile
				SUDDase	
	GW-wet	Fine sands & gravels	2,000 probable	Base surface	Pitrun -
	GP-SP-dry	Poorly graded sandy gravels	15,000 probable	All	Pitrun/screen/crush
		Poorly graded sand & gravel	9,000+ probable	All	Pitrun/screen/crush
13	GP-SP-dry	Poorly graded sand & gravel	8,500 probable	All	Pitrun/screen/crush
				· .	
24	SP-dry	Poorly graded very coarse sand	18,000 proven	Embankment	Pitrun/screen
		- some gravel		Subbase blend	
2B	SP-GP-dry	Poorly graded very coarse sand	15,000 proven	Embankment	Pitrun/screen
		- some grave!		Subbase	
	GW-wet	Well-graded fine to coarse gravels	8,000 probable	Subbase/base	Pitrun/screen
				surfacing	
	571-MH-Wet	Silty sands/clayey sands	4,000 proven	"blend"	Stockpile and drain
Elsta		•			
				•	
011		Gnelss bedrock outcrops		<u>A11</u>	Quarry and crush
021		Gneiss bedrock outcrops		<u>All</u>	Quarry and crush
03		Gnelss bedrock outcrops	Unlimited	A11	Quarry and crush

22

5. GRANULAR NEEDS ASSESSMENT

As previously indicated, the granular requirements for Cape Dorset have been developed from each G.N.W.T. Department's 5 year capital plan and 20 year capital needs assessment, as well as information from the NWTHC, Federal Agencies and the private sector. The various projects were analyzed for their granular requirements and this information was used as the basis for establishing a 20 year granular needs projection by the type of materials required.

For the purpose of this report, granular materials have been separated into five major types: embankment, subbase, base, surfacing and concrete aggregate. However, base, surfacing, and concrete aggregate are often referred to collectively as "select grades". The reason for this is that embankment and subbase materials are often used directly from a source as "pitrun" while select grades are obtained through the processing of the material by washing, screening or crushing.

The analysis shows that Cape Dorset requires approximately 96,000 m³ of granular materials for fiscal years 1990/91 through 1998/99. This information is shown in detail on the following pages, as is a summary of the projected requirements for fiscal years 1998/99 through 2000/2009. Detailed information for this period is available from office files. If required, however, the data should be considered speculative at best.

Table 2 represents the granular material breakdown of capital projects that was used to develop this section of the report. Various government departments were contacted to assess the granular materials required for specific capital projects. The granular material breakdown associated with each project was then tabulated. This table was then used to derive the granular needs assessment tables for individual fiscal years based on the proposed capital projects for that year.

5.1 TABLE 2: CAPITAL PROJECTS

Granular Material Breakdown (in cubic metres)

.

Description	Embankment	Sub Base	<u>Base</u>	Surface Material	Concrete Aggregate	Riprap
Warehouse		900	450	300		
Group Home	•	500	175	300		
Solid Waste Facility	9000		3750	2250		-
Solid Waste Facility/				•		
Access (1 km.)	13900		1300	200		10
Solid Waste Improvements	6000		2500	1500	_	
Water Supply Improvements	6000		2500	1500	-	
Water Supply - Reservoir	30000	10000	10000		•	·
WS-Facility Access	10000		5000	3000		
R/S/L - Lot Development (1 lot)		180	80	100		
R/S/L - New Road (1 km.)	4900		1300	1200		100
R/S/L - Resur- facing (1 km.)	600		200	1200		50
R/S/L - Road Upgrade (1 km.)				1000		
Staff Housing		400	175	200	-	
Single Unit (Satellite base)		300	100	200		
Duplex		500	175	200		
4-plex		675	225	200		

	Description	Embankment	Sub Base	Base	Surface <u>Material</u>	Concrete Aggregate	Riprap
	In town gas station		600	200	200	50	
	Garage x 2 Bay x 3 Bay	•• •	600	200	200	50	-
	Firehall		350	100	200	50	
	New School		400	100	200	200	
·	School Addition		200	50	100	100	
	Museum - Low\$		200	50	100	100	
	Small Community Hall (250m ²)		300	100	200		
	Medium Community Hall (390m²)		500	175	200		
	Large Community Hall (440m ²)		675	225	200 .		
	Hamlet Office		500	175	200		
	Small Gym (250m ²)		300	100	200		
	Medium Gym (390m²)		500	175	200		
	Large Gym (440m ²)		675	225	200		
	Medium Arena		675	225	200		
	Trade Shop		300	100	200		
	Small Arena		500	175	200	100	
	Skating Rink		500	175	200	100	
	Airstrip - New 60 x 900	81000		16200	5400		
	Airstrip - Upgrade Maint/year				1700		
	Airstrip - Resur- face 60 x 900				5400		
					-		

Description	Embankment	Sub Base	Base	Surface Material	Concrete Aggregate	Riprap
Tankfarm - n ew facility	3000		2000	3000		Kayang.
Tankfarm - upgrade	300	300	300			
Tankfarm - facility & access	6000		2000	6000		
Increase capacities	6000		2000	6000		
Shoreline Protection		•		600	-	4000
Sewage Lagoon	100,000m ³					4000
Office - small	Duplex	500	175	200	(visitor centre)	
Office - large	4-plex	675	225	200		
Arena - large		850	275	200		
Park Develop- ment (Low\$) (High\$)	600 4900		200 1300	1200 1200		50 100

5.2 GRANULAR NEEDS ASSESSMENT TABLES

TABLE 3:
GRANULAR NEEDS ASSESSMENT
CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS
SUMMARY
(Volumes in cubic metres)

.

.

٤

1

.

.

.

1

FISCAL YEAR	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP	ANNUAL TOTAL
1990 - 1991	8,000	3,835	4,710	3,040	300	20	19,905
1991 - 1992	1,300	3,325	725	100	250		5,700
1992 - 1993	5,070	5,550	4,575	4,460	100	20	19,775
1993 - 1994	6,000	1,640	2,980	1,900	50	16	12,570
1994 - 1995 1995 - 1999	735 9,125	2,500 17,070	1,195 8,870	1,380 14,800	200 50	15 55	6,025 49,970
1999 - 2009	5,880	20,215	9,875	10,890		60	46,920
20-YEAR TOTAL	36,110	54,135	32,930	36,570	950	170	160,865

,

TABLE 4: GRANULAR NEEDS ASSESSMENT CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS 1990 - 1991 (Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
GOVERNMENT SERVICES Replace Plastic Lines	1,000		500			
CULTURE & COMMUNICATIONS		675	225	50		
Community Museum Museum Planning		400	175	50		
МАСА						
Residential Area 3 Solid Waste Site	1,000 6,000	2,160	1,220 2,500	1,440 1,500		20
EDUCATION						
School - new School - renovate		400 200	100 50		200 100	
TOTAL REQUIREMENTS	8,000	3,835	4,710	3,040	300	20

TABLE 5: GRANULAR NEEDS ASSESSMENT CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS 1991 - 1992 (Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
					· ·	
ECONOMIC DEVELOPMENT						
Mallik Island Park	800	1,600				
CULTURE & COMMUNICATIONS						
Community Museum		675	225	50		
MACA	:					
Pirehall		350	100	50		
Pipeline/Storage	500	300	300	. 30	50	
EDUCATION						
School - new		400	100		200	
	•					
TOTAL REQUIREMENTS	.1,300	3,325	725	100	250	

TABLE 6:GRANULAR NEEDS ASSESSMENTCAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS1992 - 1993(Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
GOVERNMENT SERVICES		. ·			• .	
Increase Fuel Capacities	3,500		2,000	1,500		
TRANSPORTATION						
Terminal Expansion		600	200	50	50	
маса				· ·		
Maintenance Garage 3-Bay		350	100	50	50	
Industrial Land Development	1,570	3,700	2,000	2,360		20
EDUCATION						:
School - renovate		400	100	200		
Group Home		500	175	300		
TOTAL REQUIREMENTS	5,070	5,550	4,575	4,460	100	20

TABLE 7:GRANULAR NEEDS ASSESSMENTCAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS1993 - 1994(Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
MACA Industrial Land Development Parking Garage 2-Bay Residential AREA 3 Sewage Disposal	6,000	180 600 360	80 200 200 2,500	100 50 200 1,500	50	
ECONOMIC DEVELOPMENT & TOURISM Tourist Office		500		50		
TOTAL REQUIREMENTS	6,000	1,640	2,980	1,900	50	

TABLE 8: GRANULAR NEEDS ASSESSMENT CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS 1994 - 1995 (Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
MACA Industrial Land Development Trade Shop	735	1,800 300	995 100	1,180 200		15
EDUCATION School - new		400	100		200	:
TOTAL REQUIREMENTS	735	2,500	1,195	1,380	200	15

TABLE 9: GRANULAR NEEDS ASSESSMENT CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS 1995 - 1996 (Volumes in cubic metres)

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
MACA Residential Commerical		3,600	1,600	2,000		
SOCIAL SERVICES Group Home		500	175	300	,	
HOUSING Replacement (7)		2,100	700	1,400	, .	
TOTAL REQUIREMENTS		6,200	2,475	3,700		

TABLE 10:
GRANULAR NEEDS ASSESSMENTCAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS1996 - 1997
(Volumes in cubic metres)

L

PROJECT	EMBANKMENT	SUBBASE	BASE	SURFACING MATERIAL	CONCRETE AGG.	RIPRAP
MACA Residential Commercial Maintenance Garage 2-Bay		2,700 1,200	1,200 400	1,500 400		
HOUSING Replacement (5)		1,500	500	1,000		
					-	
TOTAL REQUIREMENTS		5,400	2,100	2,900	•	

TABLE 11: GRANULAR NEEDS ASSESSMENT CAPE DORSET CAPITAL PROJECTS ESTIMATED MATERIAL REQUIREMENTS 1997 - 1998 (Volumes in cubic metres)

PROJECT EMBANKMENT SUBBASE BASE SURFACING CONCRETE RIPRAP MATERIAL AGG. MACA **Residential Commercial** 2,700 1,200 1,500 TOTAL REQUIREMENTS 2,700 1,200 1,500

6. COST ESTIMATES

6.1 Crushing Cost Estimate - \$34/m³

The following preliminary cost estimate is related to the production of granular materials from bedrock sources in Cape Dorset. The estimate involves the transportation of required equipment, site development, drilling, blasting, crushing, and blending, to generate approximately 20,000 m³ of select gravels. (estimates are from Canadrill).

6.1.1 Mobilization

Equipment needed: D6 Cat, 966 Loader, Primary and Secondary Crusher

Approximate weight: 160 tonnes @ \$300/tonne

\$48,000.00**

**The barge rates that apply will be substantially greater if the equipment that is transported requires larger capacity cranes than those normally supplied with the sealift vessel.

It should be mentioned that the above cost is based on the mobilization of the "crusher", via "sealift", from Montreal to Cape Dorset. If a "crusher" becomes available from another Baffin community due to the termination of an on-going "crushing project", then the mobilization costs would be reduced.

6.1.2 Site Development and Restoration

This will include the construction and/or upgrading of all access roads to the preferred site and the grading of the working area for site management. Culverts and ditches may be necessary for drainage. The restoration would involve site cleanup and landscaping. Access roads, approximately 300 meters, would require 2,100 m³ of granular material (7 m³/m of road).

2,100 m³ @ \$5/m³ to place \$10,500.00 Working area and stockpile pad would require approximately 12 hours of "Cat" time.

12 hrs. @ \$140/hr.		<u>\$1,680.00</u>
	TOTAL	\$12,180.00

If Q_3 is chosen for a quarry operation, access roads are already in place and the total cost will be reduced by approximately \$10,000.00.

6.1.3 Drilling and Blasting

Drilling equipment is available locally. Canadrill quotes that for a quantity of $16,000 \text{ m}^3 @ \$14.75/\text{m}^3$

\$236,000.00

6.1.4 Crushing and Blending Costs

Hauling and stockpiling of blend material 4000m³ @ \$10/m³ \$40,000.00 Using daily production of 500 m³/day and a running cost of \$7,300/day**, 20,000 m³/day @ \$7,300/day (\$14.60/m³) <u>\$292,000.00</u> TOTAL \$332,000.00

**Based on regional rates for labour, rental and fuel

6.1.5 Manpower and Accommodations

For 3 people: foreman, crush	er operator, m	echanic
mobilization	-	\$9,000.00
accommodations for		. •
50 days @ \$150/day/man		\$22,500.00
• • • • • • • • • • • • • • • • • • •	TOTAL	\$31,500.00

_ 3 9

6.1.6 Engineering Supervision Costs

For 2 people		
Yellowknife - Cape Dorset		\$6,000.00
Accommodations for		
50 days @ \$150/day/man		\$15,000.00
Truck rental 50 days @ \$75/day		\$3,750.00
	TOTAL	\$24,750.00

6.1.7 Estimate Summary

Mobilization	\$48,000.00
Site Development & Restoration	\$12,180.00
Drilling & Blasting	\$236,000.00
Crush & Blend	\$332,000.00
Manpower & Accommodation	\$31,500.00
Engineering	\$24,750.00

TOTAL COST

\$684,430.00

In summary, it will cost approximately \$685,000 to produce 20,000 m^3 of granular material or approximately \$34/m³, from bedrock sources in Cape Dorset. The total produced consists of 16,000 m³ of blasted and crushed bedrock and 4,000 m³ of "blend". This is a Class D estimate.

6.2 Screening Cost Estimate - \$20/m³

The following preliminary cost estimate is related to the production of select gravel by screening existing granular sources in Cape Dorset. This estimate involves the purchase and transportation of a portable screening plant, rental of other required equipment, site development, screening, and stockpiling to generate approximately 5,000 m³ of select gravel.

6.2.1 Mobilization

Equipment to purchase: Assinck Bros. Model CS-4-8 Screening Plant

Purchase price at Montreal	\$40,000.00
Approximate weight: 7 tonnes @ \$300/tonne	\$2,100.00
TOTAL	\$42,100.00

6.2.2 Site Development and Restoration

Access is already established to an existing pit. Working area and construction of a stockpile pad would require 8 hours of "Cat" time. The restoration would involve site cleanup and landscaping.

8 hrs x \$140/hr \$1,120.00

6.2.3 Screening Costs

Cat D6 plus operator	120 hrs @ \$140/hr \$16,800.00
Loader plus operator	120 hrs @ \$140/hr \$16,800.00
Truck plus operator	120 hrs @ \$75/hr \$9,000,00
Screener operator	120 hrs @ \$18.50/hr \$2.220.00
-	TOTAL \$44,820.00

6.2.4 Manpower and Accommodations

Mobilization for screener	operator	\$3,000.00
Accommodations 10 days	@ \$150/day	\$1,500.00
	TOTAL	\$4,500.00

6.2.5 Engineering Supervision Costs

Yellowknife - Cape Dorset	\$3,000.00
Accommodations 10 days @ \$150/day	\$1,500.00
Truck rental 10 days @ \$75/day	\$ 750.00
TOTAL	\$5,250.00

6.2.6 Estimate Summary

Mobilization	\$42,100.00
Site Development & Restoration	\$ 1,120.00
Screening	\$44,820.00
Manpower & Accommodation	\$ 4,500.00
Engineering	\$ 5,250.00

TOTAL COST \$97,790.00

In summary, it will cost approximately \$97,800 to produce 5,000 m³ of select granular material or approximately \$20/m³ by screening material from existing sources in Cape Dorset. To produce 5,000 m³, it is anticipated that 10,000 m³ to 15,000 m³ of the existing granular source would have to be processed. This is a Class D estimate.

6.3 Site 2 Access

This access route is presented on the assumption that the granular resource is excavated during summer using conventional equipment. In addition, contractors should familiarize themselves with the "Environmental Guidelines -Pits and Quarries", and "Access Roads and Trails", published by Indian and Northern Affairs Canada.

The approach to Site 2 is possible from Site 4 (note Site Location Map). A major consideration is the need to construct a ramp over a two meter ridge that is the southeast boundary of Site 2B. The ridge separates the elevated plane of Site 2 with the flat lying bedrock of the depleted Site 4. Once the ramp has been constructed, access through Site 2 should continue in a S.E. direction and terminate 30 meters before the water pipeline from Tee Lake.

Construction of the access road should not entail cutting deeper than the base of the granular source. Drainage and erosion control must be considered in all phases of planning and development. Ideally, the natural north-south surface run-off would be utilized to drain the borrow area in a controlled manner to the lower level.

The ramp should be constructed from the remaining material in Site 4. A "dozer" is needed to "push" the remaining material into place; however, construction costs should be minimal.

Cat D6 plus operator	8 hrs	Ø	\$140/hr	\$1,120.00
Loader plus operator	4 hrs	0	\$140/hr	\$ 560.00
Truck plus operator 4	hrs Ø	\$	175/hr	<u>\$ 700.00</u>
				TOTAL \$2,380.00

42

7. GRANULAR RESOURCE EVALUATION

7.1 Supply and Demand

As shown in Table 12, the total amount of granular material from all existing sources is approximately 41,000 m³, of which 26,500 m³ is considered embankment and subbase and 14,600 m³ select. Select grades will have to be obtained from "screening" of the unprocessed material at the specific sites shown in Table 12.

TABLE	12

AVAILABLE MATERIAL / EXISTING SOURCES

Existing Source	Grad	<u>Totals</u>	
	Embankment/Subbase	Select (Processed)	
Site A	10,000	5,000	15,000
Site B.	5 500	2,100	2,100
Site 13 M.O.T.	5,500 6,000	3,000	8,500
F.B.S.	5,000	3,000 1,500	9,000 6,500
Total cu.	m. 26,500	14,600	41,100

Of a total ten year forecast demand of approximately 96,345 cubic metres of granular material between 1990 - 1999 there is available approximately 41,000 cubic metres of varying grades of material within the vicinity of Cape Dorset for use in local capital projects.

Table 13 is a summary of the material requirements (from needs assessment tables) for all proposed capital projects from 1990 through 1999.

YEAR	EMBANKM	ENT/SUBBASE	SELECT		
	increment	Cummulative	Increment	<u>Cummulative</u>	
990/91	11,835	11,835	8,070	8,070	
991/92	4,625	16,460	1,075	9,145	
992/93	10,620	27,080	9,155	18,300	
993/94	7,640	34,720	4,930	23,230	
994/95	3,235	37,955	2,790	26,020	
995/99	29,195	67,150	19,220	45,240	

TABLE 13 1ATERIAL REQUIREMENTS (m³)

An examination of supply and demand will indicate that during the 1992/93 fiscal year, there will be a deficit of granular material from existing sources.

92/93 Embankment/Subbase (m³) 92/93 Select Grades (m³)

26,500 (existing) - 27,080 (required) 14,600 (existing) - 18,300 (required)

vv (chisting) - 10,500 (require

= -580

= -3,700

In the years 1993/94 and 1994/95, the requirements have been assessed as follows (Table 13):

Embankment

Select

37,955 - 27,080 = 10,875or 11,000 m³ 26,020 - 18,300 = 9,720or 10,000 m³

44

This requirement can certainly be met from potential sites 2A & B and 10 that contain approximately 41,000 m³ of granular material from which the required select material can be screened. These potential sources should be adequate for several years beyond 1994/95. Furthermore, as indicated in Section 6 "Cost Estimates", granular material from these sources can be obtained at only slightly over half the cost of obtaining it from a quarry/crushing operation.

7.2 Summary

Cape Dorset has sufficient granular materials to satisfy its short term needs through the 91/92 fiscal year. The community is also over 95% sufficient for its 92/93 needs for embankment/subbase and 80% sufficient for its 92/93 select needs. As the capital planning figures are unlikely to be fully realized, the community, in fact, can consider available material sufficient to 92/93.

Development of identified potential sources will be required for the requirements of subsequent years. Economic considerations indicate that these sources should be Sites 2A & B and 10.

8. RECOMMENDATIONS

It is recommended that, as soon as possible, the Municipality of Cape Dorset implement a Granular Resource Development and Management Plan based on this report and modified as is appropriate by legitimate local concerns that are properly beyond the scope of this report.

The specific technical recommendations of this report are:

- 1. Continue to use the existing sources until depletion which is expected to be in 1992/93.
- 2. Develop Site 2A & B in 1993.
- 3. Develop Site 10 subsequent to Site 2A & B when observation and records of usage indicate Site 2A & B is nearing depletion, i.e. has 1 to 2 years requirement remaining. Note this site will probably require access by ice road.
- 4. Develop quarry sites subsequently.
- 5. Since the requirements beyond 1994/95 are uncertain, review and reconsider source potential and requirements in 1993/94.

REFERENCES

Annual Book of Standards, American Society for Testing and Materials, (ASTM), various rock and foundation tests and standards.

Department of Indian and Northern Affairs, 1988, Plan for the Reservation and Development of Granular Materials in the vicinity of Inuvik, N.W.T., CE00992T. Prepared by Hardy BBT Limited.

Department of Indian and Northern Affairs, 1982, Environmental Guidelines Pits and Quarries.

Department of Energy, Mines and Resources, 1970, Geology and Economic Minerals of Canada, Ottawa, Canada.

Department of Public Works and Highways, 1986, Cape Dorset Granular Study, Yellowknife.

Department of Public Works, G.N.W.T., Soil Classification System, Yellowknife.

Embleton and King, 1971, Glacial and Periglacial Geomorphology, London.

Hardy BBT Limited, 1989, Deposit 467 (Willow River), Aklavik, N.W.T.

Krynine and Judd, 1957, Principles of Engineering Geology and Geotechnics, McGraw-Hill Civil Engineering Series, Toronto.

Nasa, Jet Propulsion Laboratory, 1986, Imaging Radar-C Science Plan, Pasadena, California.

GLOSSARY OF TERMS

Active layer:

Alluvial fan:

AASHTO:

Colluvial sediments:

Continuous permafrost zone:

Deltaic deposits:

Environment of deposition:

1

Eskers:

the layer of ground in permafrost which thaws each summer and refreezes each fall.

fan shaped mass of alluvial deposits shed by fluvial activity from mountain streams.

American Association of State Highways and Transportation Officials, used almost exclusively by the several state Departments of Transportaion and the Federal Highway Administration in earthwork specifications for transportation lines.

sediments transported and deposited through the process of mass wasting (i.e. by gravity).

an area underlain by permanently frozen subsoil.

deposition of sediments by rivers in low energy environments, characterized by well-developed cross-bedding and sands, silts and clays.

the lithology, composition, and diversity of all granular deposits are directly related to part and modern depositional and erosional environments.

a long narrow, winding ridge composed of stratified accumulations of sand and gravel produced from subglacial streams; eskers are aligned with the flow of retreating glaciers or ice sheets. Frost Susceptible Soil:

Frost wedging:

Ground-truth reconnaissance:

In-situ:

Kame Terrace:

Lacrustine deposits:

Mechanical weathering:

Outwash Plan:

Oversize Material:

Periglacial environment:

soil in which significant ice-segregation will occur, resulting in frost heave, or heaving pressures, when requisite and freezing conditions exist.

water expanding as it freezes widens crevices in well-bedded or well-jointed rock and shatters it.

the physical act of acquiring data on the ground to prove geological assumptions.

the natural undisturbed soil or strata of weathered material in place.

a steep-side, constructional terrace consisting of stratified sand and gravel formed as a glacio-fluvial deposit between a melting glacier or a stagnant ice lobe and a higher valley wall or lateral moraine.

silts and clays deposited in lake water and later exposed either by the lowering of the water level or by the elevation of the land.

relates to the physical breakdown of rocks, at or near the earth's surface, by external processes (such as wind and water).

a broad, gently sloping sheet of outwash deposited by melt water streams flowing in front of or beyond a glacier.

this refers to rock particle size as gravel particles larger than 75 mm (3") in diameter are usually considered to be too large to be used for most geotechnical uses.

depositional and erosional environments modified by cold climates (subglacial). Permafrost:

Permafrost Table:

Raised beaches:

Regolith:

Solifluction:

Talus slope:

Territory Land Use Regulations:

USC:

Varved sediments:

the thermal condition in soil or rock where temperatures below 0° C persist over at least two consecutive winters and the intervening summer.

the interface between the active layer and permafrost zone.

beaches formed during times of high water level and then stranded by the lowering of the water level or by the elevation of the land.

unconsolidated mantle of weathered rock and soil material on the earth's surface.

in subarctic regions, fine rock fragments when saturated with water, spread slowly down slope and along valley floors.

the accumulation of small fragments (scree) in the millimeter-to-meter range from cliffs or steep walls that maintain a uniform slope (commonly about 30°) as it grows.

provides regulatory control for maintaining sound environmental practice for any land use activity on all lands under Federal control in the territories.

