HOGGAN ENGINEERING & TESTIN REFERENCE COULCTION COLECTION PRANCE

PRELIMINARY REPORT ROCK EXPLORATION KIEWIT QUARRY KING POINT,YUKON

dential for Cer \mathcal{A} Prepared for:

Peter Kiewit Sons Co. Ltd. Suite 205 8271 Westminster Highway RICHMOND, B.C. V6X 1A7

Prepared by:

Hoggan Engineering and Testing Ltd. 8803 - 50th Avenue Edmonton, Alberta T6E 5H4 Tel: (403) 465-9714

October 18, 1983 S t Sons Co. Ltd copies

Distribution: - Peter Kiewit Sons Co. Ltd Toronto - 2 copies Vancouver - 3 copies

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 DESCRIPTION OF SITE	2
3.0 DRILLING RESULTS	9
4.0 TEMPERATURE RECORDINGS	11
5.0 ROCK DESCRIPTIONS	12
5.1 Weathered Zone	12
5.2 Sandstone Formations	12
6.0 PRELIMINARY TESTING PROGRAM AND TEST RESULTS	16
6.1 Discussion of Test Results	18
7.0 QUANTITY ESTIMATES	22
7.1 Size of rock	24
8.0 CONCLUSIONS	27
BOREHOLES 1 to 11	

- Photos
- Borehole reports Lab Testing.

1.0 INTRODUCTION

Hoggan Engineering and Testing Ltd has been retained by Peter Kiewit Sons Co. Ltd. to log a series of NQ boreholes in a potential quarry site in the Yukon North slope. Laboratory tests were perform to evaluate the engineering properties of the material for use as common rock fill (minus 6"), rip-rap (1-8 000#) and armor stone (minimum 4 tons) for the construction of Arctic islands.

This preliminary report presents the results which are available to date on the project and includes:

- logs of the boreholes (11 holes)
- photographic records of some of the cores as received in Edmonton (8 holes)
- laboratory test results completed to date on available cores (6 holes)
- evaluation of quality and quantity of material available

2.0 DESCRIPTION OF SITE

The proposed Kiewit Quarry in the Yukon Territories, is located in a section of the Moose channel sandstone formations which rise up to form a 400-foot high hill in the otherwise flat tundra which slopes gently northward from the ridge to the Beaufort Sea.

The site is located about 125 air miles west of Inuvik and about 12 miles inland and due south of Kings's Point.

The quarry is to be developed in the lower part of the Moose channel sandstone formation of Tertiary age, and published geological reports by Young and Norris indicate that this formation contains beds of relatively massif sandstone in layer several hundred feet thick. The sandstone beds have been folded into a broad shallow and closed syncline, which strikes in the general north-south direction, with the northern end of the syncline dipping towards the south at an average dip of about 15[°]. At the extreme southern end of the syncline the beds are reported to dip gently towards the north.

From high level aerial photographs(figure 1, scale 1"=5000') the site is visible on the east side of the Quarry creek and appears as a series of southeast trending sandstone ridges (white bands) which outcrop over a 6 miles of Quarry Creek. The beds extend usually 2 miles east of the creek where they are cut by a series of east trending faults and they can no longer be traced on the photographs. The potential development site is located on the most northerly part of the outcrop area where the formations, dipping usually 15⁰ towards the south, rise 200-300 feet above the level of the local till plain.

On low level photographs (see Borehole Location Plan scale 1"=1000') the sandstone ridges appears as light colored bands which have a plan width varying from about 300 to 1200 feet, which represents thicknesses varying between 50 and 200 feet.

In general four (4) major bands can be identified starting with the most northerly band as follows:

BAND	PLAN WIDTH	ESTIMATED THICKNESS	LENGTH
Northerly 1	1200'	200'	9000'
Middle 2	250'	50'	6500'
Middle 3	300 '	40'	6000'
Southerly 4	600 '	100'	4000'

3

Towards the south and in the middle and southern part of the syncline the light colored bands are narrower because the beds are probably not as thick. The formations are much more faulted than in the northern site and as a consequence are difficult to trace. One exception is the large white band which is about 4500 feet long and about 500 feet in plan width which represents a bed about 100 feet thick. This should be drilled in future boring programs, planned to investigate the potential for rock in the southern end of the syncline.

In the proposed quarry site, the wider northern band is cut by a deep valley about 100 feet wide and 40 feet deep and this probably represents a major fault, although only a slight displacement in the beds is visible on the photographs. Further to the east along the band and about 1000 feet from this fault a series of at least four fracture planes or additional faults cut the formation in a NE-SW direction. Beyond this zone, the formation can be easily traced on the photos and the thick bed appears to be continous over a distance of another 5000 feet. Although the thickness of the bed is not certain over this great distance, since there are at least three areas where the

formation is either lacking or is masked beneath a dark toned surface waste material, it is believed from the information in Borehole 5, that the formation may extend southward, under a thin layer of overburden, to the thin white line which separated the overlying dark band. Under this condition, the formation would maintain its 200-foot thickness and the southern limit of the main bed would be more consistent with the information obtained in boreholes 8 and 10.

The formations dip to the south at angles which are usually in the 13 to 17 degree range but in some cases range up to 20 to 25 degrees in zones which are probably related to faulting or possibly inclined sedimentation planes.

The light colored sandstone beds are separated by dark colored bands of about equal thickness in most cases which are either composed of soft weathered sandstone, conglomerates, shales, siltstones and mud stones.

Because of the considerable depth of frost jacking in the area outcrops of intact undisturbed rock are not widespread and are confined primarily to the cuts in the river banks and occasionally to the steeper slopes on higher ground which are associated with faulting.

5

In the latter case the rock has been severely affected by frost action and the appearance of rock in the larger exposures suggests that the blocks must be detached from the main formation and that they have rotated somewhat down slope and, hence in some cases, may not provide reliable strike and dip information.

Most talus slopes (3:1 - 5:1) are composed of hard tough angular slabs of sandstone which are usually up to 1 or 2 feet across and a few inches thick. Most of these pieces are very sound and show very little evidence of weathering, the edges are angular and not rounded. In moving further up slope, the inclination usually decreases and the fragment are smaller in size, visibly weathered and rounded, and are composed primarily of a rusty reddish brown sandstone which is considerably softer than the hard pieces encountered in the steeper slopes.