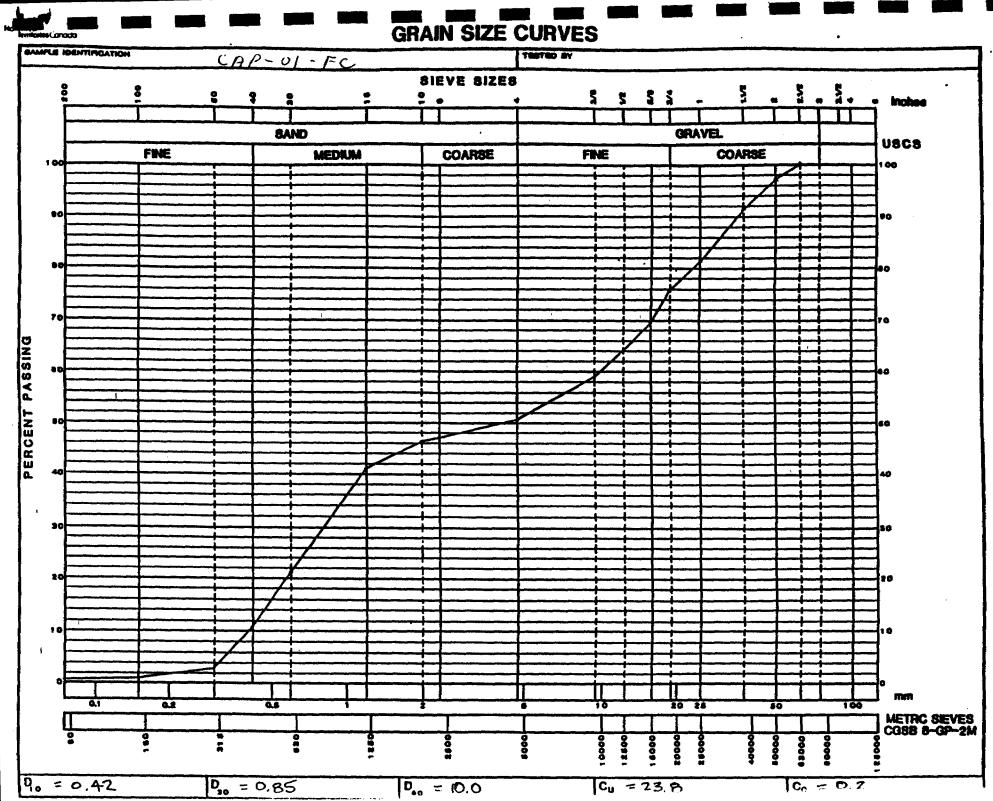
United Soil Classification System, used for foundation engineering such as dams, buildings, road earthwork specifications, and airfield design.

distinct band representing the annual deposit in sedimentary materials.

APPENDIX A

Geotechnical Data 1985 - 1989

Laboratory Test Results Grain Size Curves Site Plans Cross-Sections

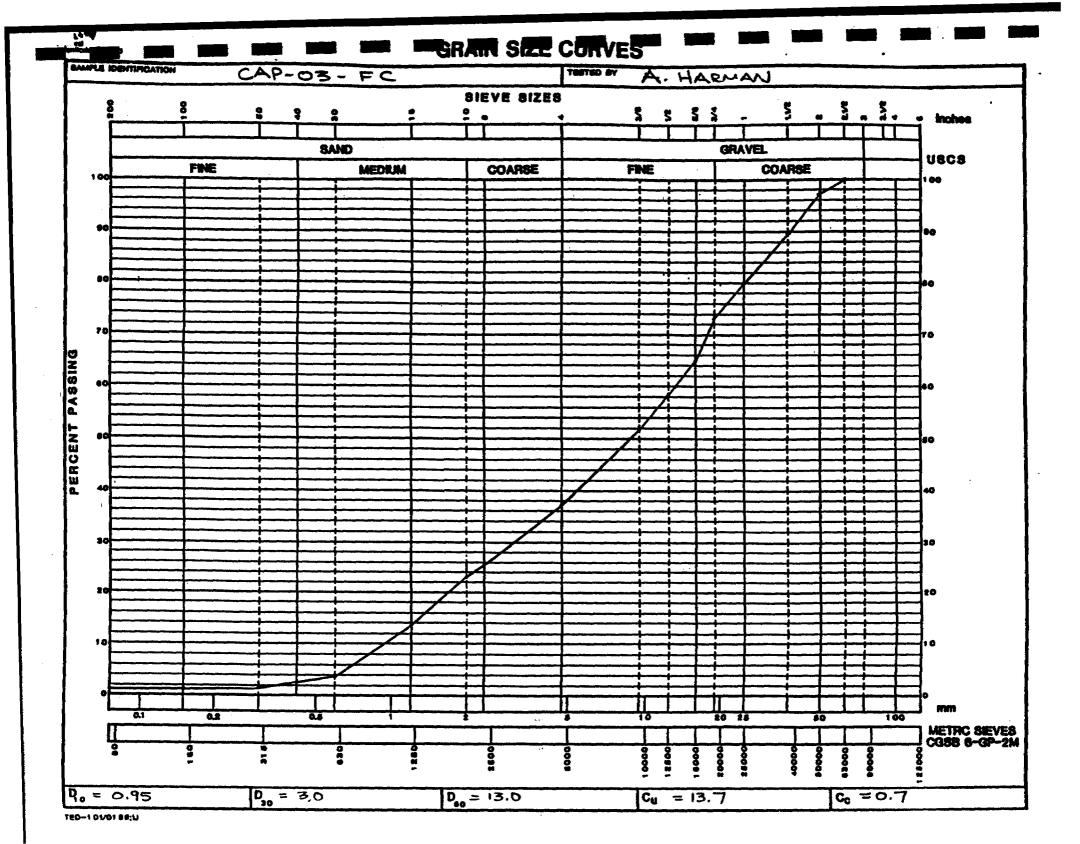

APPENDIX A

Listing of Test Results and Site Plans

Site	Source Infor	mation
Site A	CAP-01-FC CAP-03-FC 288-1-PD 288-2-PD 288-3-PD 288-4-PD	1989 1989 1986 1986 1986 1986
Site 2	242-01-RSPD CAP-04-FC 245-04-RS	1987 1989
Site 13 (Site 14)	244-02- RS	1987
Fractured Bedrock Source (FBS)	CAP-02-FC	1989
Site 3	202-01-RF 202-02-RF 202-03-RF	1985 1985 1985
Site 5 (proposed park)	204-01-RF 204-02-RF	1985 1985
Site 10	CAP-06-FC	1989
Tidal Flats	235-01-MB 235-02-MB 230-02-MB	- 1988 1988 1988
Figures 1 - 18	Site Plans and	Cross-sections

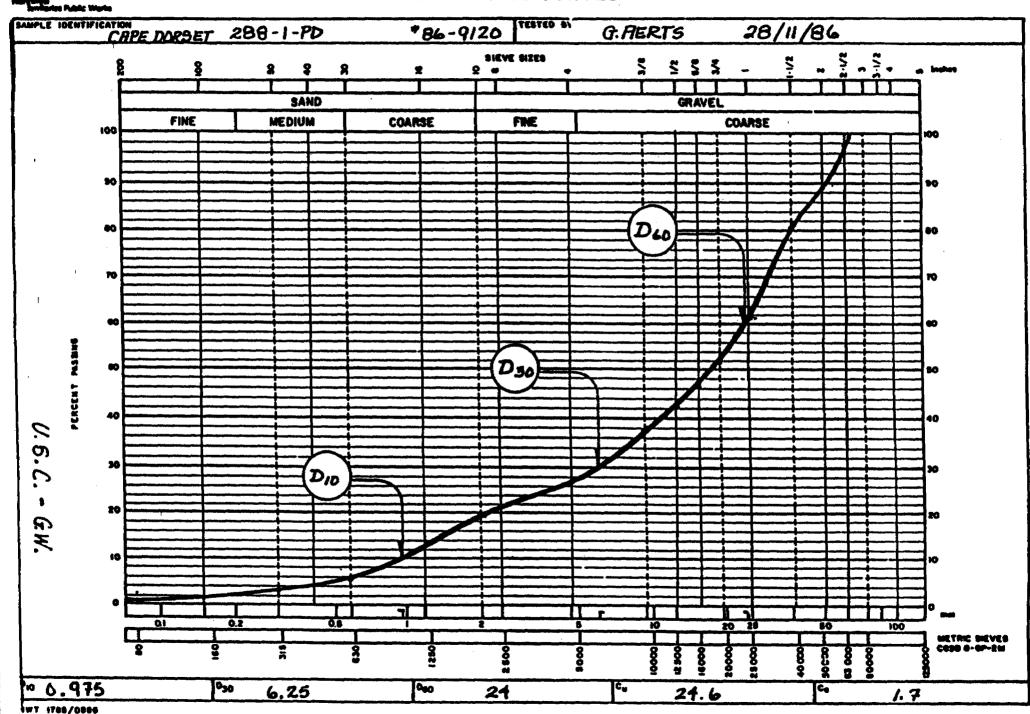
PROJECT	e Dorset		Site A			PROJECT NU	ITO 803
PARTes	. COMPLETES	IN. THE	HELO THE		vei or	200	IL CLERKSALTS
SAMPLE IDE	TIPICATION CAP-01	-FC	METHOD OF 3A	Shove]		
LOCATION	Ridge/Beach						······································
TEST HOLE	NUMBER		DEPTH 0.8			T	
FIELD DESCA	FIN Gravel	and Sand	dry perma	froet -+ "			<u> </u>
	GIEVEL	<u>ana sana</u>		LIUSE AL			
LAS TESTS	REQUIRED	/Wash ofer	e/Attereer	a i=i+-			······································
SAMPLED BY	FC	DATE D/M/1	18/08/89				RETAINED
PART E	- COMPLETED	IN THE				29 - GAN	
DATE RECEIV				RECEIVE	A.Ha		
	COMPLETION DATE D/			RESULT	A.Hal		
PART	- LABORATOR	TENT REA	ULTS AND C		18. * 2 10. **		
•				2000 (W. M. A. A.			
- '	Sand and Gra Non Plastic	vel, brow	n, pebbles	to 50mm (GP-5P)		
-	NUN FIASLIC						
					-		
					-		
					•		
		-					,
	-						
	-				· .		
					•.		
			· .		·.		_
	· .		· .		·.		
	· .		· .		ч. - с		
	•		· .		•. •		
GMPHLED BY	•	- .		DATE O/	·.		

.



SAMPLE DATA SHEET

•


•

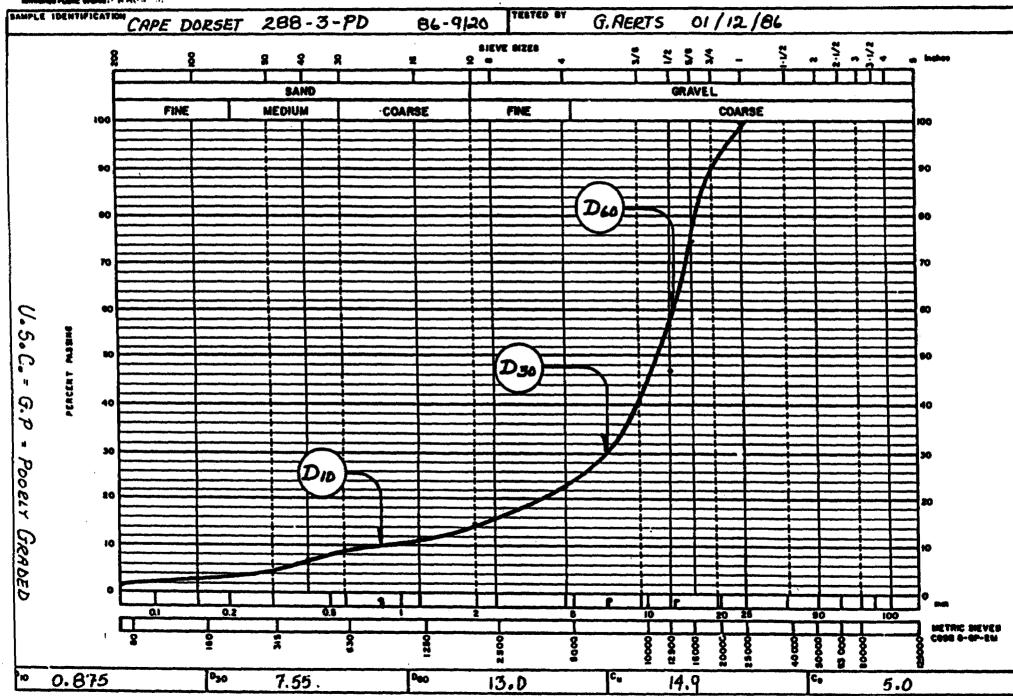
SAMPLE V	
Site A	PROJECT NUMBER 89 9170 803
METHOD OF SAMPLE	•
Site A - 1989	
SEPTH.	
,	
sh sieve	
	SAMPLE DISCARDED RETAINED
STATISTICS STATISTICS	
	A.Harman
	RESULTS SUBMITTED TO
A MALLER MARKED	
own, sandy (GP)	
·	· · · · · · · · · · · · · · · · · · ·
	· ·
···· · · · · · ·	
•	
	· · ·
	-
•	
· _	
· · · ·	DATE D/M/Y
DATE D/M/Y	
	Site A

SAMPLE DATA SHEET					
Cape Dorset Granula	r Invet	instion		PROJECT NUMBER 86-9120	
Cape Dorset Granular Investigation 86-9120 PART 3 - COMPLETED IN THE FIELD					
SAMPLE IDENTIFICATION 288-1-PT	SAMPLE IDENTIFICATION ALL METHOD OF BANKLING				
LOCATION Site A - By Oil Tank Farm					
TEST HOLE NUMBER A1		DEPTN 1.3 M			
FIELD DESCRIPTION Soil hing	in crus	h material. Littl	e sand (20% volume). Rest is gravel and cobbles	
LAD TESTS REQUIRED Wash Sleve	Analyst	s/ Visual Descript	ion and Classifica	tion	
SAMPLED BY Peter Deutch	ATE 0/14/1	0/86	SAMPLE DISCARDE		
PART 2 - COMPLETED IN					
DATE RECEIVED 26/11/86			RECEIVED BY G.	Aerts	
REQUESTED COMPLETION DATE D/M/Y		•	RESULTS SUBMITTED	10	
PART 3 - LABORATORY T	EST RE	SULTS AND COMM		Hurrey	
VISUAL DESCRIPTION:	Grave	1			
		, ounded to Sub-angu	lar		
·		size - 100 X 70 X	60		
	Compo	sition - Igneous	- Granites, Biotit	e å Mod. Duartsz.	
	•	- -	Trace Pyrites		
		Netamorp	hic- Gneiss	· · · ·	
		the cannot b	Nicaceous sci	hist	
		Sed	Mud stone, chalky	calcerous	
		Fines -	Coarse sand		
WASHED SIEVE ANALYSIS:	97.8%	passing 67 mm Sie	ve		
·	61.3%	passing 25 mm Ste	ve		
-		passing 19 mm Sie			
		passing 4.75 mm S passing 0.075 mm S			
<u>U.S.C.</u>		well graded gravel	s, sandy gravels	•	
		uniformity = 24.6 coefficient = 1.7			
				•	
		-			
· · · · ·					
			-		
COMPILED BY			DATE M/M/Y		
G. Aerts		ATE D/M/Y	DATE 0/1/Y 3/12/86		
······································	!"	NIL W3/T		ATTACHMENTS PAGES	

GRAIN SIZE CURVES

	1
•	Sections Adds 1

SAMPLE DATA SHEET

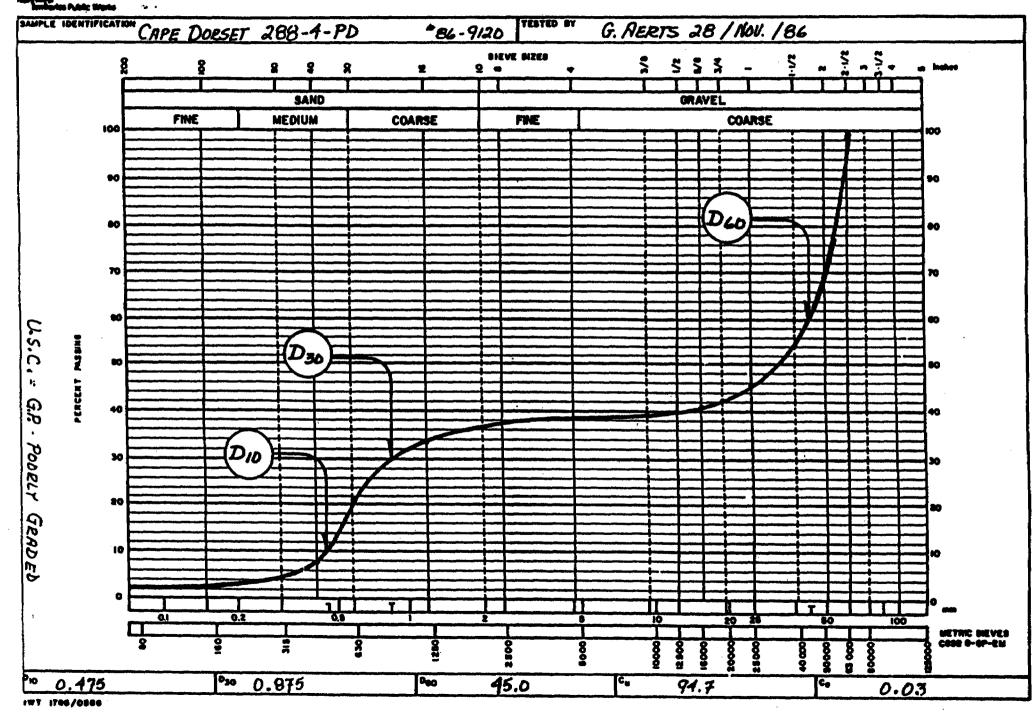

Cape Dorset Granular Investigation 80-9120 ART 1 - COMPLETED IN THE PIELD SAMPLE IDENTIFICATION 288-2-PD DETHOD OF SAMPLING OCATION Site A - By 011 Tank Farm TEST HOLE NUMBER A2 MEPTH 1.5 m NELD RESCRIPTION A material that is a 50/50 mix of sand & gravel. This is a sample in the less than : AB TESTS REQURED Visual/Classification & Description/ Hash Sieve Analysis CAMPLED BY P. Deutsch DATE DYM DATE DYM/Y ART & - COMPLETED IN THE LABORATORY NET RECEIVED 26/11/86 RECEIVED TED COMPLETED IN THE LABORATORY NET RECEIVED 26/11/86 RECEIVED BY G. Aerts RESOLTS SUBMITTED TO	}" range.
288-2-PD OCATION Site A - By 011 Tank Farm TEST NOLE BUNDER A2 MEPTH 1.5 m NELD BESCRIPTION A material that is a 50/50 mix of sand & gravel. This is a sample in the less than 3 AB TESTE REQURED Visual/Classification & Description/ Wash Sieve Analysis AB TESTE REQURED Visual/Classification & Description/ Wash Sieve Analysis AB TESTE REQURED Visual/Classification & Description/ Wash Sieve Analysis ABTE BY P. Deutsch P. Deutsch PART & - COMPLETED IN THE LABORATORY MECEIVED BY G. Aerts	3" range.
OCATION Site A - By Oil Tank Farm TEST HOLE HUMBER A2 BEFTH 1.5 m HELD BESCHIFTION A material that is a 50/50 mix of sand & gravel. This is a sample in the less than 3 AB TESTS REQURED Visual/Classification & Description/ Wash Sieve Analysis JAMPLED BY P. Deutsch DATE B/M/Y BATE B/M/Y BART & - COMPLETED IN THE LABORATORY WTE RECEIVED 26/11/86	}" range.
TEST HOLE NUMBER A2 NELD BESCRIPTION HELD BESCRIPTION A material that is a 50/50 mix of sand & gravel. This is a sample in the less than 3 AB TESTS REQUIRED Visual/Classification & Description/ Wash Sieve Analysis AB TESTS REQUIRED Visual/Classification & Description/ Wash Sieve Analysis AB TESTS REQUIRED BATE BY N/Y AB TESTS RECEIVED 25/11/86	3" range.
HELD DESCRIPTION A material that is a 50/50 mix of sand & gravel. This is a sample in the less than 3 AB TESTS REQUIRED Visual/Classification & Description/ Wash Sieve Analysis AB TESTS REQUIRED Visual/Classification & Description/ Wash Sieve Analysis AB TESTS REQUIRED DATE 0/M/Y AMPLED BY P. Deutsch DATE 0/M/Y SAMPLE DISCARDED ART & - COMPLETED IN THE LABORATORY MATE RECEIVED 25/11/86	3" range.
AS TESTS REQUIRED Visual/Classification & Description/ Wash Sieve Analysis AMPLED BY P. Deutsch DATE 0/M/Y 14/10/86 SAMPLE DISCARDED RETAINED PART & - COMPLETED IN THE LABORATORY MTE RECEIVED 25/11/86 RECEIVED BY G. Aerts	
AMPLED BY P. Deutsch DATE D/M/Y 14/10/86 SAMPLE DISCARDED RETAINED PART 2 - COMPLETED IN THE LABORATORY INTE RECEIVED 25/11/86 RECEIVED BY G. Aerts	
AMPLED DY P. Deutsch DATE D/M/Y SAMPLE DISCARDED RETAINED ART 2 - COMPLETED IN THE LABORATORY MTE RECEIVED 25/11/86 RECEIVED BY G. Aerts	
ART & - COMPLETED IN THE LABORATORY WTE RECEIVED 25/11/86 RECEIVED BY G. Aerts	······································
NTE RECEIVED 25/11/86 RECEIVED BY G. Aerts	
26/11/86 G. Aerts	
S. Murray	
ART 3 - LABORATORY TEST RESULTS AND COMMENTS	
<u>YISUAL DESCRIPTION:</u> Sandy Gravel - Sub-rounded to sub-angular	
Maximum Size - 80 X 50 X 40 mm	
Composition: Igneous- Granites & Diorite	
Metamorphic - Gnesisses	
Mica schist Fines:	
Coarse - sub-rounded	
Sand - medium to coarse Trace silts silty clay	
WASHED SIEVE ANALYSIS: 96.8% passing 50 mm Sieve	
75.5.% passing 25 mm Sieve 65.3% passing 19 mm Sieve	
38.4% passing 47.5 mm Sieve	
1.0% passing 0.075 mm Sieve	
U.S.C G.P Poorly graded sandy gravel	
Curve Uniformity = 22.0 Curve Coefficient = 0.4	
	-
SATE N/S/T 3/12/86	
ATTACHMENTS	PARE

GRAIN SIZE CURVES IS Public Works and a det SAMPLE IDENTIFICATION TESTED BY G. AERTS 3/12/86 CAPE DOESET 288-2-DD *BL-9/20 2/1-2 2/-2 4 SIEVE BIZED 2 2 5 5 5 * • inches 8 2 \$ 8 2 . 2 ٠ SAND GRAVEL COARSE COARSE FINE FINE MEDIUM 100 100 90 90 60 D60) 00 U. 5. C 10 70 80 0 ଚ PAS AN .7 50 10 .D30 .1 PERCENT POORLY 40 40 30 30 GEADEL D10 20 20 10 10 0 100 0.6 80 Q.I 0.2 10 20 26 2 METRIC SIEVES COSO 0-0P-EM 2500 8000 1000 8000 2000 0000 800 8 23000 ŏ õ õ ğ 2 D30 060 c, Ce °∞ 0.750 16.5 0.1 2.35 22.0

NWT 1788/0888

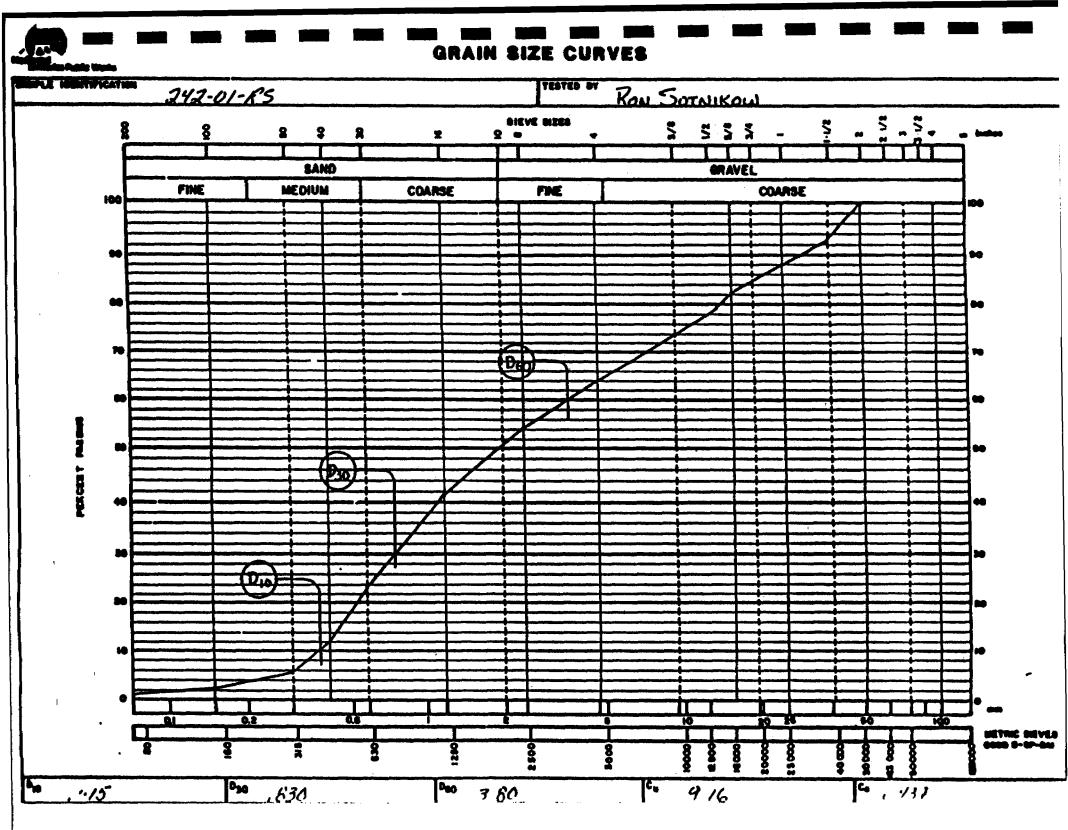
A Serie Decret Examination and Picks Advances PART 1 - COMPLETED IN THE PICLD PART 1 - COMPLETED IN THE PICLD PART 3 - COMPLETED IN THE PICLD PART 3 - COMPLETED IN THE PICLD PART 1.50 PICK NUMBER A3	PROJECT			PROJECT NUMBER	20
BAMPLE INFERTIGATION 200-3-PD BETTION OF BAMPLEN LOCATION Site A - 011 Tank Farm TEXT HOLE RUMBER A3 DEFTH I.Se TEXT HOLE RUMBER A3 DEFTH LAS TEXTS REQUIRED Crush to 19 ma/Mash Sleve/L.A. Abrasion/Yigual Description A Classifiacation BAMPLED BY P. Deutsch DATE BY/OV BANFLE BY P. DEUTSCH DATE BY/OV BAT HECKIVE 25/11/95 RECOUNTED IN THE LABORATORY BAT HECKIVE 25/11/95 RECOUNT THE LABORATORY BAT HECKIVE 25/11/95 RECOUNTED IN THE LABORATORY BAT IS - VLABORATORY TEST RESULTS AND COMMENTS JISMAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: S7 Metamorphic - Ganeses Schiste-Quartz 433 Igneous - Diorite, Grantu-Muccovite, Quartz Pyrite Fine - Minimal Silty coating Rock Flour MSSHED SIEVE AMALYSIS: 98.85 passing 25 m Sieve 90.15 passing 19 m Sieve U.S.C. G.P Poorly graded Curve Coefficient - 5.0 LAA. ABEASION : as per grading '9' - 27.95 Loss on Abrasion Charge = 11 shperes 8 500 revolutions 2500 (v/-) 10 Ret 1/2" 2500(v/-) Ret 3/8 2500 (v/-) 10 Ret 1/2" 2500(v/-) Ret 3/8				00-31	<u></u>
LUCATION Site A - Of I Tant Farm TEST MOLE RUMBER A3 DEFTN 1.5m FILD DESCRIPTION This is a sample of the material in the 3" to 6" range (64) LAS TESTS REQUERED Cruch to 19 ms/Nash Sieve/LA. Abrasion/Yisual Description & Classification markets Br P. Devised Der DW/Y EARCH PRESENCE DECARDED RETAINED EART 18 - COMPLETED IN THE LABORATORY BART 28 - COMPLETED IN THE LABORATORY PART 3 - VLABORATORY TEST REGULTS AND COMMENTS JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 100 X 85 X 100 mm Composition: JISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: JISUAL SIZE SIZE MALTISIS: 98.85 passing 25 mm Sieve 1.75 passing 0.75 mm Sieve 1.75 passing 0.75 mm Sieve 1.75 passing 0.75 mm Sieve U.S.C. G.P Poorly graded Curve Coefficient - 5.0 L.A. ARMASION : as per grading "8" - 27.95 Loss on Abrasion Charge # 11 Subpres # 500 revolutions 2500 (*/-) 10 Ret 1/2" 2500(*/-) Ret 3/8 2500 (*/-) 10 Ret 1/2" 2500(*/-) Ret 3/8		INTTHE OF BAN	PL IN6		
SIGE A - OII Tank Farm Detrive an analysis of the material in the 3" to 6" range (60) This is a sample of the material in the 3" to 6" range (60) LAB TEST REGULTED Crush to 19 mu/Wash Sieve/L.A. Abrasion/Vigual Description & Classifiacation man.to w P. Deutsch. Orush to 19 mu/Wash Sieve/L.A. Abrasion/Vigual Description & Classifiacation MAT & 2 - COMPLETED IN THE LABORATORY METERCEVED 26/11/055 metercerve 26/11/055 METERCEVED 26	288-3				
PALLS DESCRIPTION This is a sample of the material in the 3" to 6" range (GK) LAS TEXTS REQUERTED. Crush to 19 mm/Mash Sleve/L.A. Abrasion/Visual Description & Classiffacation DAME MAY DATE MAY/ORS DATE MED/DATE DATE MAY/ORS DESCRIPTION: COMPLETED IN THE LABORATORY DESCRIPTION: COMPLETED AND DATE MAY/ORS DESCRIPTION: COMPLETED AND DAY/OR/OR/OR DESCRIPTION: Cobbies - 42 - Sub-rounded to sub-angular Montal Stize - 110 X BS X100 mm Composition: DISUAL DESCRIPTION: Cobbies - 42 - Sub-rounded to sub-angular Montal Stize - 10 X BS X100 mm Composition: DISUAL DESCRIPTION: Cobbies - 42 - Sub-rounded to sub-angular Master District AMALYSIS: 90.85 passing 19 mm Steve 20.05 passing 19 mm Steve 20.05 passing 19 mm Steve 20.05 Lassing 0.075 mm Steve 20.05 Compositions LAS. ABRASION : as per grading "B" - 27.95 Loss on Abrasio	Site A - Oil Tank F	DEPTH	···		
INTS IS A SAMPLE OF the material in the 3" to 6" range (EK)				<u>_</u>	
ALMFACED BY P. Deutach DATE SAVAGAS STEVEY LA. ADVASCOM/YIGUAI DESCRIPTION & LIASTYTACATION PART (# ~ COMPLETED IN THE LABORATORY BATE RECEIVED 25/11/95 RECURST COMPLETED IN THE LABORATORY BATE ACCESTED COMPLETED IN THE LABORATORY PART 3 - LABORATORY TEST REGULTS AND COMMENTS YISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: S73 Metamorphic - Gneisses Schists-Quartz 435 Igneous - Diorite, Granite-Muscovite, Quartz Pyrite Fine - Winimal Silty coating Rock Flour MASHED SIEVE ANALYSIS: 98.85 passing 25 mm Sieve 23.05 passing 19 mm Sieve 23.05 passing 19 mm Sieve 23.05 passing 19 mm Sieve 23.05 passing 9:8° - 27.95 Loss on Abrasion Charge = 11 shperse 500 (*/-) Ret 3/8 L.A. ABRASION : as per grading "8° - 27.95 Loss on Abrasion Charge = 11 shperse 500 (*/-) Ret 3/8	This is a	sample of the material in	n the 3" to 6" rang	e (GW)	
LINE DI DI MURADIN STOVICIA. ADRISION/TIGUEL DESCRIPTION & LIESTITIACATION LOTOR DI			· · · · · · · · · · · · · · · · · · ·		<u> </u>
PART 2 - COMPLETED IN THE LABORATORY MATE RECEVED Z MATE RECEVED Z MINING AN ADDRATORY MATE RECEVED Z MINING AN ADDRATORY MAXAMENTICS COMPLETED FOR Size Composition: JISUAL DESCRIPTION: VISUAL DESCRIPTION: Composition: JISUAL DESCRIPTION: VISUAL DESCRIPTION: Composition: JISUAL DESCRIPTION: VISUAL DESCRIP	Crush cu				
ANT RECEIVED 26/11/86 REQUESTED COMPLETED DATE D/V/Y RESULTS SUBJECT SUBJECT OF SUBJECT SUBJECT SUBJECT OF SU	P. Deutsch	14/10/86			
25/11/26 Guy Acrts. PART 3 - LABORATORY TEST RESULTS AND COMMENTS YISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: S75 Metamorphic - Gneisses Schists-Quartz 435 Igneous - Diorite, Granite-Muscovite, Quartz Pyrite Fine - Minimal silty coating Rock Flour MISHED SIEVE ANALYSIS: 90.85 passing 4.75 m Sieve 90.15 passing 0.75 sm Sieve 1.75 passing 0.075 sm Sieve U.S.C. S.C. G.P Poorly graded Curve Uniformity = 14.9 Curve Coefficient - 5.0 L.A. ABRASION : as per grading "8" - 27.95 Loss on Abrasion Charge = 11 shperse 500 (+/-) Ret 3/8		IN THE LABORATORY		:	·
PART IS - LABORATORY TEET REBULTS AND COMMENTS VISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Mominal Size - 110 X 85 X 100 mm Composition: SYX Metamorphic - Gneisses Schists-Quartz 43S Igneous - Diorite, Granite-Muscovite, Quartz Pyrite Fine - Hinimal silty coating Rock Flour MSNED SIEVE AMALYSIS: 96.85 passing 25 mm Sieve 23.05 passing 0.075 mm Sieve 23.05 passing 0.075 mm Sieve 23.05 passing 0.075 mm Sieve 1.75 passing 0.075 mm Sieve 23.05 passing 0.75 m Sieve 23.05 passing 4.75 mm Sieve 23.05 passing 4.75 mm Sieve 23.05 passing 4.75 mm Sieve 1.75 passing 0.075 mm Sieve 25.00 (urve Uniformity = 14.9 Curve Coefficient - 5.0 LA. ABRASION : as per grading "8" - 27.95 Loss on Abrasion Charge = 11 shperes 0 500 revolutions 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8	26/11/8	6			
YISUAL DESCRIPTION: Cobbles - 42 - Sub-rounded to sub-angular Nominal Size - 110 X 85 X 100 mm Composition: 573 Metamorphic - Gneisses Schists-Quartz 433 Igneous - Diorite, Granite-Nuscovite, Quartz Pyrite Fine - Minimal silty coating Rock Flour MASHED SIEVE ANALYSIS: 90.85 passing 25 mm Sieve 23.05 passing 4.75 mm Sieve 23.05 passing 0.75 mm Sieve 23.05 passing 0.75 mm Sieve 23.05 passing 0.75 mm Sieve 1.75 passing 0.75 mm Sieve 23.05 passing 0.75 mm Sieve 25.00 (lifer - 5.0) LA. ABRASION : as per grading "B" - 27.95 Loss on Abrasion Charge = 11 shperes # 500 revolutions 2500 (lifer - 10 Rat 1/2" 2500(lifer - 10 Rat 1/2" 2500(lifer - 10 Rat 1/2" 2500(lifer - 2000 Rat 3/8)			S	Murray	
Nowinal Size = 110 X 85 X 100 mm Composition: 573 Metamorphic - Gneisses Schists-Quartz 433 Igneous - Diorite, Granite-Muscovite, Quartz Pyrite Fine - Winimal Silty coating Rock Flour MASHED SIEVE AMALYSIS: 98.8% passing 25 mm Sieve 90.1% passing 19 mm Sieve 23.0% passing 4.75 mm Sieve 1.7% passing 0.075 mm Sieve 1.7% passing 0.075 mm Sieve U.S.C. G.P Poorly graded Curve Uniformity = 14.9 Curve Coefficient - 5.0 L.A. ABRASION : as per grading "B" - 27.9% Loss on Abrasion Charge = 11 Shperes 0 500 revolutions 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8	PART B - LABORATORY	TEST RESULTS AND CO	MMENTS	te false filler an effisie and the second	
MASHED SIEVE AWALYSIS: 98.85 passing 25 mm Sieve 90.15 passing 19 mm Sieve 23.05 passing 4.75 mm Sieve 1.75 passing 0.075 mm Sieve U.S.C. G.P Poorly graded Curve Uniformity = 14.9 Curve Coefficient - 5.0 L.A. ABRASION : as per grading "B" - 27.95 Loss on Abrasion Charge = 11 shperes 0 500 revolutions 2500 '(+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8		57% Metamorphic 43% Igneous - Di	orite, Granite-Musc		
90.12 passing 19 mm Sieve 23.02 passing 4.75 mm Sieve 1.73 passing 0.075 mm Sieve U.S.C. G.P Poorly graded Curve Uniformity = 14.9 Curve Coefficient - 5.0 L.A. ARRASION : as per grading "B" - 27.93 Loss on Abrasion Charge = 11 shperes 0 500 revolutions 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8					
U.S.C. G.P Poorly graded Curve Uniformity = 14.9 Curve Coefficient - 5.0 L.A. ABRASION : as per grading "B" - 27.93 Loss on Abrasion Charge = 11 shperes @ 500 revolutions 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8 Scomplusce av Generation of the state of the stat	WASHED SIEVE ANALYSI	90.1% passing 19 m 23.0% passing 4.75	m Sieve mm Sieve		
Charge = 11 shperes @ 500 revolutions 2500 (+/-) 10 Ret 1/2" 2500(+/-) Ret 3/8	<u>U.Ş.C.</u>	Curve Uniformity = 14		•	
COMPILED BY	L.A. ABRASION :	Charge = 11 shperes @	500 revolutions		
COMPILED BY & Antte	·		-		•
COMPILED BY & Annte					
COMPILED BY & Annte	- · ·				
SCOMPILED BY G BATE DATE D/M/Y	ž			- .	
			DATE B/H /V	<u></u>	
0. AET 13 01/12/86 REVIEWED BY DATE D/H/Y	G. Aerts		01/12/86		

GRAIN SIZE CURVES


in and the second s Second second

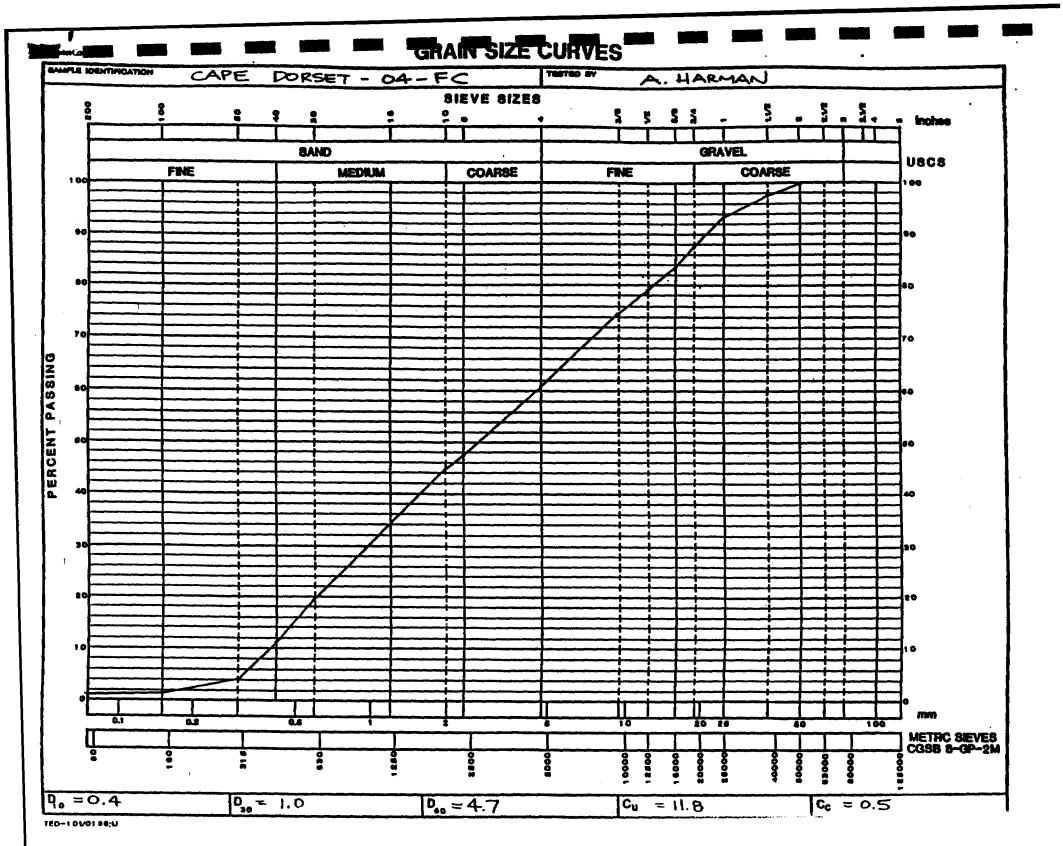
INT 1788/0886

PROJECT Cape Dorset	Granular Investigation		PROJECT NUMBER 86-9120			
PART 1 - COMPLETED IN THE FIELD						
SAMPLE IDENTIFICATION 288-4	-PD METHOD OF SAMPLE	N [®]				
4.0047300						
TEST HOLE NUMBER A4	DEPTH 1.2 m		· · · · · · · · · · · · · · · · · · ·			
FIELD RESCRIPTION						
	6W - this was in the unexploited section of the site. High in Gravel, cobble & boulder but					
low in sand						
	Analysis?Visual Descripti DATE D/W/Y	SAMPLE DISCARDED	RETAINED			
	DATE D/W/Y 14/10/86					
	N THE LABORATORY					
26/11/86			Aerts			
REQUESTED COMPLETION DATE D/M/Y	-		S. Murray			
PART 3 - LABORATORY	TEST RESULTS AND COMM	AENTS - CONTRACTOR	en e di i persona de la seconda de la s			
	•					
	andy Gravel - Sub-angular/					
	axiumu Size - 125 X 75 X 4 omposition:	is man				
	90% Igneous - Granites	Medium to coarse				
	Granodio					
	. Quartz					
1	0% Metomorphic - Schist -	Nica/Dvrita				
	W Recomprise - Scillag	nica/ryi ive	· · · · · · · · · · · · · · · · · · ·			
, F	ines:	·				
	Coarse - Sub-round to su	-	·			
	Sands - Medium sub-angul Traces silts	ar				
· · · · ·						
WASHED SIEVE ANALYSIS:	98.1% passing 67 mmSieve					
	42.4 passing 19 mm Sieve 38.3 passing 4.75 mm Sie					
4						
	2.3% passing 0.075 mm Si					
		eve				
UNIFIED SOILS CLASSIFICA	TICM: G.P Poorly grad	eve ed gravels				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
<u>UNIFIED SOILS CLASSIFICA</u>	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				
UNIFIED SOILS CLASSIFICA	TION: G.P Poorly grad Curve Uniformity =	eve ed gravels 94.7				


and a state of the state of the

GRAIN SIZE CURVES

;


	SAMPLE D	ATA SHEET				
	MOJECT CAPE DORSET Granular Investigat	ion	PROJECT	NUMPER 87-9170		
	PART 1 - COMPLETED IN THE FIELD					
	SAMPLE IDENTIFICATION 242-01-RSPD METHOD OF SAMPLING Shovel & Backhoe					
	LOCATION Site 2B	SHOVEL & DE	<u>ennee</u>			
		- 1.0 meters				
	Sand, very few rocks, Emi	MIKINENC				
	LAD TESTS REQUIRED					
	LAB TESTS REQUIRED VISUAL / W.S.A. / U.S.C. SAMPLED BY R.Sotnikow DATE D/M/Y 16/08/87	SAMPLE DISCARDED	<u> </u>	RETAINED		
	SAMPLED BY R. Sotnikow BATE D/M/Y 16/08/87 PART 2 - COMPLETED IN THE LABORATORY					
	DATE RECEIVED	AECEIVED BY				
	REQUESTED COMPLETION DATE D/M/T	REBULTE SUDMITTED T				
	PART 5 - LABORATORY TEST RESULTS AND COMM	12#14		·		
	VISUAL DESCRIPTION: Gravelly S	and : Aggrega		Angular to Sub- Angular, Maximum Particle Size-80mm, Granites, Gneisses		
			•	Greywackes		
		Jan	:	Medium to Coarse, Silt Fines & Trace fine Carbonates		
	WASH SIEVE ANALYSIS: Based on U.S.	C. Break Poin	ts			
	Gravels = 36.					
	Sands = 62 .					
	= 02.	-				
]						
٦	UNIFIED SOILS CLASSIFICATION: SP =	Poorly Graded		-		
4	-					
		-				
į						
	COMPILED BY RON SOTNIKOW	DATE D/M/T	N/A			
\$I	REVIEWED BY DATE D/H/T		ATTACHM	THTE PARE I		