The harder sandstone formations as viewed in some of the few near vertical sections can be seen splitting into thin slabs up to 2 or 3 feet long and usually less than 3 or 4 inches thick, a reflection

6

no doubt of the stratification. In the more massif thicker zones, the rock breaks with a distinct curved or conchoidal fracture plane, and the fragments were usually 6 to 8 inches thick, with a length or width ratio of 4 to 5 times the thickness. These fractures are therefore not related to the stratification of the beds but are probably a result of mechanical forces brought about by freezing and thawing and this confirms the tough resistant nature of the rock.

Vertical fracturing of the formation, where observed, is very variable, and in most instances is usually spaced at 5 to 8 inch intervals due primarily to the severe frost action. In the more resistant beds, blocks usually two or three times the thickness of the pieces have been observed. It is considered that this may be representative of typical condition that can be expected in the massive sandstone layers in the quarry, but it is very difficult to predict what can be expected in the deep permanently frozen section of the formations when extrapoling from surface exposures which have been subjected to such severe freezing and thawing conditions since the

7

1.

?, recent glacial period. Only borings drilled down the dip of the sandstone formations could determine the spacing of the jointing in the beds.

Drainage of the site is mainly by deep cut gullies which drain westward into Quarry Creek except in the northern and eastern limits of the mountain where the overlying glacial till cover has a characteristic dendritic drainage pattern which flows eastward.

3.0 DRILLING RESULTS

Eleven widely spaced borings were drilled on the property, ten (10) of which were located in the northern section, with only one (1) hole being done on the southern part. The location of holes 2 to 11 are shown on the attached copy of the low level photographs. Most of the holes were located on the southern edges of the light bands which correspond to the top of the formations and provided more reliable information on the thickness of the beds and the quality of the rock. In view of the time limitations, inclined borings could not be done and apart from northern part of the quarry most other potential rock sources in the immediate vicinity of of the quarry, were drilled with only one (1) borehole.

The borings confirmed to a large degree what was developed from the photographs concerning the stratification, and cross-sections prepared from the field results confirmed that the major sandstone member in the western part of the site is about 200 feet thick and dips down towards the south at an inclination of about 15 degrees. 9

Borehole 9 was put down on the low terrace just above Quarry Creek and indicates that the bedrock dips down towards the creek under about 70 feet of overburden. In this boring 34 feet of soft sandstone and shale was penetrated before encountering the top of the solid sandstone formation which was drilled for an additional 53 feet.

Borehole 5 was put down on the extreme east end of the sandstone bed, and encountered good sandstone at a depth of only 75 feet. This indicates that the underlying main sandstone bed visible on the photograph is somewhat thicker than can be deduced from the photo and suggests that the main bed may extend 200-300 feet further south and in line with the thin discontinuous white spots which are visible in the middle of the black band on the photo. Other borings would be required to confirm this possibility particularily in the vicinity of borehole 4.

Borehole 6, put down on the most westerly end of the band, confirmed that the sandstone bed is of comparable thickness as in boreholes 3, 8 and 10. 10

4.0 TEMPERATURE RECORDINGS

One thermister string was installed in Borehole 1 for the purpose of measuring ground temperature in the quarry and the following results were obtained.

	TEMPE	RATURE C ^O			
27 Aug/83	28 Aug/83	31 Aug/83	6 Sept/83	<u>9 Sept/83</u>	20 Sept/83
1	0	0	0	0	-1
20	14	5	1	-3.8	-1
0	0	0	-3.5	-5	-5
8	5	0	1	0	-5
	27 Aug/83 1 20 0 8	TEMPE 27 Aug/83 1 0 20 14 0 0 8 5	TEMPERATURE C ⁰ 27 Aug/83 28 Aug/83 31 Aug/83 1 0	TEMPERATURE C ⁰ 27 Aug/83 28 Aug/83 31 Aug/83 6 Sept/83 1 0 <td>Image: Product with the symbol withe symbol with the symbol with the symbol wit</td>	Image: Product with the symbol withe symbol with the symbol with the symbol wit

These readings suggest that a large proportion of the drilling water was lost in fracture zones at the 10 and 35 foot levels, and that it took up to three (3) weeks for these zones to refreeze after the borehole was completed. The -5° reading is considered to be representative of the minimum ground temperatures that can be expected over the full depth of the quarry zone.

5.0 ROCK DESCRIPTIONS

5.1 Weathered Zone

Most boreholes penetrated a variable thickness of broken and fractured rock at the ground surface, and this layer was contaminated to varying degrees with finer material derived from the disintegration of softer rocks. In general, the weathered zone is about 10 to 15 feet thick except in borehole No. 6, where this layer is 43 feet thick. When considering salvaging product from this zone, it is possible that between 20 and 40% of the material could be recovered, particularily in the bottom half of the layer where most of the fines may have accumulated.

5.2 Sandstone Formations

The sandstone formations are brown and grey colored, usually fine grained and in the unaltered zones are classified as medium hard. The brown colored sandstone sections usually produce shorter cores than the grey sections.

The borehole logs prepared indicate soft zones, fractured and thinly bedded sections, and the lengths of pieces of core recovered in the formations in the 2-4" size, 4-8", 8 to 16" and plus 16 inch size. In addition, the calculated percentage of plus 24" and 36" long cores are given together with the length of the longest recovered, so that an evaluation of the size distribution and an estimate of the maximum size of blocks that should be recoverable from the formations can be made.

Drilling in the surficial weathered zone of bedrock returned only a small percentage of cores and these were usually no more than 2 to 4 inches long and reflect the thickness of the large flat frost heaved slabs of rock which are visible on the ground surface. Below this altered frost heaved zone, the borehole encountered the principal sandstone formation which was drilled to a maximum depth of about 217 feet in borehole 8.

HOGGAN ENGINEERING & TESTING LTD.

File No. 3761

The good sandstone layers, consist of uniformly bedded relatively hard and sound brown to grey colored fine grained rock, and show no signs of stratification with the exception of the occasional thin conglomerate seams which is usually less than one half inch thick. The actual Moose channel formations, however, consist of a series of beds which vary in thickness from a few inches up to a maximum of perhaps 5 to 10 feet at the very most and the core length in the boxes reflect the thickness of these beds. Numerous fracture and fault zones, and some thinly bedded sections were also identified in the cores and these contained a lot of soft fault material, which was separated from the good sections and considered as waste.