	<u> Dorset -</u>				PROJEC	1 89 9170 8	03
	COMPLETER			a st ern (*** (*)	2010 - 201 0 - 2 0	• ? :):•) •}*	NY TOWN
SAMPLE IDENTIF	CAP-04-FC		METHOD OF SAM	Shovel			
I OCATION	vs_Slope/Si		· · · · · · · · · · · · · · · · · · ·				
TEST HOLE NUM			DEPTH 1.1m				
FIELD DESCRIPTI	Sandy wel	l graded	gravel mixtu	ure			
drv	. well drai	ned Perm	afrost at 1 '	3 m	- <u> </u>		
LAS TESTS REQU	Visual, W	lash siev	e				
SANPLED BY	F.C.	DATE D/M	/* 17/08/89	SAMPLE DIS	CARDED	RETAINED	
PART E -	COMPLETED	IN THE	LABORATORY				
DATE RECEIVED	Sept./89			RECEIVED BY	.н.		
REQUESTED COMP	LETION DATE D/1	W/Y .		RESULTS SUB	DITTED TO		<u> </u>
PART 3 -	LABORATORT	TEST RI	EBULTS AND CO	MMENTS			
•	Sand bro	wn modiu	m anningd an	wolly pobbly	na to 50 mm	cubrounded	/cp)
-	Sand, DIO	whi neditu	m grained gra	averiy people	25 LQ DU MAN,	Subrounded	(37)
	-		, -				
			x				
×							
	· .						
					-		
					-		
					-		
- .					-		
COMPILED BY				DATE B/M/Y	-		

j

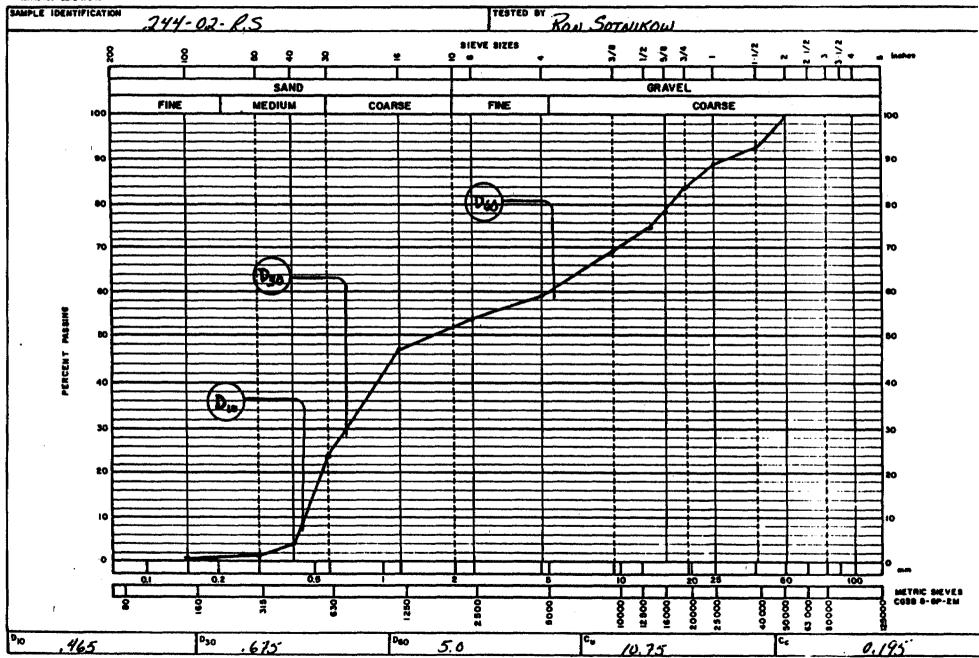
1

	Martine Agent Works	SAMPLE D	ATA SHEET	
	PROJECT CAPE DORSET Gran	ular Investig	ation	PROJECT NUMBER 87-9170-803
	PART 1 - COMPLETED IN TH	E FIELD		
	SAMPLE IDENTIFICATION 245-04-RS	METHOD OF SAMPLE	Shovel	
	LOCATION Site 2A			•
	TEST HOLE NUMBER TH 4	оерти 1.8m		
_	FIELD DESCRIPTION Sand			
-	LAB TESTS REQUIRED VISUAL / W.	S.A. / U.S.C		
	SAMPLED BY R. Snotnikow DATE DA		SAMPLE DISCARDED	± RETAINED
	PART B - COMPLETED IN TH	E LABORATORY		
	DATE RECEIVED		RECEIVED BY	
	REQUESTED COMPLETION DATE D/W/Y	•	RESULTS SUBMITTED T	0
È	PARTE I SE LABORATORY TEST	RESULTS AND COMM	ENTRA STATE	
•	VISUAL DESCRIPTION:	Gravelly	Sand : Sub-J	Angular Aggregates with
				. Size of 80mm., composed
			of G	anites; Quartz. Sand is
			Mediu	m to Coarse grained.
·			Silt	Fines with Misc. Trace
		• • •	Micas	
*** § **		•		-
		<u>.</u>		
	WASH SIEVE ANALYSIS: 1	Based on U.S.C	. Break Point	.8
		Gravels = 1.0%	i	
inn		Sands = 98.0	•	
	1			
				• · ·
	UNIFIED SOILS CLASSIFIC	CATION: SP =	Poorly Grade	d Sands, Little Fines
-				
-				
			-	
	-			1
200	COMPLED BY - R. Sotnikow		DATE D/M/Y 26/	10/87
	REVIEWED BY	DATE D/M/Y		ATTACHMENTS PAGES

No Andre Morte	SAMPLE D	ATA SHEET	
PROJECT CAPE DORSET GT	anular Investiga	tion	PROJECT NUMBER 87-9170
PART 1 - COMPLETED B	K THE FIELD		
SAMPLE IDENTIFICATION 244-02-	RS METHOD IE SAMPLI	** Shovel	
LOCATION Site 13.	· · · · · · · · · · · · · · · · · · ·		
TEST HOLE NUMBER N/A	DEPTH Surface	- 1.0 meter	s
FIELD DESCRIPTION Clean Pi			
	· · · · · · · · · · · · · · · · · · ·		
LAB TESTS REQUIRED Visual	/ W.S.C. / U.S.C	•	
R.Sotnikow	ATE 0/M/Y 17/08/87	SAMPLE DISCARDE	D + RETAINED
PART E - COMPLETED I			· ·
DATE RECEIVED	· · · · · · · · · · · · · · · · · · ·	RECEIVED BY	
REQUESTED COMPLETION DATE D/M/Y	,	RESULTS SUBMITTE	5 T O
PART 3 - LABORATORY 1	TEST RESULTS AND COM	NENTS	
VISUAL DESCRIPTION	Gravelly	Sand -	
VISOAL DESCRIPTION	· · · ·		lar, Max Size 120mm
	NYYIEYALE	_	of Granites & Carbonates
	Cand	_	Sub-Angular with Silt
	Sand		
		rines &	trace Organic material
WASH SIEVE ANALYSI	÷		DINUS
	Gravels = 4		
	Sands = 5		
	Fines =	0.1 2	
UNIFIED SOILS CLAS	SIFICATION: SP	= Poorly Gra	aded
-			
	-		
		DATE D/M/T	
COMPILED BY Ron Sotnikow			N/A
REVIEWED BY	DATE D/W/T		ATTACHMENTS PAGES

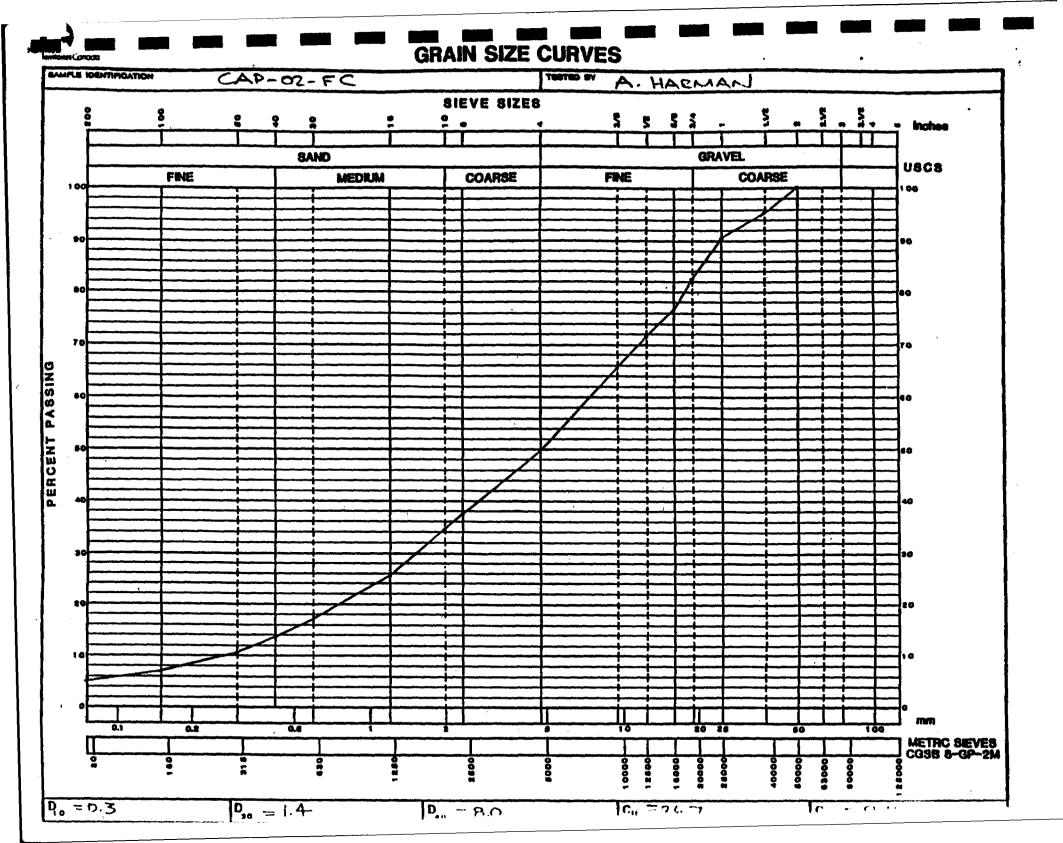
٠

-,


.

.

•


GRAIN SIZE CURVES

NWT 1785/0584

Linderten Public Worl	Lij		SAMPL	EDA	TA SHEET		
	e Dorset		ite;FBS			PROJECT NUMBER 89 9170 80	3
ARTAL -		IN THE		14.54		<u></u>	
SAMPLE IDENTIFI	CAP-02-F		METHOD OF	SI	nove]	·	
		f Ridge		Hault	ing Site FBS		
TEST HOLE NUMBE			DEPTN 1.2 m				
FIELD DESCRIPTIO	Dry .					· · · · · · · · · · · · · · · · · · ·	
				<u></u>			
LAB TESTS REQUI	**Visual/W	ash Siev	e/Atterber	<u>g Limi</u>	ts/Proctor		
SAMPLED BY		DATE D/W	16/08/	89	SAMPLE DISCARDE	D RETAINED	
PART 2 -	COMPLETED	IN THE	LABORATOR	¥			
DATE RECEIVED	Sept./89				RECEIVED BY A.H.	· · · · · · · · · · · · · · · · · · ·	
REQUESTED COMPL					RESULTS SUBMITTE		,
PART 5 -	LABORATORI	TEST RE	SULTS AND	COMM	INTE		
			•				
,							
				-			
						•	
OMPILED BY			···		DATE D/W/Y		
EVIEWED BY			DATE D/M/Y			····	PAG

.

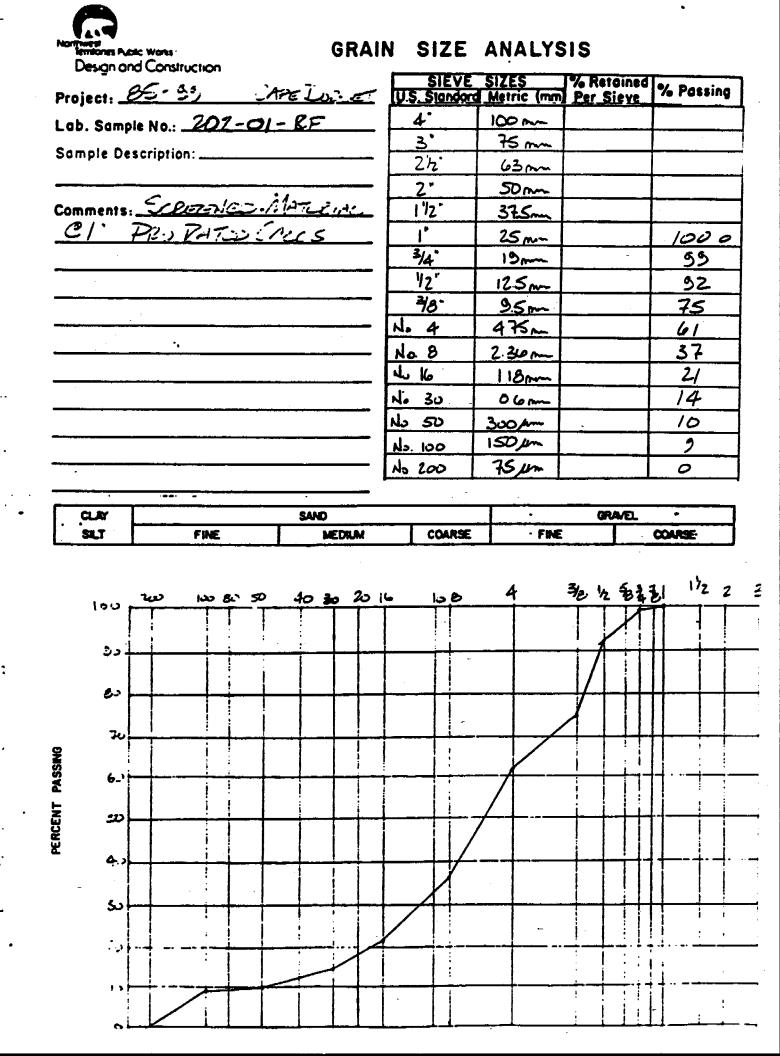
.1

SAMPLE DATA SHEET

" Spillanes Auste Dies	•				
PROJECT				PROJECT NUMBER 85-9572	
PART 1 - (COMPLETED IN THE	FIELD			
SANPLE ISENTIFI	202-01-RF	METHOD OF SAMPLIN	Back Hoe	· · · · ·	
LOCATION	Cape Dorset #3			· · ·	
TEST HOLE NUMBE		BEPTH			
FIELD BESCRIPTIC		Penetration taken	at 0.8 m		
LAD TESTS REQUI	RED WSA, ATT		- <u></u>	-	
SAMPLED BY	R. Fournier	21/07/85	SAMPLE DISCARDED	RETAINED	
	COMPLETED IN THE				
BATE RECEIVED	11/08/85		RECEIVED BY	Bouffard	
	ETION DATE D/M/Y		RESULTS SUBMITTED T		
PART 3 -	LABORATORY TEST RE	BULTS AND COMM	the second s		
	VISIUAL DESCRIPTION Medium-brown gravel with traces of Mica. Max. pa <u>M.S.A.</u> USC is SW well graded g Mixtures, Little Fines AASHTO-A-I-b(0) materia m 145-82 of course sand This group is a well gr fine sand and a now pla <u>ATTERBURG</u>	pravels, Gravely sau (83) Ils consist predemin with a well graded raded mixture of sto	nds nary i soil binder one fragments or gra	•	
	Not possible (Sandy mat	erial).		 •	
	•				
				•	-

-01/12/85

٦


.....

Design and Construction

·•

GRAIN SIZE ANALYSIS

Desgn o				D /			ļ	\$	IEVE	SIZES		76 1		JINGC	1%	Pas	sind
Project: _	202		· · · ·	<u>K</u> -					encorg e	Metric			Si	<u>eve</u>	+		
Lob. Som									, . ,					- <u></u>	┼╌		
Sample D				\$	GL	<u>).</u>	-										
AASHTO	2 MI15	-82	15				-	<u> </u>	12						+		70
Comments							-		1				L	<u> </u>		74	
D10 = -	39				-		_		3/4					!		73	
Dio=	2.1						╾┝		Y2					7		86	>
D603	7.0						_		78				1	6		70	0
Cuz	17.94			فتقالك لست			_		4	•			(3.		5	7
Ce:									δ				2	2		3 5	5
			-					No.	16				1	5		2	6
	•						_ [No.	30		•		7	┣		13	5
					-		- [No.	50		•		4	2	Γ	9	
		·······					- [No.I	00	.0.150			(1	8	•
				-				No.2	00	0.075	5		8	•		Q	
							_	-					_		-		
CL 87	1	•			SAND					1 .				VEL		-	
CLAY SLT		FINE	50	1		EDIU		EVE B	_		FINE	ų.				URSE:	
Free			50	1	M			1	ZES	i 1.							
Free			50	1	M			EVE B	ZES	· 0							
Frite 100 90			50	1	M			EVE B	ZES	· · · ·							
Frito			50	1	M			EVE B	ZES	· 0							
Frito 100 00 00 70			50	1	M			EVE B	ZES	0 #-							
Frito 100 90 90 70			50	1	M			EVE B	ZES	0 #-							
Frito 100 90 90 70			50	1	M		S :		ZES	0 #-		×					
Frito 100 90 90 70			50	1	M		S :		ZES	0 #-							
Frito 100 90 90 70			50	1	M		S :		ZES	0 #-							
F. 100 00 00 00 00 00 00 00 00 00				1	M		S :		ZES	0 #-							
Frito 100 90 90 70			50 	1			S :		ZES	0 #-							
CHERCENT PASSING 00 00 00 00 00 00 00 00 00 00 00				1			S :		ZES	0 #-							
00 00 00 00 00 00 00 00 00 00 00 00 00			- 3\$	1			S :		ZES	0 #-							
100 100 100 100 100 100 100 100			10 - · 3\$	1			S :		ZES	0 #-							
100 90 90 90 90 90 90 90 90 90			10 - · 3\$	1			S :		ZES	0 #-							

•

i.

1

:...

-

SAMPLE DATA SHEET

Phoret	PROJECT NUMBER
PART 1 - COMPLETED IN THE FIELD	<u></u>
SAMPLE IDENTIFICATION 202-02-RF	Back Hoe
LOCATION Cape Dorset #3	
TEST HOLE NUMBER TH 10	
FIELD DESCRIPTION Sample wet, dense taken at 1.9 m	
LAS TESTS REQUIRED WSA, ATT	
BAMPLED BY R. Fournier BATE 8/M/Y 21/07/85	SAMPLE DISCARDED RETAINED
PART & - COMPLETED IN THE LABORATORY	-
DATE RECEIVED 01/08/85	RECEIVED BY N. Bouffard
REQUESTED COMPLETION DATE D/W/Y	RESULTS SUBMITTED TO
PART 5 - LABORATORY YEST RESULTS AND COMM	ENTS
VISUAL DESCRIPTION	
Medium-brown gravel with angular aggregates. Material contains traces of organics (long thin r	
Max. Particle size is 1".	oots)
<u> <u> </u></u>	
U.S.C. is G.W. well graded gravels Sand mixture, little fines (1%)	
AASHTO. m-145-82 designation is 1-1-b (0)	•
A well graded mixture of stone fragments, coarse sand, fine sand and a non-plastic	
soil binder which consists predominantly of coar sand no fines.	še -
ATTERBERG	
Not possible (a sandy material)	
	•
•	• *
	•
	- -
	-
COMPILED SY Dave Nicholson	DATE D/D/Y 02/21/85
State State	

	nd Const						SIEV	E SIZE	<u>s </u>	% Ret	tained		
ojecti							SIEV U.S. Stand	ord Metr	ic (mm)	Per S	ieve	7. 70	ising
ob. Samj	ple No.:	201	-02	2-	<u>PF</u>		4		<u>~~</u>			<u> </u>	
ample De							3'	75	m			ļ	
							22:	62	m				
	٤.			<i>.</i> 1			<u>Z</u> *	50	m				
omments 2 / * 7		EEL		11	1722	INZ	1 72.	37	<u>Sm</u>			ļ	
=/ +	RUL	7-22	<u>A</u>	<u>z/.</u>	<u>'S</u>		1		m			100)
					-		3/4	- 19	·			80	
							¥2*	12:	Sm			73	, ,
					·		48-		5m			62	<u>}</u>
• ·	·.		.				N. 4		<u>Sm </u>			43	
•	•						No 8		2 mm			27	
			•		•		1 16		3m				,
							N. 30		<u>o m </u>			7	
-		·					No 50		<u>~</u>			2	
							No. 100		m				
•							No 200	45	un			0	
•		•			••								
,cuar		-			SAND					G	VAVEL	-	
CLAY SLT		FINE				EDIUM	COAR	£	· FINE			COARSE	
			 & T		. 1	EDILM	COAR!		· FINE			COARSE 3-1 1)	z 2
SILT			8 . 1	p	. 1	EDILM			· FINE				2
SILT			82` 5 1	7	. 1	EDILM			· FINE				2
SLT			8.1 5	₽ 	. 1	EDILM			· FINE				2
SLT امن			8. 3	p	. 1	EDILM			· FINE				2
SLT امن			8, 3		. 1	EDILM			· FINE				2
SLT ۱۹۰۵ دی ۲۰			8~ 5		. 1	EDILM			· FINE				2
51.7 190 50.			8.1 5		. 1	EDILM			· FINE				2
51LT 100 20 20 70 6_1			8.5		. 1	EDILM			· FINE				2
SLT ۱۹۷۶ دی ۲۰			8~ 3		. 1	EDILM			· FINE				2
58LT 190 20 20 70 6.1 50			8~ 5		. 1	EDILM			· FINE				2
SHLT اون دی جن ارچ			8. 5		. 1	EDILM			· FINE				2
58LT 190 20 20 70 6.1 50					. 1	EDILM			· FINE				2 2
امن امن دو رو رو ان مر دو امن			8~ 5		. 1	EDILM			· FINE				2

·

-

·

. |

.

SAMPLE DATA SHEET

PROJECT NUNDER 85-9572 PART 1 - COMPLETED IN THE FIELD METHOD OF SAMPLING SAMPLE DENTIFICATION 202-03-RF Shovel LOCATION Cape Dorset Site #3 BEPTH TEST HOLE NUMBER TH 8 FIELD DESCRIPTION sample covers site #3 of about 0.1 to 0.2 m LAD TESTS REQUIRED W.S.A. MC. ATTERBERG (keep fine) SANFLED BY R. Fournier RETAINED DATE D/H/T SAMPLE DISCARDED 21/07/85 PART & - COMPLETED IN THE LABORATORY RECEIVED BY Harc Bouffard DATE RECEIVED

SHITE HEGEIVEN		01/08/85
REQUESTED CO	PLETION DATE	0/#/Y

RESULTS SUBMITTED TO S. Murray

PART 5 - LABORATORY YEST RESULTS AND COMMENTS

VISUAL DESCRIPTION

Light-brown sitty sand, basically a nearly uniform grain size by visual inspection

N.S.A.