In the poorer formations the sandstone develops a distinct stratification and is thinly bedded, with the worst conditions being encountered where very thin bedded seams of coal are present and the cores can be broken by hand along the seams. In these sections of the formations, and also interbedded with the good 14

sandstone beds, are layers of rusty brown soft sandstone or sand which is present in layers usually up to 4 feet thick.

Towards the base of the Moose channel formation, a series of softer and weaker greyish salt and pepper colored coarser grained sandstone was encountered and this was considered as waste and was included in the unsuitable Tent Island formation.

The following table summarizes the results of the above evaluation.

Borehole	Overburden	Length Drilled in	Length of	%	%	%
	Thickness (ft)	Sandstone Formation (ft)	Waste (ft)	Waste H	+ 24"	+ 36"
3	11	131	32.0	24.5	32	12
4	14	150	24.5	17.0	24	9
5	75	158	43.0	27.0	43	26
6	43	117	20.0	17.0	32	17
8	14	203	23.0	11.0	29	16
9	100 (till)	53	2.5	5.0	50	37
10	12	166	28.5	17.0	48	37
11	11	92	10.0	11.0	44	33

6.0 PRELIMINARY TESTING PROGRAM AND TEST RESULTS

The quality of the sandstone formation was evaluated by submitting sections of the cores to the standard tests used for concrete aggregates. Samples were selected at various depths in the holes so thay any variation in the quality of the rock from the different beds in the formation could be determined.

The following tests were performed on the cores:

- unit weight and absorption
- compressive strength
- tensile strength by "Point load Tester"
- crushing tests to determine percentage of fines to be produce during crushing
- loose unit weight of crushed material to evaluate bulking factors
- Los Angeles abrasion tests to evaluate resistance to breakdown
- sulphate soundness tests to evaluate resistance to weathering
- freeze-thaw to determine resistance to freeze thaw cycles.

HOGGAN ENGINEERING & TESTING LTD.

File No. 3761

The following brief table summarizes the majority of test results obtained to date from the laboratory tests:

Borehole	Unit Weight (pcf)	Specific Gravity	Absorption (%)	Unconfined Compressive Strength (psi)	Los Angeles Abrasion Loss (%)
3	150-152	2.4-2.5	2.4-3.0	10 000-19 000	33-37
4	149-151	2.4-2.5	2.8-3.7	9 000-16 000	40-42
5	145-150	2.2-2.4	3.0-3.6	5 000-12 000	36-43
6	150-155	2.4-2.5	-	10 000-13 000	39-42
7	140-150	2.2-2.4	3.5-6.0	7 000-11 000	
8	15-153	2.4-2.5	2.8-3.2	10 000-14 000	
10	150-153	2.4-2.5	2.6-3.1	10 000-14 000	

The test results are all shown on the table of laboratory tests which accompany each borehole.

Γ.

6.1 Discussion of Test Results

Tests on the sandstone cores gave specific gravity values ranging between 2.4 and 2.5, with unit weights between 148-153 pcf. These values are considered typical of well cemented tough sandstone. Absorption values reflect the varying porosity of the sandstone formations and most values were higher than the maximum 2.5 considered for adequate quality rock. However, freeze-thaw tests carried out on typical sections of core from boreholes 3 and 4 indicate that after 12 cycles there is no sign of any breakdown or splitting. In addition, freeze-thaw tests reported by NRC in 1966 on Aklavik sandstones and shales indicated that there was an increase of about 20-25% in all sizes of a well graded minus 2 inch sample of rocks used in their tests after 400 cycles of freeze-thaw. This suggests that the sandstones are quite resistant to freeze-thaw cycles (see attached Figure 3).

The significance of the higher absorption values obtained in some of the softer sections of the formations will be evaluated once the sulphate and freeze-thaw tests have been completed on these cores.

Crushing of the cores to minus l inch in a jaw crusher produced a considerable number of <u>flat platy pieces</u> and a grain size distribution as shown on the figures which accompany the borehole logs. Loose unit weight determination carried out in a relatively small container gave values usually in the 80 pcf range but these are considered low in view of the shape of particles and the size of the container used for the test. Values of 100-110 pcf is considered more realistic for minus 6 inch material, and this would indicate that an average bulking factor of about 35-40% would be a reasonable estimate for the solid sandstone formations.

Unconfined compression tests ranged usually between 10,000 to 14,000 psi typical of resistant or strong formations, with values decreasing according to the degree of weathering, alteration, and 19

the strength of the moderately strong beds. Tests with the point load tester indicate that on samples of the uniform brown or grey sandstone the strength perpendicular to the core axis is about the same as that measured axially, and this confirms that in the unstratified homogeneous sandstone beds the rock is dense, well cemented and sound.

In cores exhibiting some form of stratification, the tensile strength was reduced and as the stratification became more pronounced, the cores could actually be split without developing any load on the testing unit. Los Angeles abrasive tests indicate losses of between 33 to 43% and all values were in the same range regardless of the color or length of cores selected. It is interesting to note that the abrasion loss on a sample of the short broken pieces of core from borehole 3 was in the same range as the other tests carried out on long pieces of core. However, a significant increase in the abrasion loss was noted for the softer and weaker grey salt and pepper colored coarse grained sandstone, and a value of 67 was obtained.

20

HOGGAN ENGINEERING & TESTING LTD.

File No. 3761

Although the test values on the cores are at the maximum limit (40) considered acceptable for adequate quality rock, the test results are considered to be higher than <u>normal</u>, since the crushed samples contained numerous <u>flat particles</u> which were easily broken in the test. This increased the losses in the tests, and hence is a <u>reflection of the particle</u> shape, and not a physical weakness of the rock itself. If similar tests were performed on equidimensional fragments, the results would be expected to be lower and more representative of the minus 6 inch crusher run rock which is to be produced at the quarry.