Not possible - material was in such insufficient quantity that it was deemed impossible to arrive at any usable numbers -

ATTERBERG

Not possible - thematerial was a sitty-sand

NOISTURE CONTENT

MOISTURE CONTENT OF SOILS

MOISTURE CONTENT CALCULATION

Sample No.: 202-03- EF Maximum Particle Size: .

Date Tested: 23/10/85

11

Lab. Container No:

a)	Tare Lab. Container	167.2	gr.
b)	Sample Wet & Tare	1879.8	gr.
_	Sample Dry & Tare	1588.9	gr.
d)	Wt. Water	2 10 . 9	gr.
e)	Wt. Sample Dry	1421.7	gr.
f)	Moisture Content	20.46	

Tech:

Wt. Water (d): b - cWt. Sample Dry (e): c - aMoisture Content (f): $d/e \ge 100$

Martines Aste Trans	SAMPLE DATA S	HEET			
PROJECT			PROJECT NUMBER	85-9572	
PART 1 - COMPLETED IN THE	FIELD		· .		
SAMPLE IDENTIFICATION 204-01-RF	WETHOD OF SAUPLINE Ba	:k Hoe			
LOCATION Cape Dorset Site	15		• .		
TEST HOLE HUNDER	DEPTH	·		•	
FIELD MESCAUPTION Sample damp (f	rost at 1.0m)		· · · · · ·		
LAS TESTS REQUIRED W.S.A. , A	.T.T.	•			
SAMPLED BY R. Fournier BATE B/M/	Y 23/07/85 SAMPLE	DISCARDED	RETAIN	ED	
PART 2 - COMPLETED IN THE	LABORATORY			•	
BATE MECEIVED 01/08/85	RECEIVED	av M.	Boufford	•	
REQUESTED COMPLETION DATE B/H/Y	. RESULTS	SUBMITTED TO	Murray		
PART : S - LABORATORY TEST RE	SULTS AND COMMENTS	je k se i ir	and the second		

VISUAL DESCRIPTION

Light to medium brown gravel with sub-rounded to rounded aggregates. Material contains traces of Mica and Quartz. Aggregates aslo have flat but not elongated surfaces.

Max. particle size is 1 1/2".

ATTERBERG

The ATTERBERG was not possible (silty sand)

W.S.A.

U.S.C. ID GP poorly graded gravel, no fines AASHTO M145-82 designated is A-1-2 (0) Materials consists predominantly of stone fragments or gravel

A-1-a(0) According to AASHTO T27-82

A well graded mixture of stone fragments, coarse sand, fine sand, and a nonplastic soil binder.

COMPILED BY	PATE	8/H/Y	
REVIEWED BY	DATE B/W/Y	ATTACHMENTE	PARES

VAN CONTRACTOR
NGR WITH
Northwest Render Works/
Design and Constructi

I

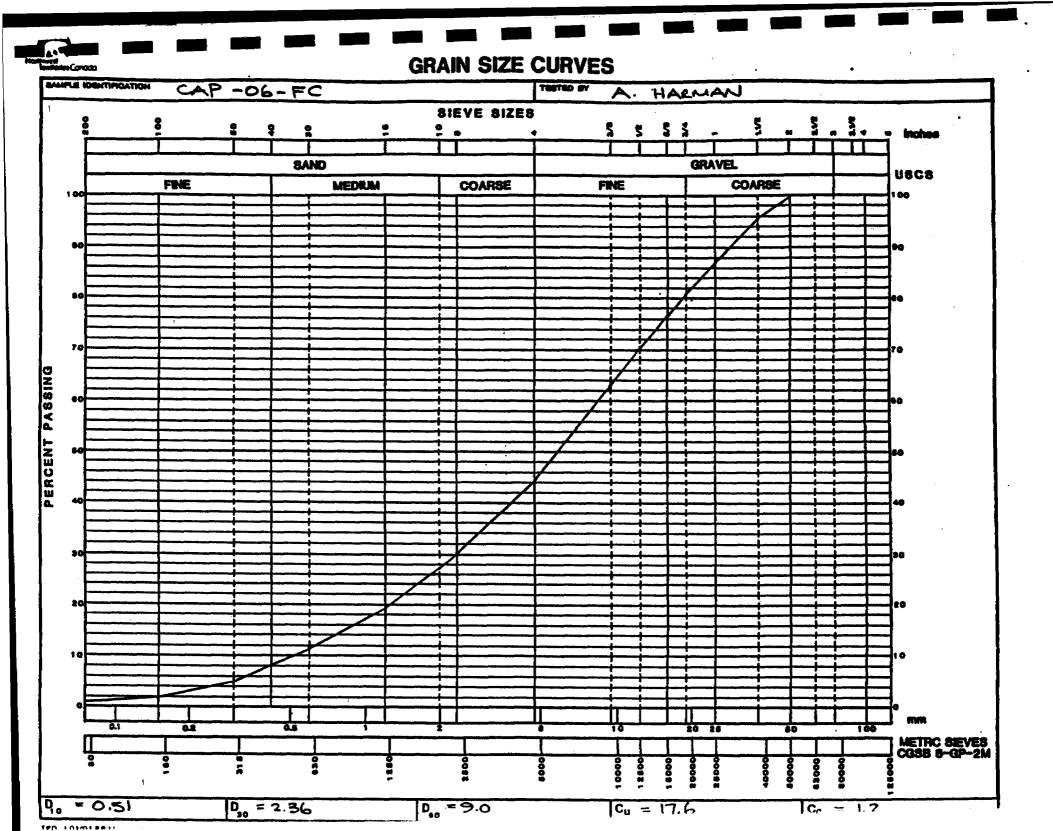
-

GRAIN SIZE ANALYSIS

roject: _		•		· · · · · ·			US.	Stando	E SIZ	ES tric (mm	Per	etaine Sieve		% Pc	Issin
ab. Samp	ole No.:	204	101	- <u>2</u> F	•		4	•	10	Om			Ι		
omple De								5*		<u>5 mmi</u>					
Imple De	rseripti	in:					2	ኢ		3mm					
	~			•••		<u> </u>		2.*		Dm.			Τ		
omments	<u>. Se</u>	ZEEK	<u>122.</u>	MAT	EZ#	<u>75</u>		۶. ۲		25m					
<u>er</u> 7	20B	TED	(Az	<u>C's</u>				•		Sm			T	10	$\overline{\mathbf{a}}$
-		-				·	3	4	1	9mm			\dagger	8	
							Y	2"		Sm		<u> </u>	\top	7	
							-	18-		5m			╈	6	<u>></u>
			- '				N.		4	75m			Ť	S	
					i.		Na			30 ~~			T	47	2
							على ا			18mm			╈	34	
		-					N.		-	6 m	•		╈	19	
							No			- ma			\dagger	6	
							No.			Dun			+	4	,
•							No 2			Sim			+		
								-							
		-													
		-	-	SA	ND				-	•		RAFL		-	
CLAY SLT		FINE			MEDI			COARS	· · · £	• • Fine		FA/EL		CARSE	
CLAY	3423		50 50 1 T				 ic	COARS	· · · £	- - Fine 4		ravel			έ ^γ Ζ
CLAY SLT			<u>50</u> 50		MEDI		G		· · · £						
CLAY SLT			50 50		MEDI				· · · £						
CLAY SLT			<u>50</u> 50		MEDI				· · · £						
CLAY SLT			50 50		MEDI				· · · £						
CLAY SLT 100 30 60			<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>		MEDI				· · · £						
CLAY SLT			50 50		MEDI				· · · £						
CLAY SLT 100 30 60			50 50		MEDI				· · · £						
CLAY SLT 100 30 50 70			Be 50		MEDI				· · · £						
CLAY SLT 100 30 50 70			52 5D		MEDI				· · · £						
CLAY SLT 100 35 50 70 60 50			50 50		MEDI				· · · £						
CLAY SLT 100 30 50 70 60			B2) 50		MEDI				· · · £						
CLAY SLT 100 200 200 70 60 60 60			52 5D		MEDI				· · · £						
CLAY SLT 100 35 50 70 60 50			50 50		MEDI				· · · £						
CLAY SLT 100 30 50 60 50 60 50			50 50 50 1		MEDI				· · · £						
CLAY SLT 100 305 60 70 60 50 40			52 5D		MEDI				· · · £						
CLAY SLT 100 20 20 70 60 50 40 50 70					MEDI				· · · £						
CLAY SLT 100 30 50 60 50 60 50					MEDI				· · · £						

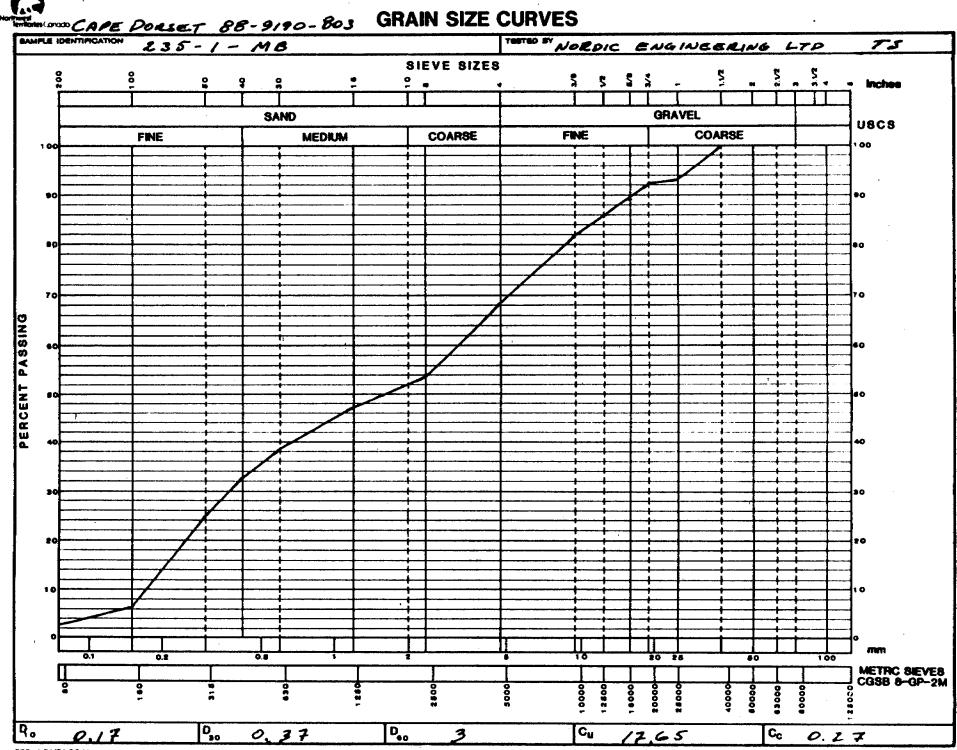
3

GRAIN SIZE-MILLMETRES


;

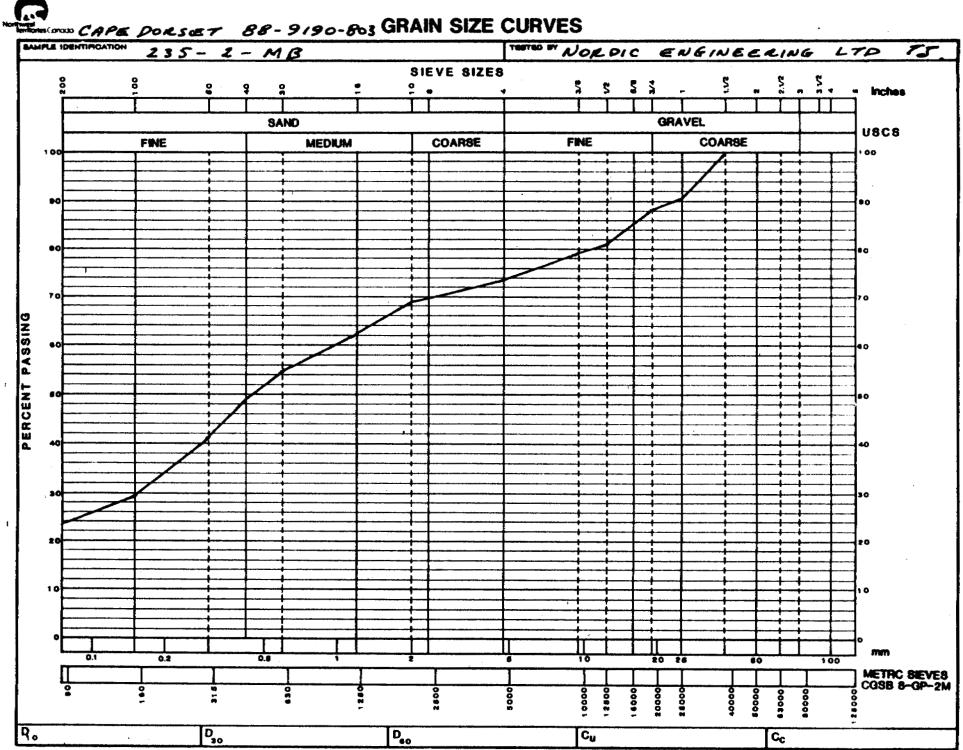
.

MOJECT			PROJECT NUMBER 85-9572
PART 1 - COMPLETED IN T	NE FIELD		-
SAMPLE IDENTIFICATION 204-02-RF	METHOD OF SAMPLIN	Back Hoe	· · · · · · · · · · · · · · · · · · ·
Cape Dorset Sit			
TEST HOLE HUMBER	DEPTH		· · ·
FIELD DESCRIPTION Dry sample, m	edium penetration		
	sh Seive, ATT	•	
SAMPLED BY R. Fournier DATE	23/02/85	SAMPLE DISCARDED	RETAINED
PART 2 - COMPLETED IN T	HE LABORATORY	ARCEIVED BY	
01/08/85		ACSULTS SUBMITTED	
PART 3 - LABORATORY TEST			Murray
	HEARIG NUR SANN		
VISUAL DESCRIPTION			· •
	Light to Mediu	m brown gravel	with sub-rounded
	and rounded ag	gregates materi	al. Contains flat
		art and traces	our mica.
•	Maxiumum parti	CIE 3125 3/4 .	· · ·
ATTERBERG			
	was not possib	le (sandy)	
WASH SEIVE ANNALYSIS	According to AAS	HTO T27-82	
		poorly graded ittle fines (2%	gravel, gravel-sand
·		s, coarse sand	well graded mixture of , ifne sand and a
DRY SEIVE ANALYSIS	cording to AASHTO	T27-82	·
:	U.S.C. is the AASHTO M145-82	same as above e is same as abo	xcept no fines ve except no fines
	-		
	· · · · · · · · · · · · · · · · · · ·	DATE D/H/Y	


SIZĘ ANALYSIS GRAIN n fubic Works : 100 Design and Construction % Retained % Passing SIEVE SIZES % Retaine Project: Cape Dourt 85-957 99 6 22 Leb. Sample No.: 204-02-25 85 71 Ģ Sample Description: 4.5.C. is 6P 84 1 任 MASHTO MIAS-82 is A-1-2(0) 73 Ø Il Comments: D.S.A. 8 45 4,0 D10= . 45 4 12 53 Dao= 2.0 46 7 ¥2° D60= 15 8 30 11.4 Cu= 2.2 32 る ND.8 Ce: 0.6 24 8 No.16 14 No. 30 /6 13 No. 50 / 1 No.100 0.150 6. 0.075 No.200 0 Ð٠ GRA/EL • SAND CLN COARSE ·FINE COARSE MEDILM FRE SLT SIEVE SIZES 11/2 30 200 100 90 80 . 70 **NOSK** 60 50 ENCENT 40 . 30 20 10 D 20 10

PROJECT			ATA SHEET	
<u> </u>	COMPLETES IN TH	Site 10		PROJECT NUMBER 89 9170 803
		METHOD OF SAMPLE		
LOCATION				
Area	of Site 10. Kam	DE REM		
		<u>1.8 m</u>		
	Gravel and Sand			
AB TESTS REQU	WED Visual/Wash sie			
ANPLED BY	1 0475 0/	/M /W	SAMPLE DISCARDED	RETAINED
	F.C.	20/08/89		
ATE RECEIVED			RECEIVED BY A.H.	
	Sept./89 LETION DATE D/M/Y	<u> </u>	A.H.)
ART	LABORATORY TEST			
`-	Gravel and Sand	, light brown, p	ebbles to 50 mm,	angular (GW)
		·	· •	
		-		
			•	
				•
	•			
				•
		· ·	, ,	
			-	
		· ·		
-				
				-
			· •	
			DATE O/M/Y	······································

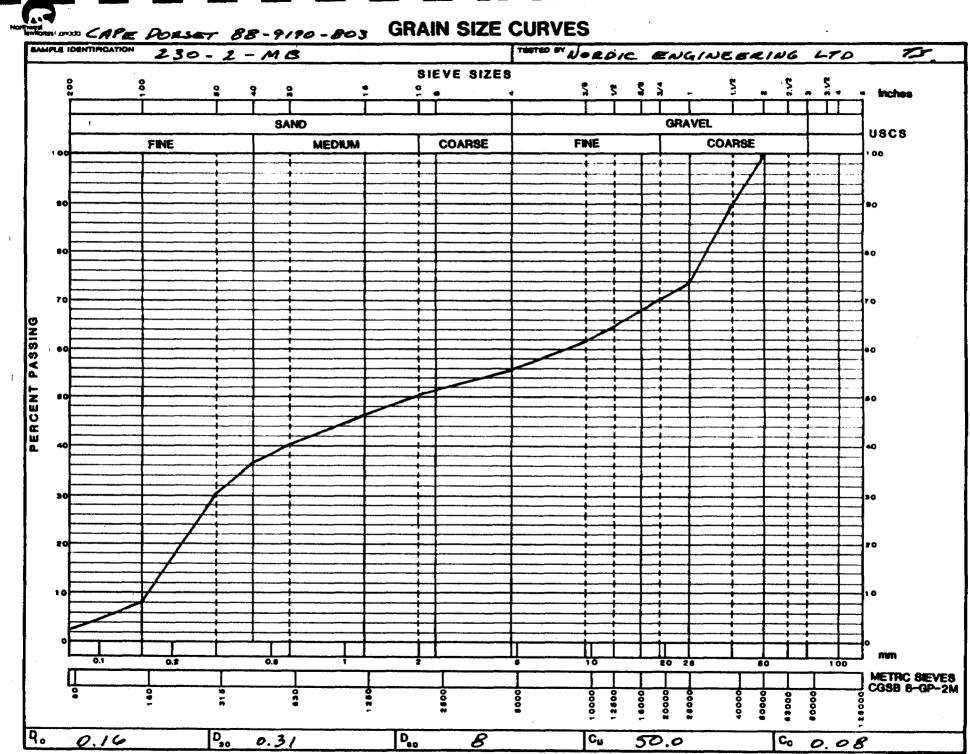
PROJECT CAPE DORSET - Inv	estigation for F	ines	PROJECT N	UMBER 9190-803	
PART 1 - COMPLETED IN	THE FIELD				
SAMPLE IDENTIFICATION 235-1-MB	METHOD OF SA	MPLING Backh	oe		
	264 ft. from roa	d between hot	el and Co-op ga	arage.	
TEST HOLE NUMBER 1	DEPTH 0.4	5m			
FIELD DESCRIPTION Tidal	Flats	s.			
WSA					
LAB TESTS REQUIRED Obtain	<u>instructions</u> fr	om Sandy Murr	a.y		
M. Buckley	ATE D/M/Y 23/08/88	SAMPLE DIS	CARDED	RETAINED X	
PART & - COMPLETED IN		***************************************			
September	1, 1988	RECEIVED BY	Bob Fougere		
REQUESTED COMPLETION DATE D/M/Y September	9, 1988	RESULTS SUE	Sandy Murray		
PART 3 - LABORATORY T	EST RESULTS AND C	CHINEN'TE			
					· -
Gravel		32%			
Sand		65%	-		
Fines		3%			
					. *
					-
		· .			
COMPILED BY		DATE D/M/Y	•		
REVIEWED BY	DATE D/M/Y		ATTACHME	NTS	PAGE S

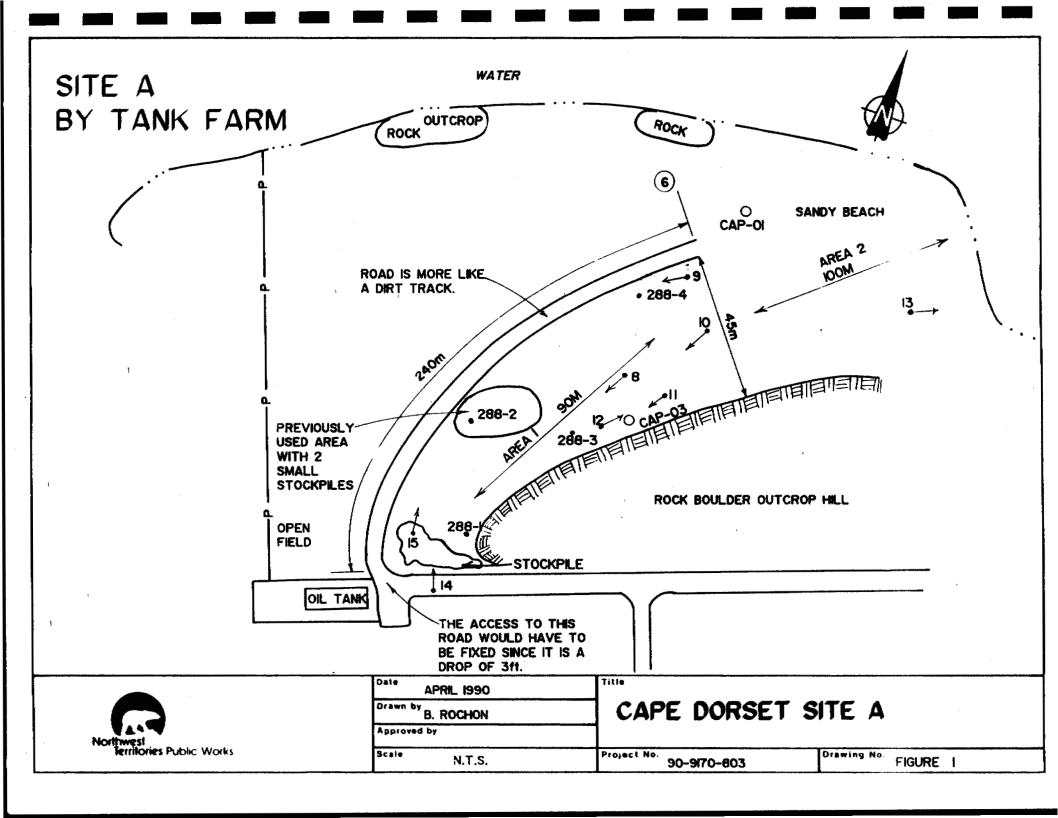


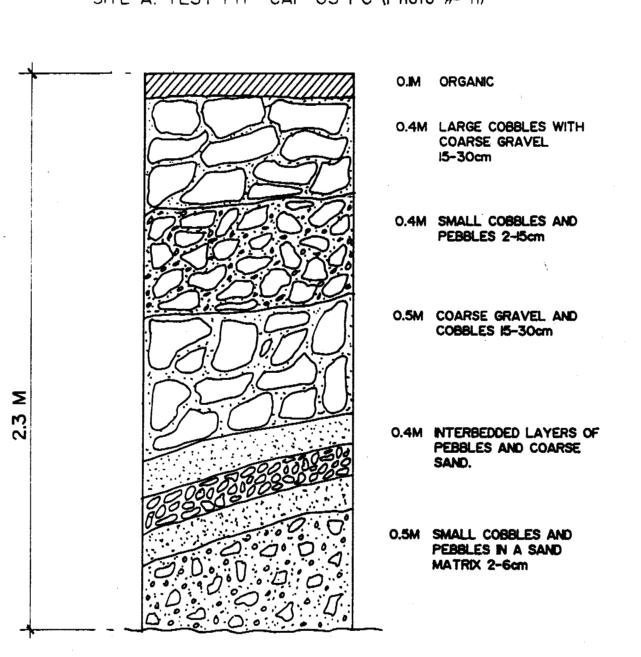
TED-10V0100;U

.