Experience with rip-rap indicates that rocks even with losses between 45 and 75%, have satisfactory service records and, from observations of talus slopes in the field, together with the encouraging laboratory test results from the freeze-thaw and sulphate tests, it is considered that the homogeneous uniform sandstones of the Moose channel formation will be adequate for use in construction of the islands. 21

Source

7.0 QUANTITY ESTIMATES

Calculation of proven preliminary and potential volumes of in-place rock have been made using topographic information supplied by Les Consultants SOGEAM Inc. and the results of site survey work carried out by P. Kiewit field personnel. The following assumptions were made in calculating volumes :

- the results of widely spaced borehole reasonably represent the rock conditions along the strike of the formation,
- the sandstone beds dip at an average 15⁰ towards the south, and that the formation continues beneath the overburden to at least creek level,
- faulting has not interrupted the beds nor decreased the quality of the rock as represented in the boreholes,
- quality of rock has not diminished significantly from that tested in laboratory,
- quantity of talus and weathered and fractured rock, covering the formation, and the thickness of unsuitable rock within the beds, has not increased from that observed in borings completed to date.

The following table summarises the in-place volumes of rock which can be recovered when excavating to a depth of about 300 feet in the formations, together with an estimated of the quantity of talus which must be removed to expose the top of the main sandstone member.

ESTIMATE OF IN-PLACE ROCK QUANTITY (million, cubic yards)

KIEWIT QUARRY Kings Point	Section 	Section <u>B-B</u> (600')	Section <u>C-C</u> (900')	Section (2300')	Section 	Section <u>E'-E'</u> (2500')	<u>Total</u>
Talus	1.5	0.33	0.47	0.85	0.91	0.44	4.50
POTENTIAL ROCK							
Level 100' Level 200' Bottom of pit	0.8 1.65 <u>0.37</u> 2.82	1.75 1.88 <u>1.60</u> 5.23	3.07 2.00 <u>-</u> 5.07	2.77 2.77 <u>1.94</u> 7.48	- - 	1.54 1.72 <u>0.69</u> 3.95	24.55
ADDITIONAL POTENTIAL ROCK							
Level 100' Level 200' Bottom of pit	0.37 0.70 <u>0.67</u> 1.74		- 1.65 1.65	2.77 3.83 <u>1.94</u> 8.54	5.90 9.91 <u>6.74</u> 22.55	1.54 1.72 <u>0.69</u> 3.95	38.43
Total Rock	4.56	5.23	6.72	16.02	22.55	7.90	62.90

To arrive at the volume of recoverable in-place rock these figures must be reduced by between 15 and 25% to account for material contained within the formation which is considered as waste.

To arrive at the volume of rock which will be stockpiled, it is necessary to increase the volume of in-place rock by between 30 and 40% to compensate for bulking, and then to further reduce this by about 20% which should represent the percentage of reject minus 1 inch material which will be lost during blasting, handling and crushing.

7.1 SIZE OF ROCK

The quality and probable in-service performance of a given rock source can be evaluated from geologic evidence correlated to laboratory tests and service records, but the prediction of the percentage of various sizes and weights that can be recovered from the in situ rock is difficult because of the many factors involved which cannot be evaluated easily from a series of boreholes. In this case, the task is even more complicated

HOGGAN ENGINEERING & TESTING LTD.

File No. 3761

since there are few outcrops which can be inspected to determine the degree of jointing and fracturing present in the formations, and the variation in both horizontal and vertical directions of the quality of the rock cannot be observed.

In addition, whatever outcrops could be found had, in all but a few cases, been severely fractured and split after many thousands of cycles of freezing and thawing. However, those large blocks which remained on site were usually rectangular in shape with the length and width usually 50% greater than their 4 and 5 foot thickness. It is from this information, together with the length of some of the longest cores recovered, that an attempt has been made to predict the probable size and weight of rip-rap which can be salvaged from the quarry providing the most advanced blasting techniques are employed to minimize shattering of the rock. 25

It is considered that in the boreholes producing long cores, no more than half of the beds will remain intact after blasting and that the following sizes may be recovered provided at least equidimensional blocks can be produced:

Borehole	+ 24"	- 24"	+ 36"	+ 48"	Estimate size + 36"(4000 #)	& Weight + 48"(9000 #)
3	32	58	12	0		
4	24	76	9	0		
5	43	57	26	12	5%	1%
6	32	68	17	3		
8	29	71	16	10		
9	50	50	37	31		
10	47	52	37	25	15%	4%
11	44	56	33	8		

ESTIMATE OF PROBABLE SIZE AND WEIGHT OF RIP-RAP

Considerable variation in the above estimated rip-rap sizes should be expected particularily in the lower sections of the formations where the logs of all the holes indicate that rock is definitely of inferior quality to the top section. The majority of large rip-rap and armor stone will most probably be found in the top of the beds, i.e. on the south side of the formations in areas which have not been affected by faulting and jointing.

8.0 CONCLUSIONS

From the results of the widely spaced borehole, the following conclusions and recommendations have been known:

- A 200-foot thick sandstone bed dipping 15⁰ to the south and located on the most northerly section of the quarry contains the largest quantity of hard sandstone rock in the area.
- 2. Two (2) other thinner sandstone beds (50') interlayered with waste rock overlie the main sandstone member on the eastern half of the quarry and these can be recovered although considerable waste will be involved in exposing the beds.
- On the southern part of the quarry site adjacent to Eagle Point, another 100-foot thick sandstone bed may contain up to 8,000,000 cubic yards.
- Initial laboratory tests indicates that the sandstone rock is of acceptable quality for the construction of rock islands.

- 5. At least 20,000,000 yards of sandstone can be recovered at the site without involving large stripping quantities, and an additional 35,000,000 cu yards may be recoverable but stripping quantities will be considerable.
- 6. On the basis of core length recovered, it is estimated that between 75% and 85% of the rock will be minus 24 inches and 15-25% will be between 24 inches with about 5-10% greater than 36 inches in the more resistant and thicker beds located usually at the top of the main sandstone formation.
- Laboratory tests indicate bulking in the sound unfractured section will probably be in the 35 to 40% range.
- 8. Losses of material during blasting, handling and crushing to minus 6 inches material are estimated between 20 and 30%.

Hoggan Engineering & Testing(1980) Ltd.

Noël L. Journeaux, P.Eng.