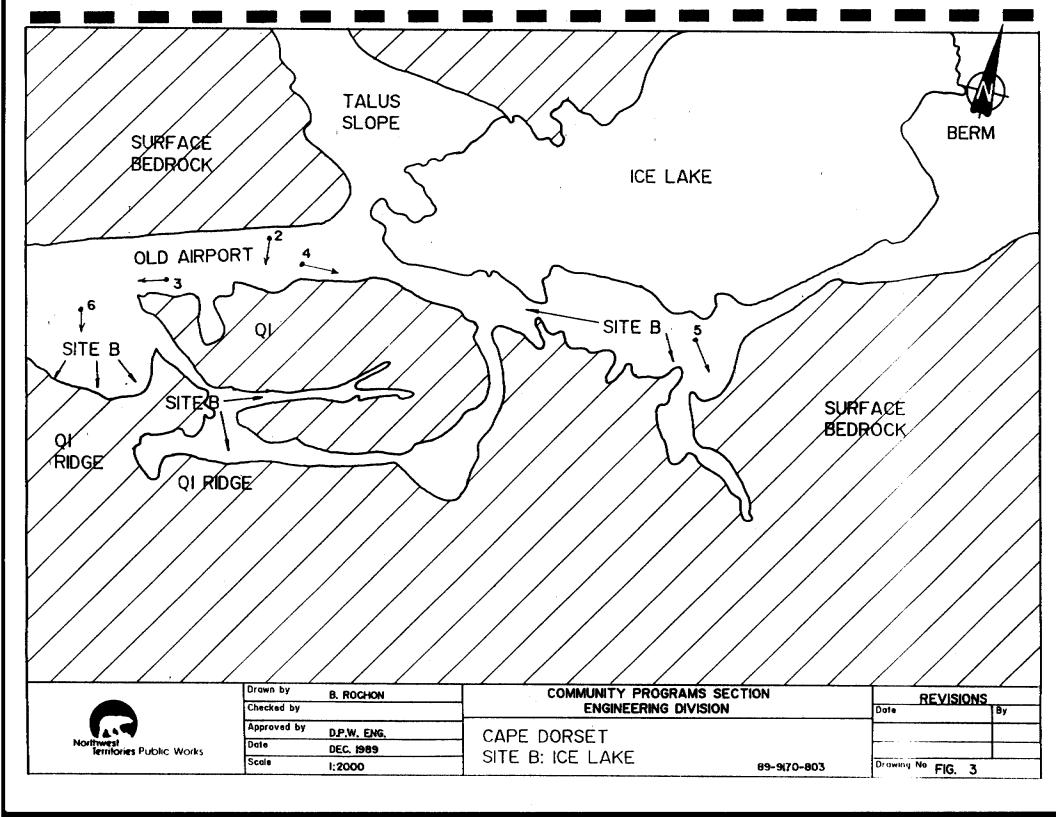
PROJECT CAPE DORS	SET - Investiga	tion for Fine	s	PROJECT NUMBER)3
PART 1 - COMPL	ETED IN THE F	1 1 2 3 2 3 2 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1			
SAMPLE IDENTIFICATION	P-MB	METHOD OF SAMPLIN Backho	3 e-		
				d Co-op garage.	
TEST HOLE NUMBER		DEPTH 2.1 met			
FIELD DESCRIPTION	dal Flats overl			sand	
	WSA, LTS,		ies, bourders	, 3404,	
LAB TESTS REQUIRED			andy Murray, [NPW & H	
SAMPLED BY M. Buck		23/08/88	SAMPLE DISCARDE		Σ χ
	LETED IN THE L		L		
			RECEIVED BY	Bob Fougere	
REQUESTED COMPLETION D	otember 1/88		RESULTS SUBMITTE	ото Sandy Murray	<u> </u>
	ntember Ratony Test RES			Sandy Murray	
	RAIVAT FEGT RED				
	0		26%		
	Gravel Sand		50%		
	Fines		24%		
	Moisture	Content	11.1%		
	Non-Plast	ic		. •	
				۰.	
				-	
	_				
	-				
					-
CONFILED BY			DATE D/M/Y	······································	
REVIEWED BY	To	ATE D/M/Y	I		BACCO
	<u> </u>	···· = ••• ···• ·		AT TACHMENTS	PAGES

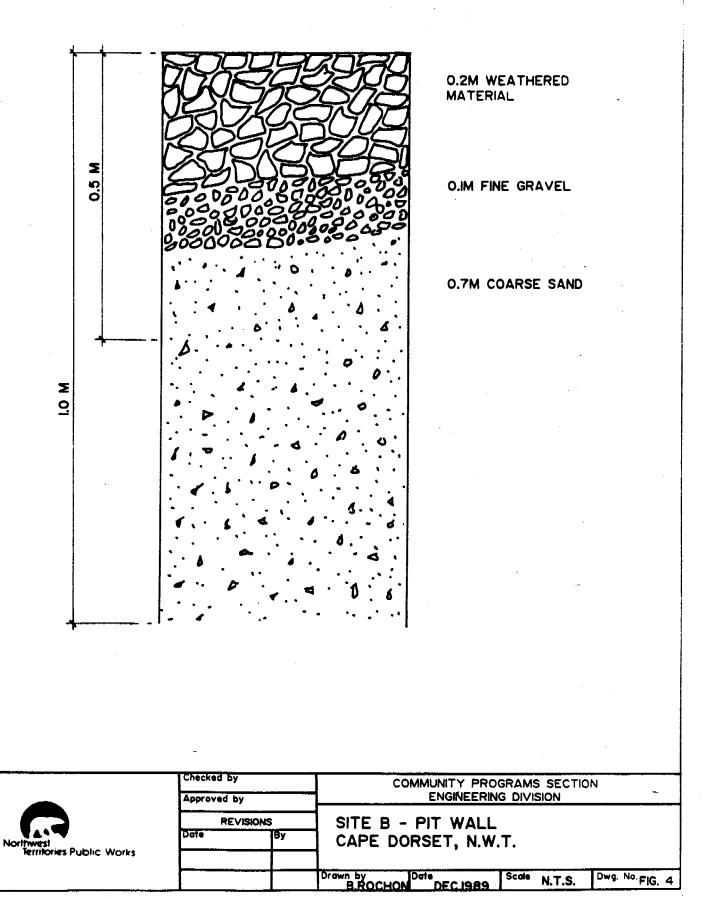



.

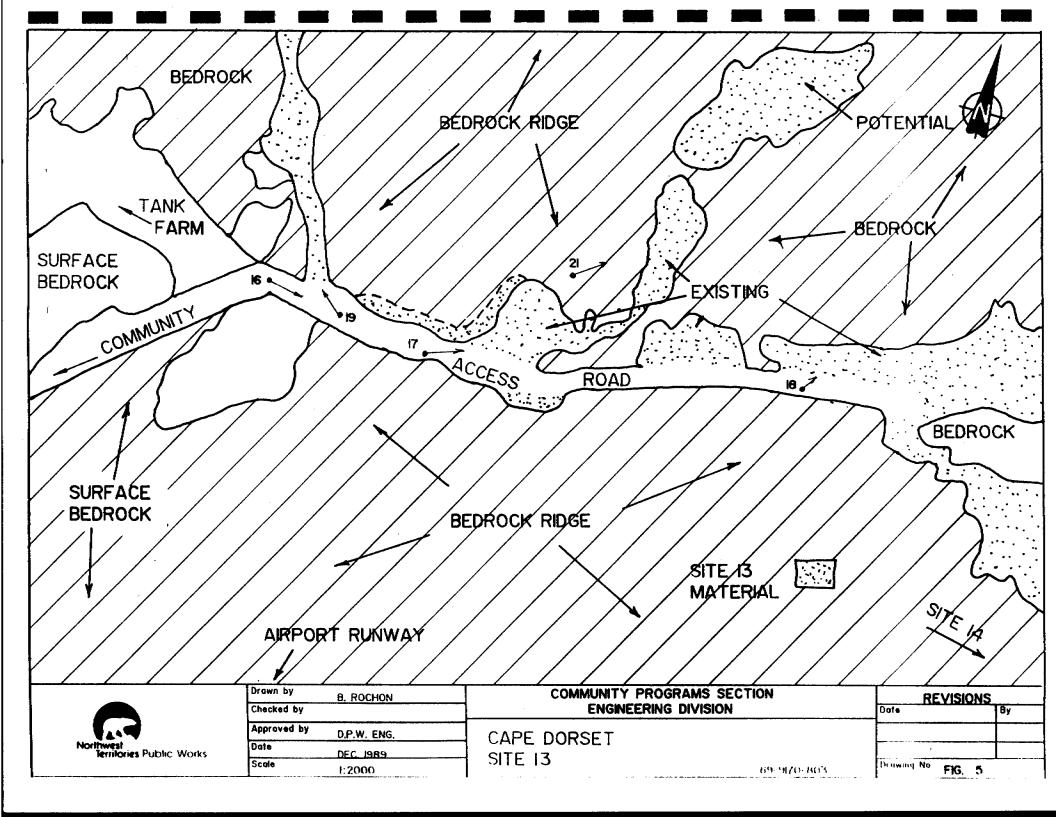

-

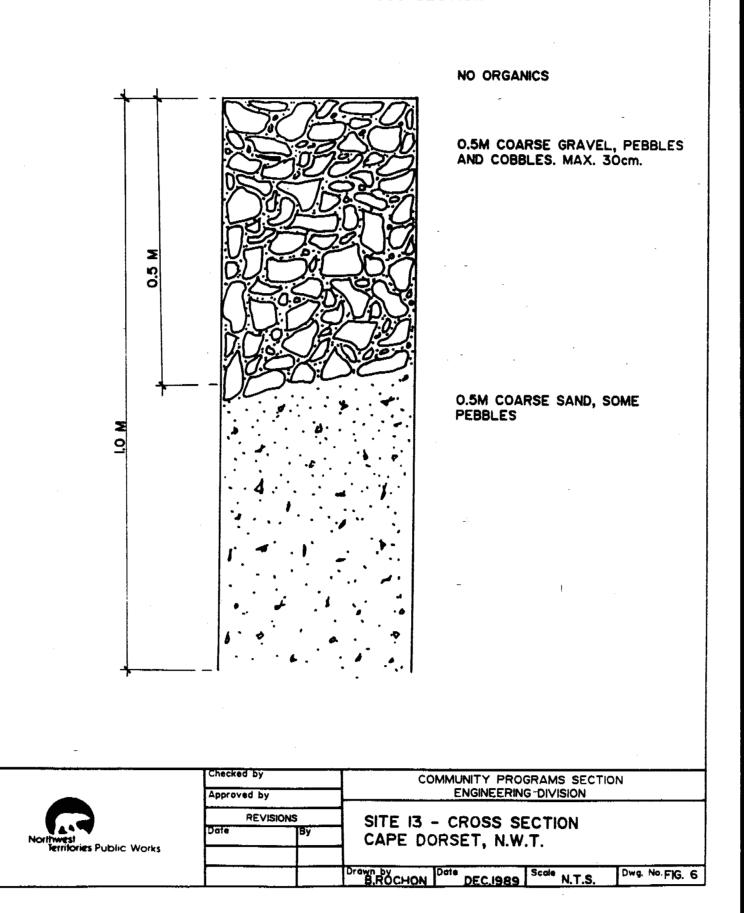
PROJECT CAPE D	ORSET - Investig	ation for Fin	es	PROJECT NUMBER 88-9190-803
	PLETED IN THE F	and the second		
SAMPLE IDENTIFICATION 230-2-MB		METHOD OF SAMPLIN	NOVEL	
LOCATION Tidal		om road, 250'	east of base o	f Rock slope. Adjacent Lots 1
TEST HOLE NUMBER	2	DEPTH 16 inc	hes	anu
FIELD DESCRIPTION			cobbles, boul	ders sand
	WSA	over latin witch		
LAB TESTS REQUIRED	Obtain inct	wations from	Sandy Munnay	
SAMPLED BY M. BUC	DATE D/M/Y	18/08/88	Sandy Murray,	
	PLETED IN THE L			^
DATE RECEIVED	September 1		RECEIVED BY	Bob Fougere
REQUESTED COMPLETION	September 9 September 9		RESULTS SUBMITTED	Tody Murray
	September 9			
	Gravel	Δ	4%	
	Sand		54%	
	Fines	-	2%	
			•	
			-	
			-	
COMPILED BY	······································		DATE D/M/Y	-
REVIEWED BY		ATE D/M/Y	1	
				AT TACHMENTS PAGE



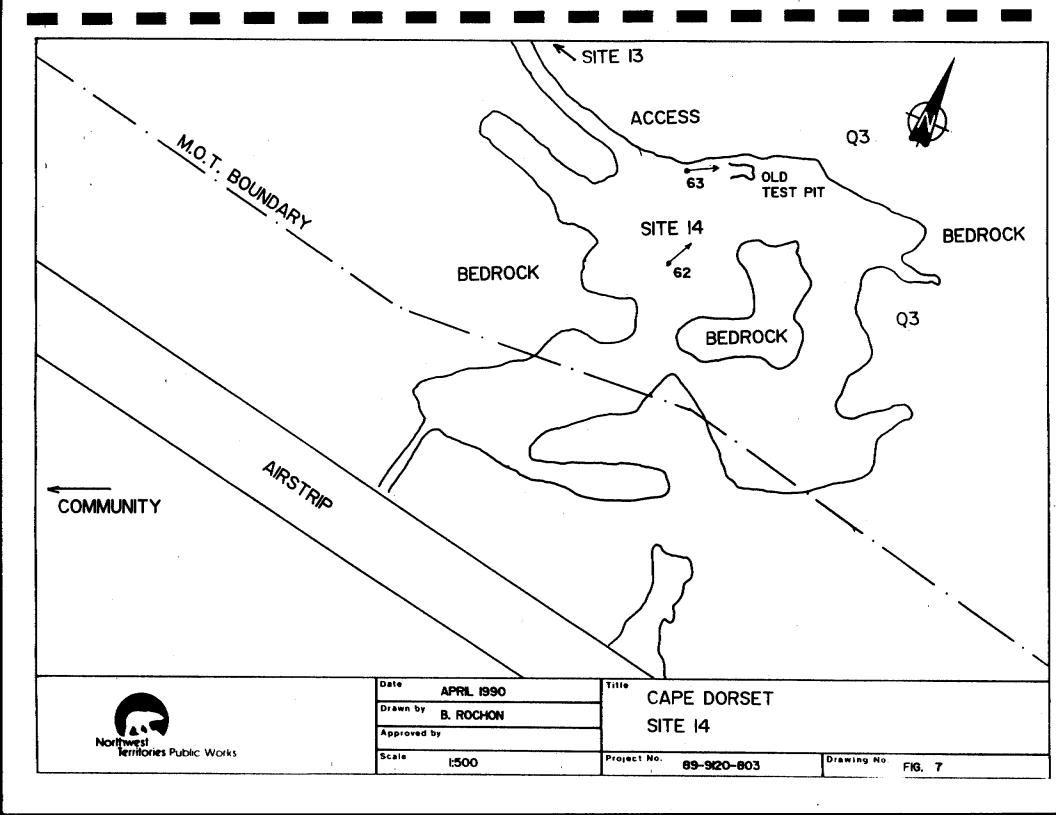


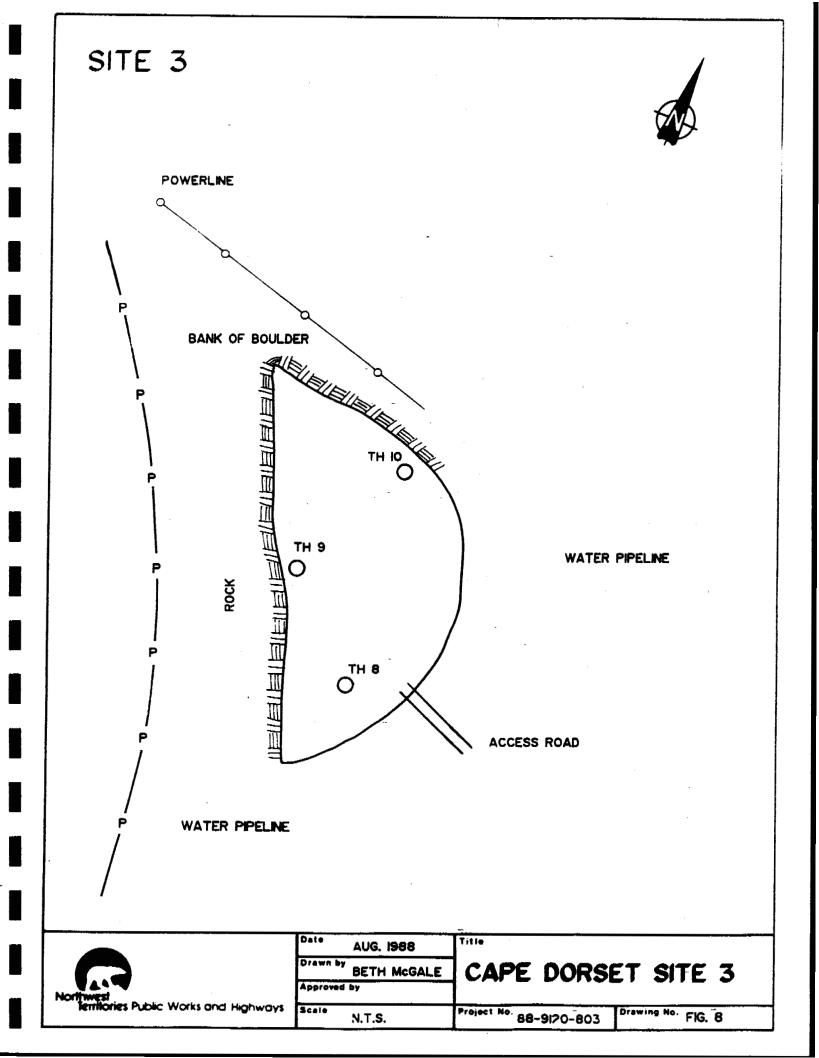
Checked by COMMUNITY PROGRAMS SECTION ENGINEERING DIVISION Approved by CAPE DORSET: SITE A REVISIONS Date CROSS SECTION CAP-03-FC By Territories Public Works 69-9170-803 Scale N.T.S. Drawn by B.ROCHON Date D'PIGNO. 2 NOV. 1989

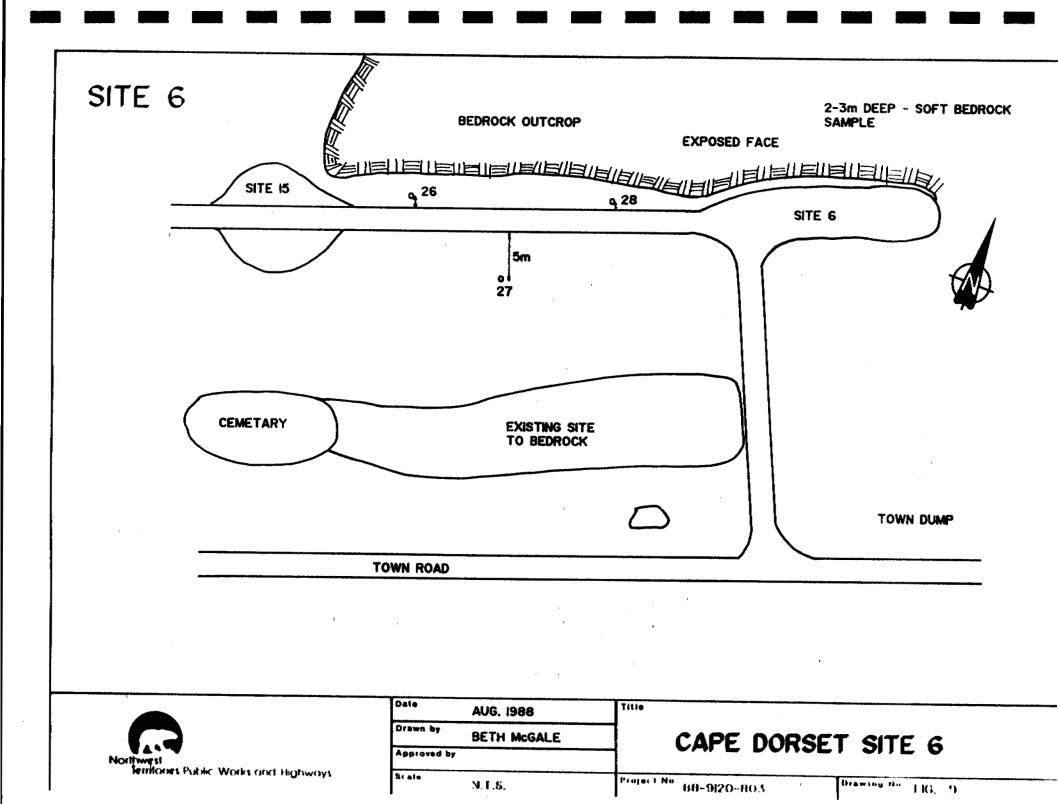

SITE A: TEST PIT CAP-03-FC (Photo # 11)

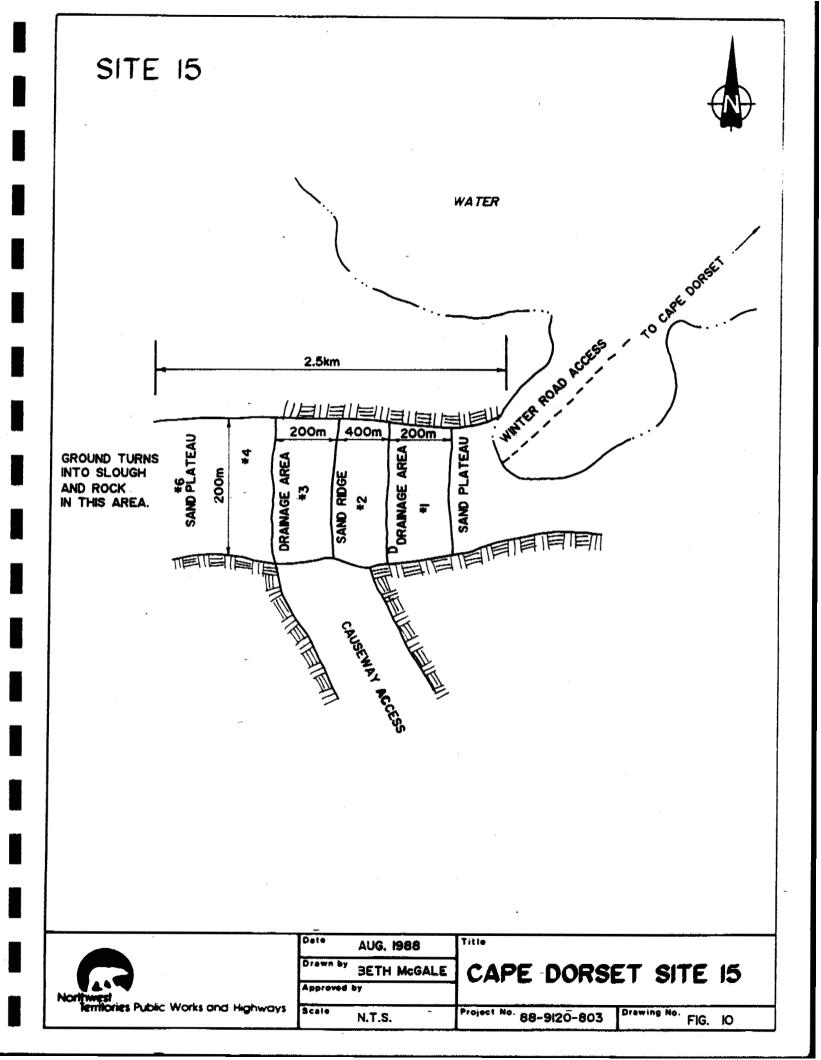


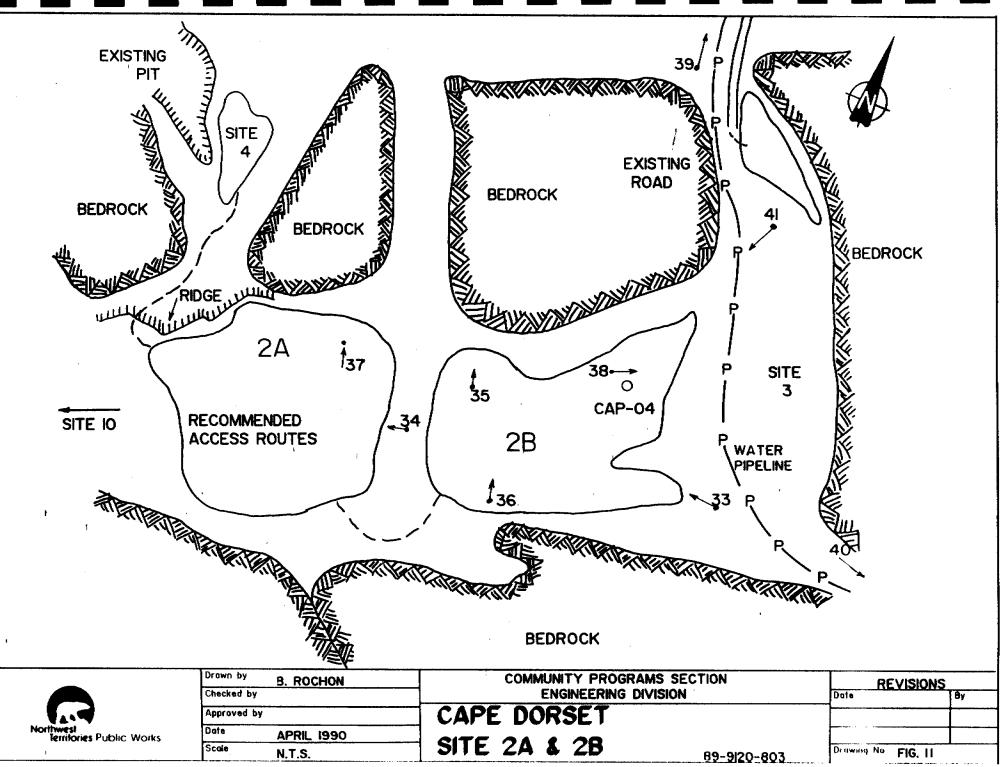
SITE B: (ICE LAKE) REPRESENTATIVE CROSS SECTION

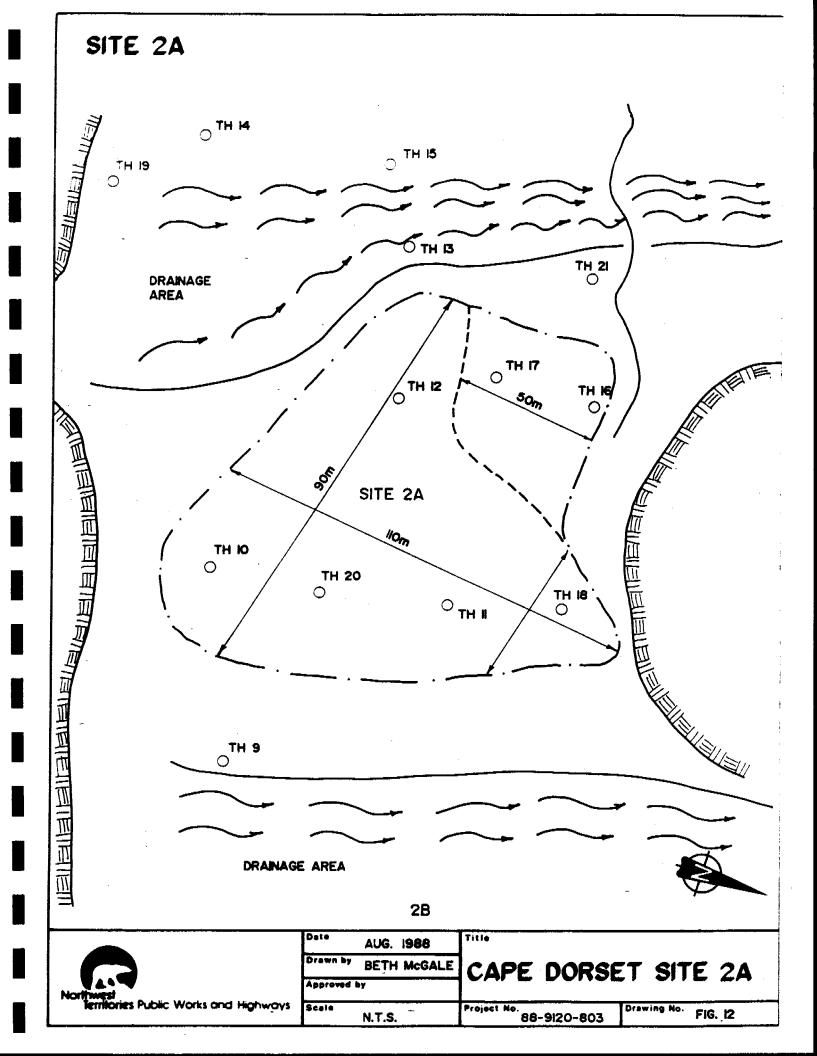


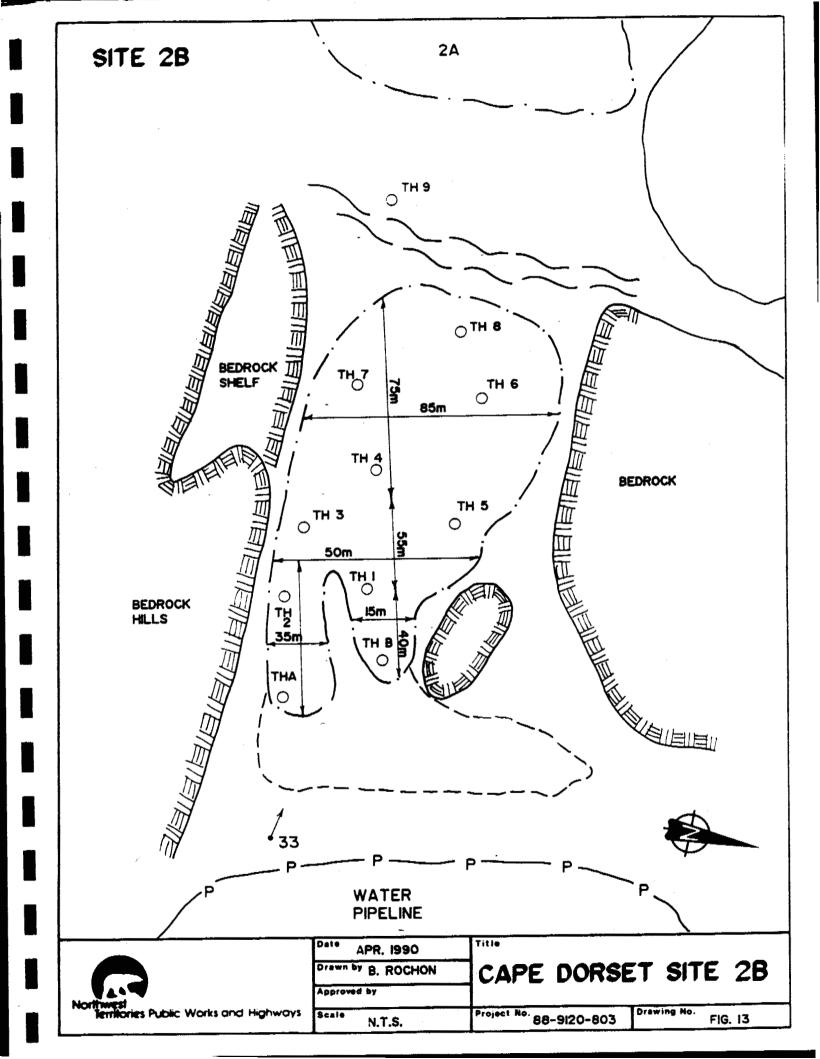

-

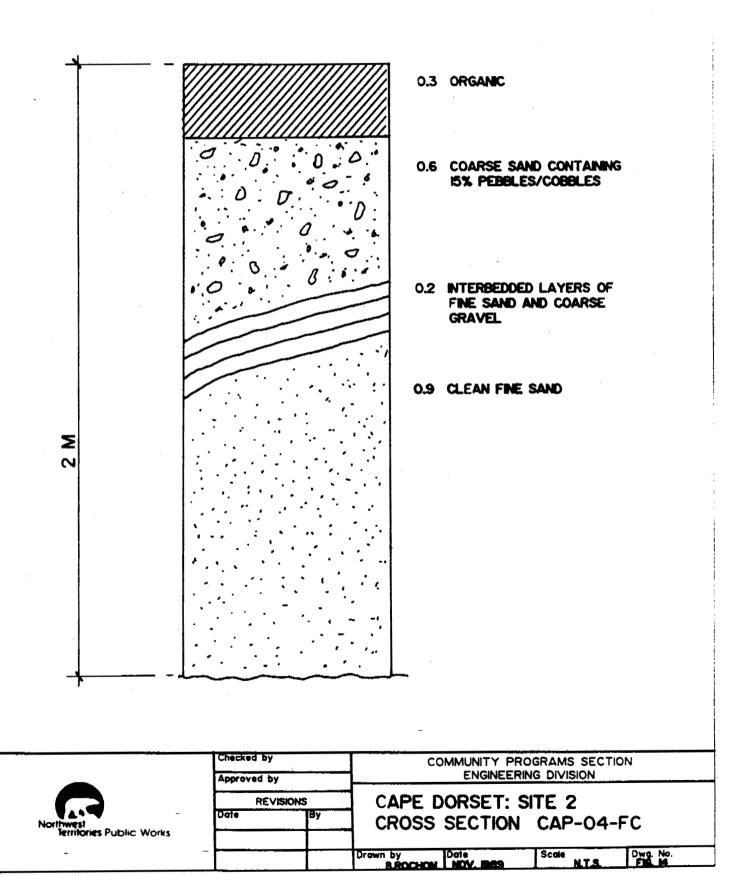


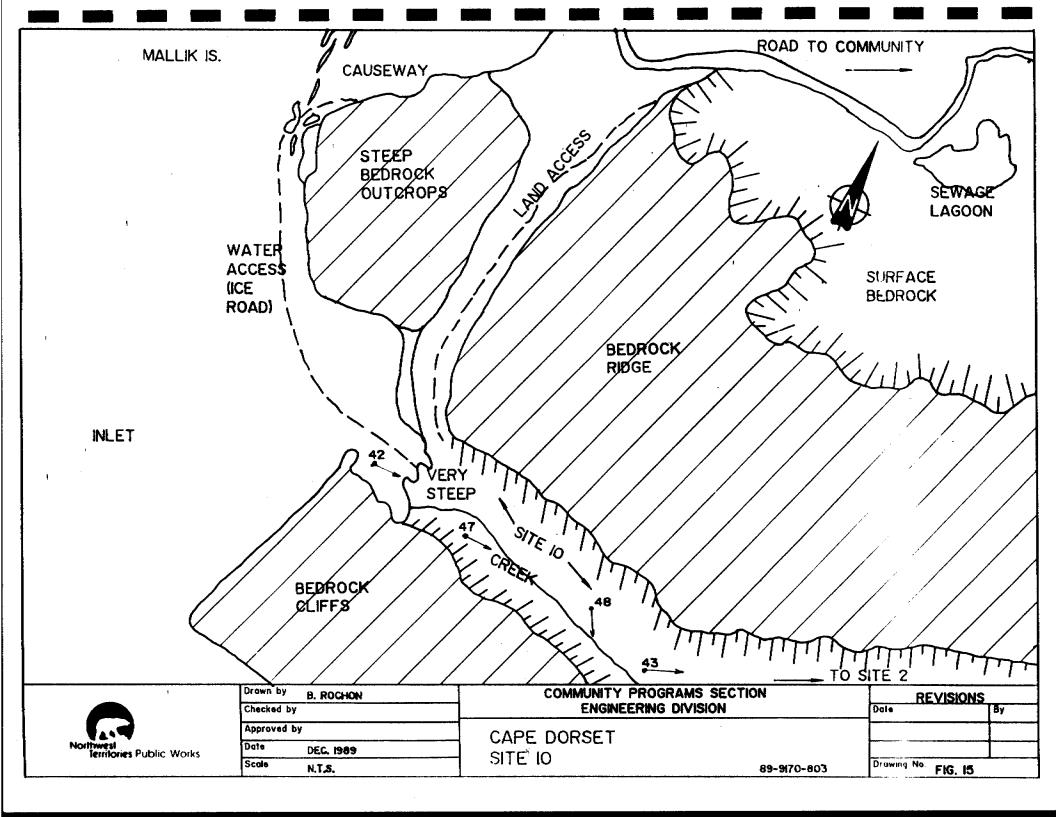


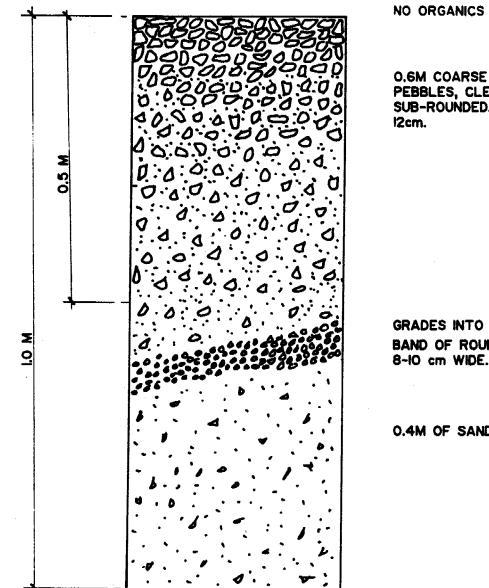

SITE 13: REPRESENTATIVE CROSS SECTION



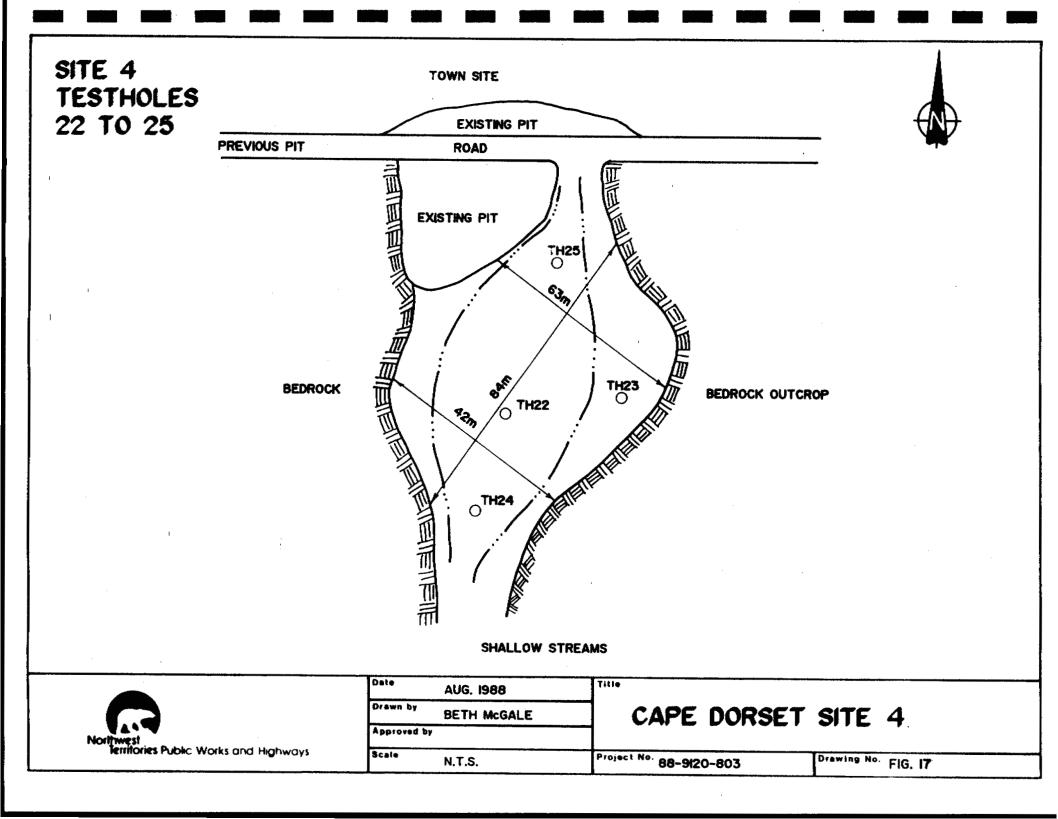


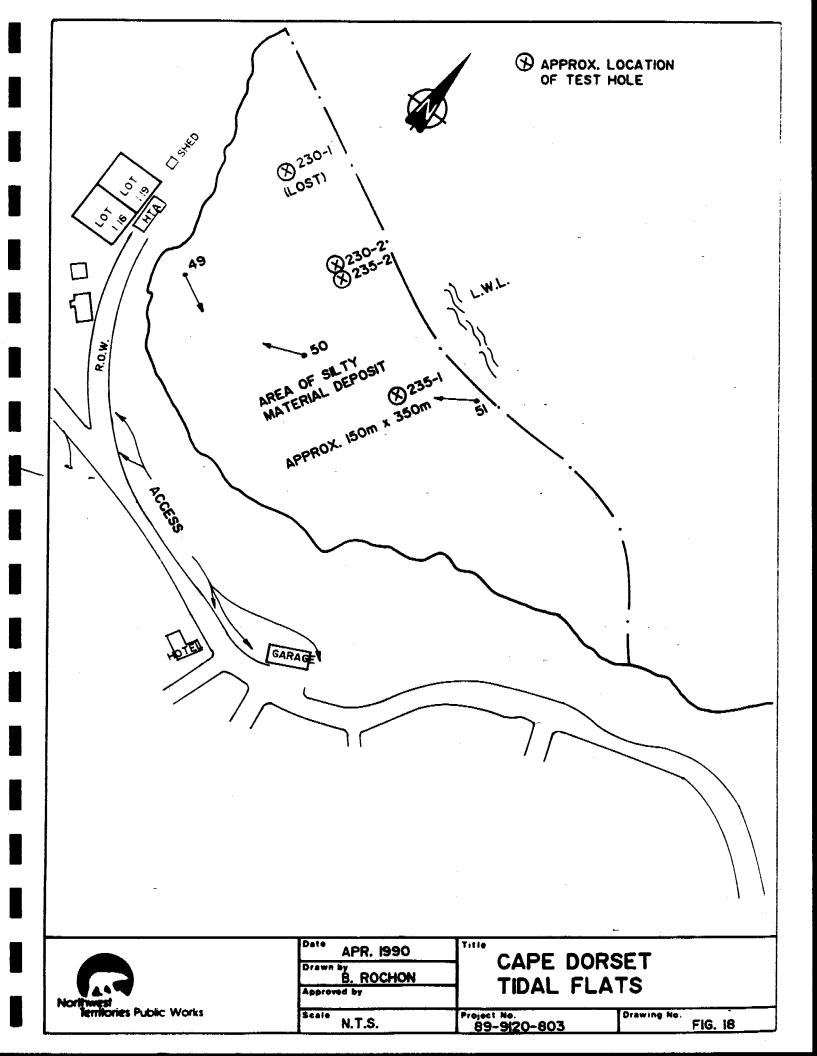






SITE 2: TEST PIT CAP-04-FC (Photo # 38)




O.6M COARSE GRAVEL AND PEBBLES, CLEAN, ANGULAR, SUB-ROUNDED. MAX. SIZE 12cm.

GRADES INTO COARSE SAND BAND OF ROUNDED PEBBLES, 8-10 cm WIDE.

0.4M OF SAND/GRAVEL MIX.

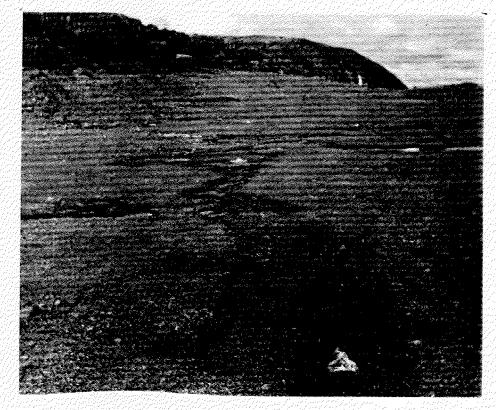
Noritiwest Terriflories Public Works	Checked by Approved by REVISIONS Date By		COMMUNITY PROGRAMS SECTION
			SITE 10 - CROSS SECTION CAPE DORSET, N.W.T.
			Drawn by B.ROCHON DEC.1989 Scale N.T.S. Dwg. No. FIG. 16

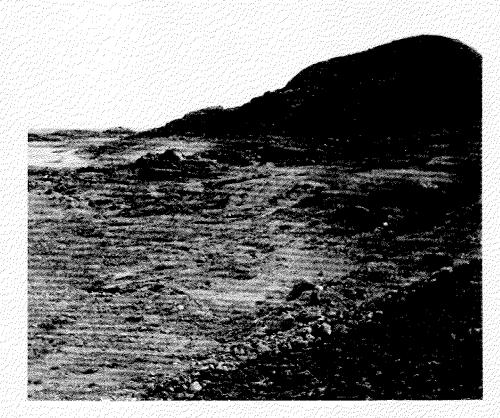
APPENDIX B

Ground Reconnaissance Photographs August 1989 #1 - 63

PHOTO INDEX

NUMBER	PHOTO DESCRIPTION
1	Overview of Cape Dorset looking directly east.
2 - 5	Site B (Ice Lake)
6	Old Airport Runway
7	View of Q1
8 - 15	Site A
16 - 21	Site 13
22 - 26	FBS
27	Dump Site
28	Sewage Lagoon
29	Site 8
30	Ridge between sewage lagoon and Site 10
31 - 41	Site 2
42 - 48	Site 10
49 - 54	Tidal Flats
55	Mallik Island
56 - 61	Causeway / Mallik Island
62 - 63	Site 14 (MOT site)

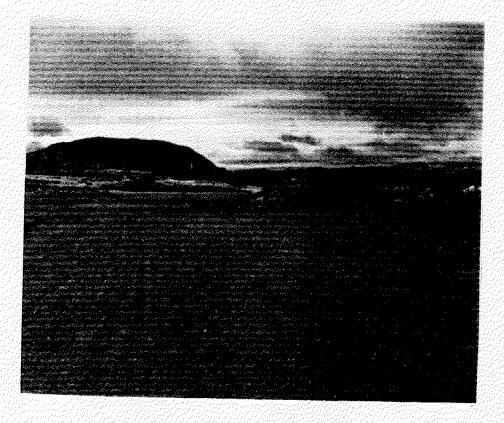

Site B looking southeast from old airport. Q1 is in middle background.