NLJ/fp File

ROCK STRENGTH CLASSIFICATION

ENGINEERING GROUP OF GEOLOGICAL SOCIETY 'LOGGING OF ROCK CORES FOR ENGINEERING PURPOSES' ~

	Uniaxial	Compressive Streng	yth .
TERM	MN/m²	lbs/in²	kg/cm²
Very weak Weak Moderately weak Moderately strong Strong Very strong Extremely strong	 < 1.25 1.25 to 5 5 to 12.5 12.5 to 50 50 to 100 100 to 200 > 200 	<pre>< 182.5 182.5 to 730- 730 to 1825 1825 to 7300 7300 to 14600 14600 to 29200 > 29200</pre>	 12.8 to 51 51 to 128 128 to 510 510 to 1020 1020 to 2040 > 2040

ROCK MASS CLASSIFICATION

ENGINEERING GROUP OF GEOLOGICAL SOCIETY - 'LOGGING OF ROCK CORES FOR ENGINEERING PURPOSES'

DESCRIPTION	DISCONTINUITY SPACING M
Very thickly bedded	2.0
Thickly bedded	0.600 to 2.000
Medium bedded	0.200 to 0.600
Thinly bedded	0.060 to 0.200
Very thinly bedded	0.020 to 0.060
Laminated	0.006 to 0.020
Thinly laminated	0.006 5

M.I.T. GRAIN SIZE CLASSIFICATION

Figure 7. Disintegration of rock sample from willow fan gully near Aklavik, Northwest Territories, Canada, by freeze-thaw cycling in laboratory (Test no. 1)

n											AP	PEND	X i		
	H	Η	OGGAN	OFF	ICE	E BO	REI	HOLE	ERE	CORD	B		DLE No	p: (1
	1	·····-										ErUni	NU		
CLIE	NT.		uror - Charry Invistigatio	on. Yuko	Mi				DAT		RING A	legust Ion ài	: 20 100181	20-05 27-0	
SHE		PHC						IES	UA II			BORAT			р.
		~	SUL PHOFILE						c	E - Z		TES	I PESL	LIS	
DEPTH, n	SEPTH AND ATER LEVEL	RATIGRAPH	SOIL DESCRIPTION		NOITIONO	1, Pt	NUMBER	ar ⊜v≞ av	300, >41	UNSOLIDA NSOLIDA NSOLIDA		UN NIT LABO WATE	U FIEL RATOR R CON BREAK	S VANE V VANE FENT, V Linat	u S Ray Murta
		5.						%	%		wp W	L GRAI	PHIC SI	ALE 9	6
		•••••	Calles Birth BirthVerd					/0		0.077.02	2-4	4 - 8	00 ·	<u>00</u>	MAX
			-Overburan of broken Semestone slabs with fisses in bettom half	nliu							in	in	in	in	
:9 <u>-</u> -		-	<u>CLERT FOR : DEMA, SOF</u> ,	finitol	-		$\frac{1}{2}$	100 29	0 10		17 0	Lo 10	0	0 0	1
		1	4", Autost May functional			NQ.	j	100	()	1	0	0	o	10	
: <u>]</u> 		褒	nerre Burty Diown Sandst and Sand	ione –		NQ	4	15	 0		0	o	0	0	
	*	<u>7</u> 3:	25-27: Rusty brown fractu	ared 1			5	75	0	1 1 2	8	0	0	0	
 سور ا	Lip		Ice lenses 0.5" at tost of water 3.28	26' = 3' = =		NQ	7	75	12	· · · · · · · · · · · · · · · · · · ·	8	12	0	0	
	201		36-37: Vertical fracture	in -		NQ	8	100	10		19	10	0	0	
	har Anathra di sa	17	solid sandstone. 38-43: Vertical fracture	in _		NQ NQ	9 10	100 -82	$\frac{0}{16}$		0	0	16	0	
			solid sandstone. 43-46: Risty brown frach	mod II			11	96	0	I	0	0		0	
		53	sandstone and san: 46-50: Vertical fracture			NQ	12	58	0		33	o	о	0	
್	161			an =		NQ	13	90	0		9	0	0	0	
		<u> </u>	cana chanci			4 _NC	14	90	27		10	27	0	0	
-	14°	1,1	58-60: Vertical fracture	in =		- _ NQ	15	100	i i ()	:	17	0	0	0	
	4	11	61-62: Sundatione			; NQ	 16	100	33		10	18	15	0	
-		33	65-66: Shale; grey, soft fractured.	very =		NQ	17	100	17		lo	17	0	0	
:: 0						NQ	18	<u>1</u> .)()	30		4	30	0	0	
-	╈┿┲	2	72-75: Shale; groy, suft flactured.	very =		- NQ	19	93	; 10		20	10	0	0	
80						- NQ	! 20 /	100	47		0	7	40	0	
	-17	25	84-86: Shale; jrey, zett <u>iracture</u> s.	very		- 140	1	[(K)	59	•	7	12	17	30	
	-		ge neurosante de destante de estan d'anglé per entre de la contra de la contra de la contra de la contra de la 1 1	~		NQ	22	<u>1</u> (i)	-		-	-	-	-	

DATUM

HORANED SHEAR STRENGTH

1

DATUM

OFFICE BOREHOLE RECORD

APPENDEC

BOREHOLE NO.

1

REPORT NO

TEST RESULTS

GRAPHIC SCALE %

Peter Kiewit Sons Company Ltd. CLIENT DATE OF BORING 25-26 August '83 Quarry Investigation, Yakon SITE AND/OR PROJECT. DATE OF WE READING 27 August 183 SOIL PROFILE SAMPLES LABORATORY AND FIELD GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION STRATIGRAPHY ELEVATION DEPTH AND WATER LEVEL Ē : ONDITION 之一IN SITU FIELD VANE, S., RECOVERY RQD,>4 NUMBER DEPTH LE LABORATORY VANE, Cu 14PE SOIL DESCRIPTION 1 😳 - WATER CONTENT, W. 🗞 H ATTERBERG LIMIT WPW Continuation of Borchole #1 % Dip % 100 20 Shale: grey, soft fractured. ROD: Very poor 23 100 NC 92-102: Sandstene-shale thinly N 24 100 -100 bodded and very broken with thin seams of coal 12 +NQ 25 100 between 97'and 99' 10 $NQ_{20} | 100$ 102-130:Thinly bedded broken 15 -96 NO 27 shale and grey sandstone. 90 NQ 28 NQ 29 100. NO 2011001 --130-218: Shale very fractured broken with some NQ 31 1001 thinly bedded am s Sandstone layer very _ NO 32 100 broken 161 - 162 168 - 169 NQ 33 $\Im S$ 171 - 170 180 - 131NQ 34 83 NO 35 70 NQ 36:100 -NC: 37 901 ---NO.38-100 -NO-39 981 ---180