#3

l

J

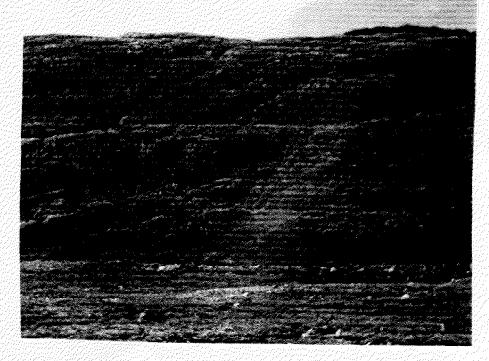
View of Q1 and Site B looking southwest from old airport. Drainage is from abandoned borrow at Site B.

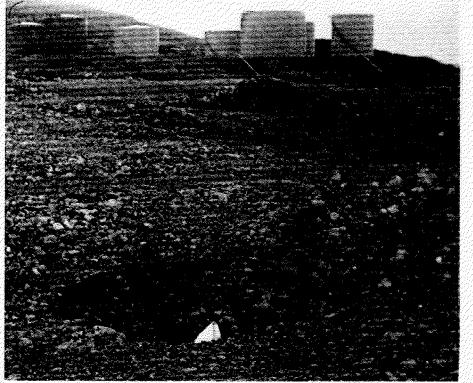

Good view of the fine sands and gravels of Site 'B". Ice Lake in top left corner. This pit is presently abandoned but note the volume of material remaining.

#5

I

Site 'B' material in foreground with Q_1 in background.





Old airport runway looking west. Origin of stockpile in photo unknown. Area of new subdivision in far background.

#7

View of proposed quarry Site Q1. Note available access and working face. View is directly south from old airport road.

View of Site A from middle of deposit. Note depth of test pit 288-2.

#9

1

Í

J

l

l

L

l

l

View of Area 1, Site A. Note coarse material.

Site 'A' material 50 meters from test pit CAP - 03 - FC.

#11

I

I

I

View of test pit CAP-03-FC. Pit is near southern boundary of deposit. Note cross-section in appendix.

View of Site "A", looking directly east from Area 1.

#13


ſ

ľ

I

Site "A" grades into a coarse sand. View is of Area 2.

Southern boundary of Site 'A'. Deposit continues 80 meters (in width directly north of gravel p View taken from access road to tank farm.

(see photo 15)

#15

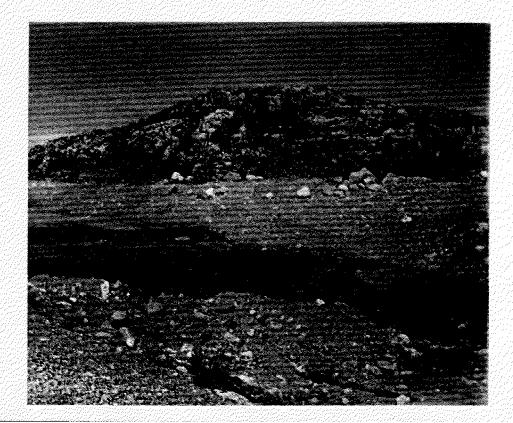
Site 'A' deposit. View taken from top of gravel pile in photo 14 looking directly north.

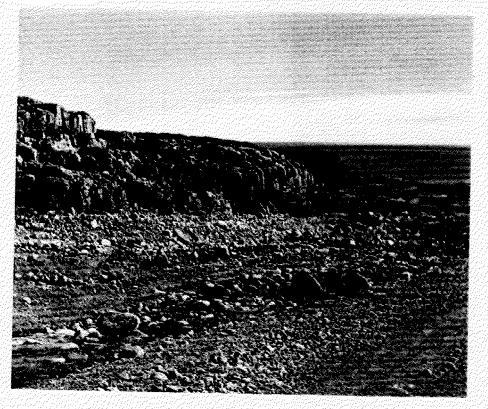
Relatively new road that provides access to Site '13 and M.O.T. area (Site '14') Ridge in background separatu Site '13' and Site 'A'. Site '13' deposit follows north side of ridge as illustrated in photo 17.

#17

I

I

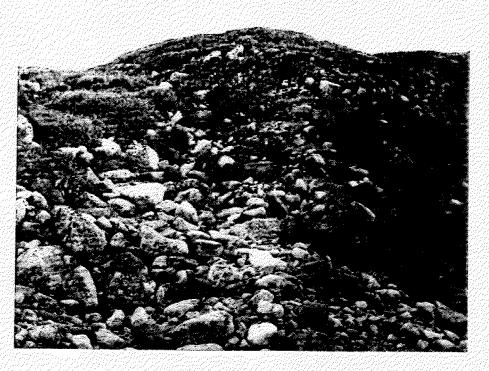

1


l

Î

1

View of Site '13' that is continuous along north side of access road.


View of Site '13' material from access road. Material needs screening.

#19

I

View of material above road on ridge. Considered an extension of Site '13'.

Ridge between Site '13' and Site 'A'. Photo taken from access road to M.O.T. area

#21

I

Í

Coarse gravel and sand on ridge directly above Site '13'.

Vertical stratigraphy of fractured bedrock source. Deposit consists of marine glauconitic shales. Note looseness and friability of material. Cut is approximately 2 meters in height and 30 meters in length. Material presently used as embankment for new subdivision. Contractor used sand from Site '15' as a blend source for shales; used as surfacing material for roads.

Excavation work and stockpiling of 'FBS'.

#24

I

Stockpiling of 'FBS' material at Site '15'. Site '15' was depleted and abandoned at end of 1988 season.

View of existing material a 'FBS'. Note continuation o source ridge in background.

#26

J

ľ

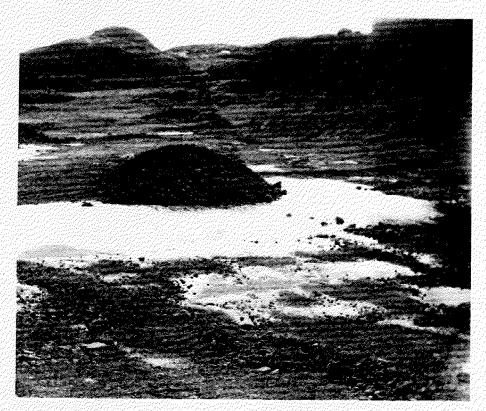
I

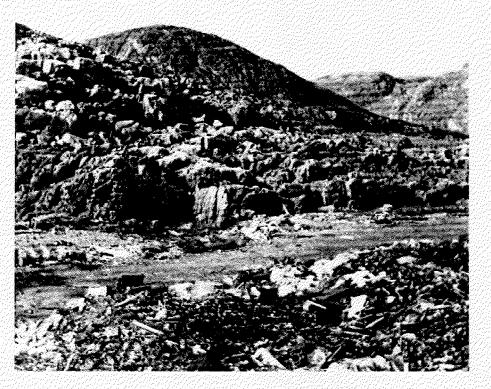
I

I

I

1


I


I

I

I

Environmental problems due to removal of overburden and existing material at 'FBS'. Ponding a result of poor drainage techniques.

4

Dump at sewage lagoon, western terminus of islan Site 10 is located behind ride in background.

#28

Sewage lagoon. View is directly west, causeway is to the right of photo.

View of Site '8', depleted and abandoned at end of 1987 season. Site in need of restoration.

#30

I

100

1

I

I

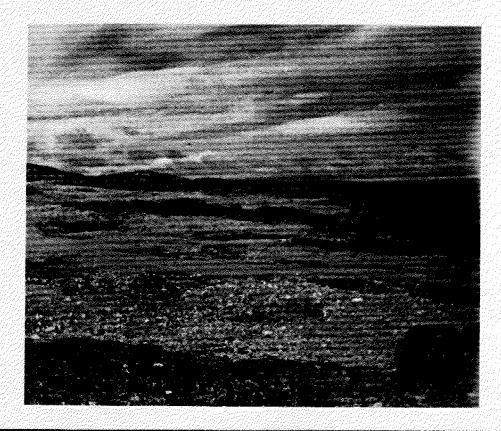
View of ridge between sewage lagoon and Site '10'.

Good overview of entire Site 2 deposit. View is northwest from Kingnait Hills.

#32

1

View of Site 2 from a higher elevation, but looking northeast.



View of eastern boundary of Site '2' (referred to as '2B' in report).

#34

The second

View of Site '2' material approximately in middle of deposit.

Good view of coarse sand a Site '2'. Note material is well drained.


#36

I

I

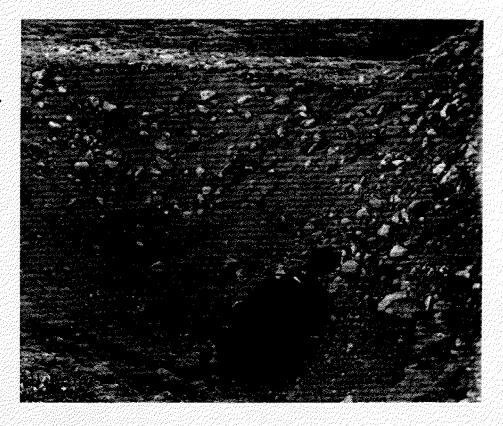
Shallow depth at southern boundary of Site '2'. Test pit 15 meters from base of Kingnait Hills.

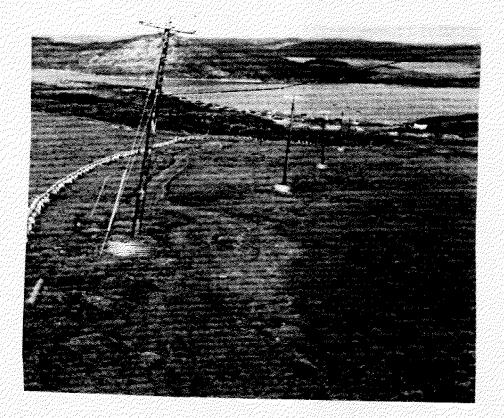
Coarser material at '2A'

#37

#38

ĺ

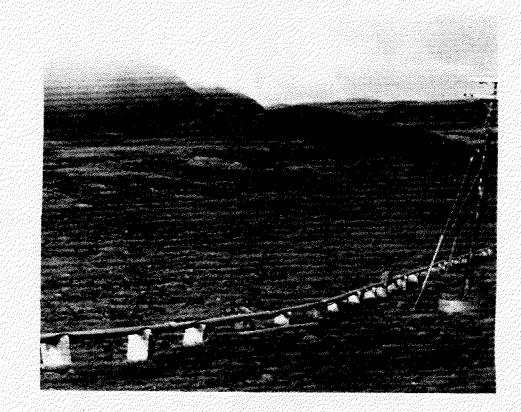

l


l

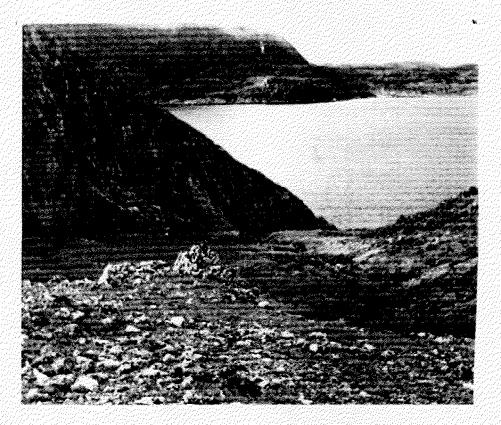
I

ĺ

Large test pit CAP -04 - FC, Site '2'.

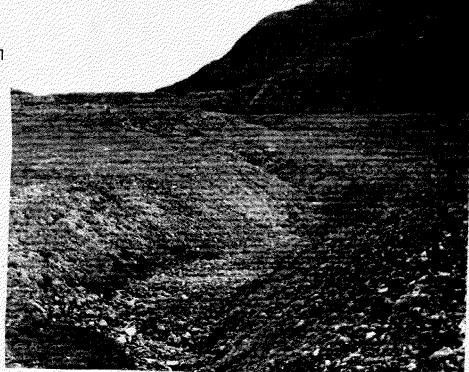

Water pipeline from Tee Lake. View is directly north. Mallik Island in background.

#40


l

Raised water pipeline to Tee Lake. Note poor drainage on surface.

A panoramic view of Site 2 as seen from water pipeline. View is directly west. Note access to Site 10 in top middle of photo.



Access route to Site 10 only if ice road is built from western terminus of island. Steepness of route will be a problem.

#43

ALL STOCKED AND A

View of well graded, well drained, medium to coarse gravels at Site 10. Screening will be necessary.

Far eastern terminus of Site 10. Access to Site 2 at top left.

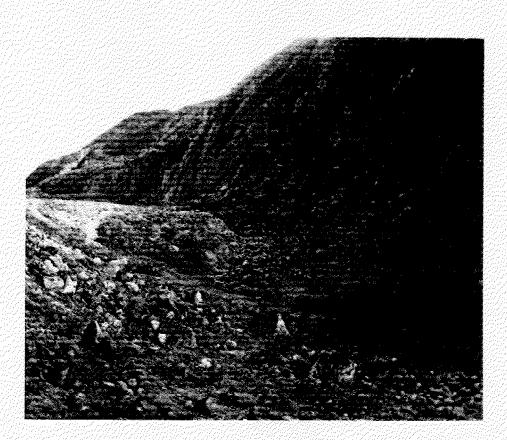

#45

I

I

ſ

Kame Terrace at Site 10. View is looking directly east.



Raised beach terrace at Site '10'. Note volume of material.

#47

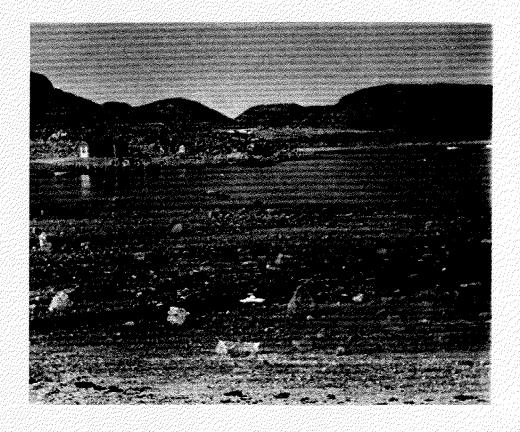
Typical well graded gravels at Site '10'.

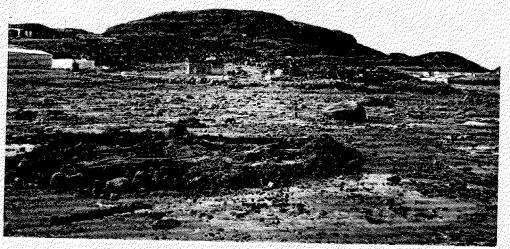
J

J

I

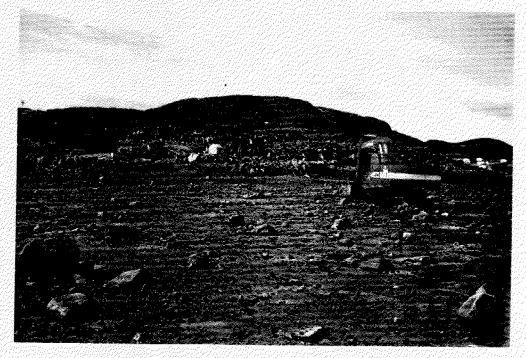
Ī


Rock cliffs represent southern **boundary** of Site '10'. View is east towards Site '2'. Note talus slope in background.


Tidal flat exposed at low tide.

#50

Tidal flat exposed at mean tide.

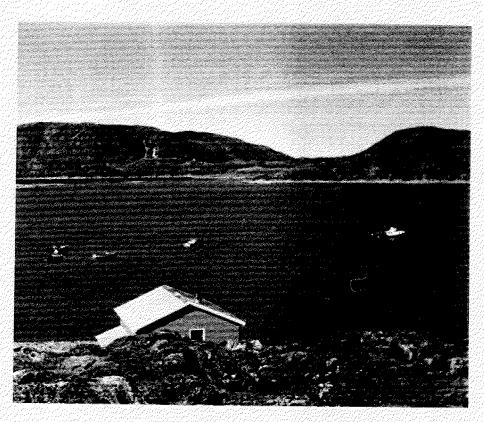


Tidal flat at low tide: note test pit in foreground.

#52

Test hole 235 - 0 - MB. Note use of heavy machinery on tidal flat.

#51



Coarse sediments from to 0.7 meters at test pit 235 - 01 - MB. Tidal currents significantly affect the size, sorting and distribution of sediments over most of the tidal flats.

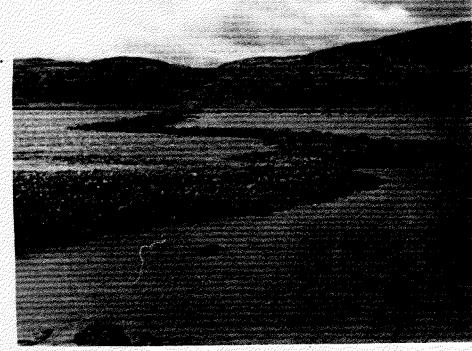
#54

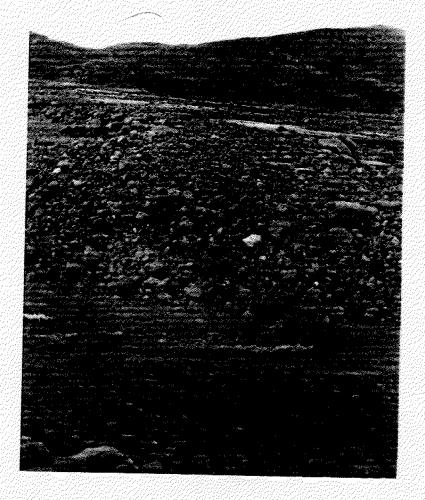
Fine material below 0.7 meters at 235 - 01 - MB. Good blend source.

Mallik Island -Note central plateau in middle of moraine.

#56

Causeway at low tide, between Mallik Island and Dorset Island.




Western extent of Mallik Island, as viewed from causeway.

#57

#58

Good view of exposed causeway at low tide. Although causeway looks continuous, it is dissected by numerous small channels.

View of strong 'rip-tide' that dissects causeway during ebb tide. As tide ebbs, these small rip-tides become increasingly powerful, causing a great deal of erosion.

View of causeway from top of access route (land route) to Site '10'.

#61

Overview of causeway from Kingnait Hills above Site '2'.

Site 14. View is to the north and east, Q3 is in background. This is a prime screening or crushing site.

ſ

ľ

ľ

I

I

I

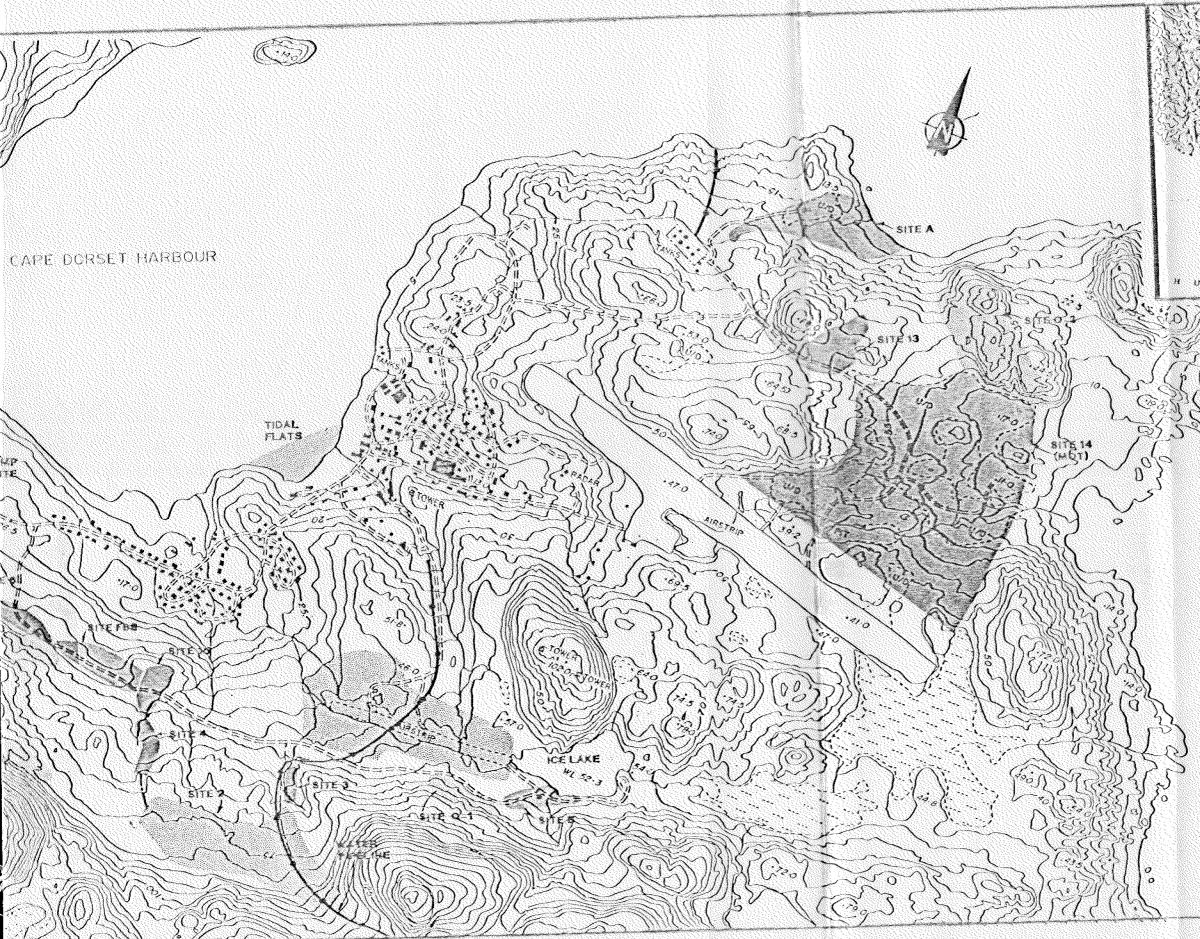
I

I

l

ſ

ſ


ſ

Old Test pit, Site 14. Note large percentage of oversize material. View is looking directly northeast towards Q3.

APPENDIX C

•

Source Location Map

CAPE DORSET EG ? 5 T # 4 I T HUDSON LEGEND EXISTING GRANULAR SOURCE POTENTIAL GRAN. SOURCE ----- ACCESS IPROPOSED PIPELINE lĥwest Territories Public Works Design. Diawa B. ROCHON Argabyed Director Project Title GRANULAR INVESTIGATION CAPE DORSET, N.W.T. Drawing Title SOURCE LOCATION MAP 5.0 200 C1 + 5 METERS **~00** Scale 1.6600 D.F.W. Project No. S.re DEC. 89 89-9170-803 =....r Ortaning No.