VERIFIED BY:

UNDRAINED SHEAR STRENGTH кРа

CLIENT: Peter Klewit Sons Company Ltd. Date of Bohnis 25-26 August 33 SITE AND/OR PROJECT Quarry Invest (gation, Yukon Date of WL READING 27 August 48 Sold PROPILE SAMPLES Used of Samples Sold PROPILE Samples Used of Samples Sold PROPILE Samples Used of Samples Sold Description (1) Sold Description (1) Sold Samples Sold Description (1) Sold Description (1) Sold Samples Sold Description (1) Sold Samples Samples Sold Samples Samples Samples Sold Samples Samples			н	OGGAN	OFI	=IC	E BC	DRE	HOLE	E RI	ECORD	AI B R	PPENDI OREH(EPORT	X I DLE No NO.1 I): (1
SOIL PROFILE SAMPLES BETCH Stratules Continuention of Borobolo (P1) Samples BETCH Stratules Continuention of Borobolo (P1) Samples BETCH Stratules Continuention of Borobolo (P1) Samples Samples <thsamples< th=""> Samples <thsa< th=""><th>CLIE! SITE</th><th>NT:</th><th>Pet PRC</th><th>ter Kiewit Sons Company L DJECT Quarry Investigati</th><th>td. on, Yuk</th><th>on</th><th></th><th></th><th></th><th>DAT DAT</th><th>E OF BOF</th><th>RING: READI</th><th>25-26 NG 27</th><th>i Augi Augi</th><th>ust/83 ust /8</th></thsa<></thsamples<>	CLIE! SITE	NT:	Pet PRC	ter Kiewit Sons Company L DJECT Quarry Investigati	td. on, Yuk	on				DAT DAT	E OF BOF	RING: READI	25-26 NG 27	i Augi Augi	ust/83 ust /8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				SOIL PROFILE				SAME	PLES		Z	LA	BORAT	ORY AN	ID FIELD
Dip NO $\frac{9}{2}$ $\frac{9}{6}$ \frac	DEPTH, M	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	1) e #1	CONDITION	ТүрЕ	NUMBER	RECOVERY	R Q 0, >4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATIO	A C Vqw	TES IN SIT LABO WATE ATTEP	FRESU U FIELE RATOR ^I R CONT RBERG	LTS D VANE, S F VANE, C TENT, W LIMIT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100-	Dip							%	%	တ က		GRAF	PHIC SC	ALE %
1944 NQ 42 100 -	100						NQ NQ	40	85 80				·	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1907						NQ	42	100	-			_	-	 .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	-201					NQ	43	95			_			_
210 24* $\sum_{i=1}^{2} 24^{i}$ $\sum_{i=1}^{2} 23^{2}$ Broken thinly bedded grey sandstone $\sum_{i=1}^{2} N_{i} = \frac{1}{2} + \frac{1}{2$							NQ	45	100	_		_		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210						NQ	46	90	_	1		-	-	. –
220 24* 24* 90 All of 25* NQ 48 98 - </td <td>T</td> <td></td> <td></td> <td>218-223. Brokon thinly b</td> <td></td> <td></td> <td>NQ</td> <td>47</td> <td>93</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>~</td>	T			218-223. Brokon thinly b			NQ	47	93					-	~
230 223-253: Shale badly broken with thin bed of fine sandstone, conglomerate soft between 249'-251 240 240 240 240 250-15' 253-318: Broken sandstone with thin bed of shale 255-258: Vertical fracture NQ 55 100 10° 260 10° 267. Conglomerate bed 1" NQ 57 83	220	-24°		grey sandstone			NQ	48	98			-	-	-	
223-253: Shale badly broken with thin bed of fine sandstone, conglomerate soft between 249'-251 NQ 50 100 -	230						NQ	49	100	-				-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				223-253: Shale badly broke thin bed of fine	en with		NQ	50	100		;	-		-	
$\frac{NQ}{52} = \frac{31}{91} = \frac{1}{200} = \frac{1}{100} = \frac{1}$	240			sandstone,congle soft between 249	omerato 9'-251 <mark>-</mark>			51	- 00 - 100				-		
250-15° 253-318: Broken sandstone with thin bed of shale 255-258: Vertical fracture NQ 55 100 10° 260-10° 267. Conglomerate bed 1" NQ 57 83	LLLL						NO	53	83	_				·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	-15°		253-318: Broken sandstone	with		NQ	54	83				-	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ייוויי			thin bed of shall 255-258: Vertical fractum	le =		NQ	55	100						-
267. Conglomerate bed 1" 2 NQ 57 83	260	.10 °					NQ	56	100					• •••	
	2704	• • •		267, Conglomerate be	d 1" =		NQ	57	83				-		-
H															
---	--	----	--												
		-1													

APPEND X 1

BOREHOLE No:

REPORT NO

CLIENT Peter Kiewit Sons Company Ltd. SITE AND/OR PROJECT: Quarry Investigation, Yukon

HOGGAN

DATE OF BORING 25-26 August /83

DATE OF WEREADING: 27 August /83

		, <u> </u>	SOIL PROFILE	 	٤	AME	PLES	T	~ Z	LABORATORY AND FIELD
DEPTH 11	ÉLEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION 1	CONDITION	түре	NUMBER	RECOVERY	R O D, > 4 m	GRAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIO	C IN SITU FIELD VANE, 3 C LABORATORY VANE, C C WATER CONTENT, W. S C ATTERBERG LIMIT WP WL
	Dip						%	%	ാഗ ഹാ	GRAPHIC SCALE
2701	- 5°				NQ	58	100			-
					NQ	59	-92	-		
288			278-280: Conglomerate bods		NQ	60	80	_	- - -	
ILLI			285-297. Bud of soft soudstony		NQ	61	100	-		
290		n	205 297. Ded of Soft Sam Stone		NQ	62	100	-		
1111					NQ	63	78	-		••••••••••••••••••••••••••••••••••••••
300	- 5 -				NQ	64	100	-	-	
- L L L					NQ	65	93	-	-	
101 101 11			310-312: Bed of grey sandstone		NQ	66	100	-		
ILL		 			NQ	67	100	-		
			the of Borenole 2 318 It.							
E	JM				, 		-			UNDRAINED SHEAF STRENG

(1)

t

DEPTH,

0

10 ----

20-

40

50 _

60**1**111

70 _

80

1.1

APPE NOIX

REPORT NO .:

100

%

in

27

27

135

52

0

100 MAX

10

16

16

22

42

7.5 33

100

in

31

19

26

14

28

28

ю

6

15

0

0

20

10

ĺ0

HOGGAN **OFFICE BOREHOLE RECORD** BOREHOLE No: CLIENT Peter Kiewit Sons Company Ltd. DATE OF BORING: 28-29 August /83 SITE AND/OR PROJECT Quarry Investigation, Yukon DATE OF WL READING SOIL PROFILE SAMPLES LABORATORY AND FIELD GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION TEST PESULTS STRATIGRAPHY ELEVATION DEPTH AND WATER LEVEL 5 A LIN SITU FIELD VANELS CONDITION RECOVERY 4 NUMBER D LABORATORY VANE. C., TYPE SOIL DESCRIPTION ۵ O WATER CONTENT, W. W σ œ ATTERBERG LIMIT wpwL GRAPHIC SCALE % % Ground Level ഗഗ≻റ 100 Overburden of silt sand and 4-8 8-16 >16 CORE 2-4 gravel conglomerate pieces in Sandstone & conglomerate and um hard to hard with some fractured zones, durt pubbles in too 10 feet, way hand Dip 18-19: Thin fractures sandstene Less 2" NQ 1 0 0 2 NO 100 67 36 21-22: Vertical fracture in solid medium grained sandstone (15°-20°) NO 3 93 -84 30]12° NQ 4 93 81 13 ±14° 33-34: Rusty grey soft sandstone folded, dip 80°, 5 NQ 100 81 14 35 coal 38-43: Conglomerate NQ 6 10087 11 (**b**1 _171 7 95 89 NO 28 71 48-50: Vertical fracture in solid fine grained sandstone (2") NO 8 93 -89 -NQ 9 98 88 Fractured coarse grained NO 10 100 53 18 25 .oaI 62-63: Thin seams of coal 25 NQ 11 100 40 Ô 66-67: Shale seam 133 68-69: Brown and soft gravel in conglomerate NO 12 100 23 7 8 76-77: Soft sandstone with NQ 13 100 58 8 43 seam of coal NQ 14 100 33 43 33 NO 15 100 46 15 .14

> LINERAINED SHELS STRENGTH <u>e</u>15

15

31

0

与广告中 中台 召之

16

100110

APPENDIX

 \sim

100

REPORT NO.

LABORATORY AND FIELD

FEST RESULTS

C. IN SITU FIELD VANE IS

ATTERBERG LIMIT

GRAPHIC SCALE

LABORATORY VANE, C.,

WATER CONTENT, W. 9-

BOREHOLE No:

Peter Kiewit Sons Company Ltd. DATE OF BORING 28-29 August, 83 CLIENT: SITE AND/OR PROJECT: Quarry Investigation, Yukon DATE OF WE READING. SAMPLES SOIL PROFILE GRAIN SIZE HYDROMETER UNIT WEIGHT JONSOLIDATION <u>S</u> STRATIGRAPHY ELEVATION DEPTH AND WATER LEVEL 5 : 110N D, >4 CVER! NUMBER DEPTH TYPE SOIL DESCRIPTION 2 CONDI σ REC. œ Continuation of Borehole #2 WPWI % %່ວກ≻ບ NQ 10010 -16 NO 17 1001 62 96-101: Very soft, fine grained sandstone, folded, dip 80°-90°, coal NQ|18||100||45|100 100: Mudstone seam (3") 103.7-104: Thin _____ sandstone core NO 13 100 31 104-107: Vertical fracture ł in medium grained soft -12 sandstone $(0-5^{\circ})$ NQ 20 100| 89 110 112.5-113.5:Vertical fracture 113.5-114.2:Thin 2"-3"sandstone core NQ 21 100 -36 115-119: Fractured conglomerate and sandstone, 1"-4" , d , j cores, coal séams 22 NQ 98 22 1.20-123-121: Vertical fracture in medium grained NO 23 100 -88 conglomérate 124-125: Very fractured soft shale 130 NQ 24 100 100 25 NQ 100|100End of Borehole 3 138 ft. 140_ Drill rods froze in hole at 138 ft. and lost

150

 16θ

170 - 170

DATUM:

•

		Bulk Relative Dessity	Bulk Relative Specific	Absorption	Uniaxial F Compressi Diametra	oint Load ive Tests	Unconfine Compress	d ive Freeze	Los Angeles Abrasion	Sulphate
<u>(ft)</u>	Description	(Ib/ft3)	Gravity	<u>(%)</u>	(psi)	(psi)	_(psi)_	Thaw	(% wear)	(% loss)
24' 25'-25'4"	Solid conglomerate Solid conglomerate & sandstone	167.1 165.8	2.681 2.660	0.44			14800			
26'6"-27' 27'5"	sandstone, salt & pepper Solid grey fine to med. grained	166.5	2.668		17400	13600	13700*			
28'5"-28'9" 29'3"-30'	sandstone Solid conglomerate & sandstone	163.8 157.8	2.627 2.53		17400	13800	12400	F/T		
30'-30'4" 30'8"	Fine to medium grey sandstone & conglomerate Soft medium grained sandstone	148.5	2.382		6400		4900			
31'1"-31'7" 35'	Soft medium grained sandstone salt & pepper Medium soft, medium grained	149.2	2.391				6600*			
35'5"-35'9"	sandstone Fine grained grey solid	156.1	2.504	1.87			13500			
37'0" 37'5"-37'11"	Grey sandstone & conglomerate	156.0	2.499				5100*			
38'8"-39'2"	Grey sandstone a congromerate	156.1	2.503				2.00	F/T		
40'10"-41'7" 41'10"	Solid conglomerate, coarser	151.5	2.42/		3600	2800		C/ 1		
42'-42'6"	grained cemented limestone Solid conglomerate, coarser grained cemented limestone	152.3	2.440		3300	2800				
43' 44'-44'4"	Medium soft conglomerate Fine grained grey solid	152.5	2.446	2.19			8600			
45'-45'6"	Sandstone, salt & pepper	152.5	2.446		9200	6600	6200*			
4 <i>5</i> '9" 52'-52'4"	Conglomerate & sandstone	148.6	2.383		7200	0000	7500			
52'4"- 52'8" 53'9"- 54'3"	Congiomerate & sandstone Sandstone & conglomerate,	148.1	2.375				7300			
53'10"-54'7"	Sandstone & conglomerate,	150.5	2.412				4000-			
54'9"	Sandstone & conglomerate	148.3	2.3/9		(200	1700				
56'-56'4"	Conglomerate & sandstone	147.8	2.371		6500	5700	5500		-	
201811 701211	medium sort sandstone, me- medium grained	148.1	2.375	3.50						
701/11	medium to coarse grained	153.0	2.452			4000				
75'-75'6"	medium to coarse grained				2800					
75'7"	medium to coarse grained Sandstone & conglomerate,	152.6	2.443		3900		2900*			
8115"-8119"	medium to coarse grained	151.7 149.1	2.431 2.392				4400* 5100			
84'5"	Medium grained sandstone	155.9	2.501		5700		,			
94' 97'1"-97'5"	Sandstone & conglomerate Fine & medium grained	156.9	2.517	1.97						
97'8"	sandstone - grey Fine & medium grained	154.6	2.477							
99'6"-100'	Solid medium conditione	141.9	2.276				8000	F/T		
109'-109'6"	Fine grained sandstone	152.5	2.442				8600*			
109'9"	Fine grained sandstone (stratified	172.4	1.442		7600					
112' 119'-119'4''	Sandstone & coal Sandstone & solid conglomerate	163.1	2.615 2.497	0.60			8000			
119'10"-120'9"	Sandstone & conglomerate.	156.7	2.514							
120'6"	medium to coarse grained Sandstone & conglomerate,	162.0	2.596				5500*			
120'9"	medium to coarse grained Sandstone & conglomerate,				17100					
127'2"	medium to coarse grained Sandstone & conglomerate				7800					
127'3"-127'9"	Sandstone & conglomerate	155.4	2.491				4700* 9800			
128'9"-128'9"	Janostone & Conglomerate	137.2	2.200				1000	F/T		
135'-135'6"	Sandstone & conglomerate Sandstone	156.8	2.513		6900		6000*			
137'	Medium grained sandstone	152.6	2.447	2.80	0,00					
137'-137'4"	Sandstone & solid conglomerate	153.3	2.458				/100			

Note: • Oven dry sample.

•

HOGGAN	OFFIC
CLIENT: Peter Klewit Sons Company Lt	td.
SITE AND/OR PROJECT: Quarry Investigation	on, Yukon
	······

APPENDER

REPORT NO :

BOREHOLE No:

3

DATE OF BORING: 5-6. Sept/83

DATE OF WL READING 3 Sept /83

		.	SOIL PROFILE		S	SAMF	PLES			LA	BORAT	ORY AN	D FIEL	D
DEPTH. n	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	CONDITION	ГҮРЕ	NUMBER	RECOVERY	R 0 D , >4 in	GPAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION		TES IN SIT LABO WATE ATTER	FRESU TU FIELE RATOR ^N R CONT RBERG	LTS D VANE Y VANE FENT, W LIMIT	, S, , C _u /, %
			Ground Level				%	%	<u>ഗ</u> ∢ ഗര	1	GRAF	PHIC SC	ALE 9	6
	Dip		Talus of broken sandstone slabs with some fine's in lower part							<u>2-4</u> in	<u>4 - 8</u> in	<u>8 -16</u> in	<u>>16</u> 'n	MAX CORE
	11 - 17* - 16"		Sandstone Formation: Brown to grey medium hard, fine grained.		NQ	1	62 100	13		20	13	0	0	
20-		293 	17-18: Rusty brown sand		NO	2	100	0q 17		19	33		0	
111		ANT ROOM	$45^\circ - 60^\circ$ Fractures		NQ	-1	83	33		17		33	0	
		<u>x,r</u> 2017	23-24: Indicated satisfier with avalation on fracture face 26-28: Vertical fracture in solid sandstone 28-31: Risty brown sand, folkid, Dip 5)°	NQ	5	88	25		8	14	11	0	
		TF.	32-33: Machined sandstone 38-40: Practured sandstone		NQ	ь	97	78		13	9	15	54	37 28
2011		<u></u>	17-49: Thus 2" sandstone (NØ	7	100	58		23	8	20	40	25 24
	.23		58-59: Thin 2" sandstone cores		NQ		97	86		2	26	14	46	20 31
70			62-64: This J-J" conditions were 67.5: Conglomerate best (0.5") 68-60: Thin 1-3" conditions curve		ŶÇ	9	98	74		5	10	0	L 61	41 33
	<u>10</u>		71-73: Thin 1-3" semistane cares		4Q]	0.	9 8	66		4	0	0	66	34 29
	15 12 ⁵		32.5: Conglomerate bed (0.5") 38.5: Conglomerate bed 39-90: Thin sandstone seams (very soft		√Q 1	.1	98	90		2	6	8	76	26 24 16
DATU	м.		VERIFIED BY:			·				UNDRAINED SHEAR STRENGTH kPa				

	H	н	OGGAN	OFI	FIC	ЕBC	DRE	HOL	ERI	ECORD		APPENI BOREH REPOR	HOLE N	iO	3
CLIE! SITE	NT. I AND/OF	Pete R PRC	r Kiewit Sons Company Lid. DJECT: Quarry Investigatio	• n, Yuk	on				DAT DAT	E OF BOF	LI RING REA		Sept/8 .3 Sep	3_ t/83	-
		· · · · · · · · · · · · · · · · · · ·	SOIL PROFILE				SAMF	PLES				LABORA	TORY A	ND FIE	LD
DEPTH. 11	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION 3) #2	CONDITION	34X1	NUMBER	RECOVERY	RQD, >4 In	GRAIN SIZE HYDHOMETER UNIT WEIGHT CONSOLIDATION	w	TES A IN SI C LABC WATI ATTE	ST RESU TU FILL DRATOR ER CON RBERG	ILTS D VAN IY VAN TENT LIMIT	E.S. E.C. W, %
<u> = 00</u>					╞╼╴			%	%	ია აი	12	GRA	PHIC S	CALE (180
e Lipituliu	-18°		94-96: Thin sandstone s"-	2" " 111111		MQ	12	100	70		6	0	0		31 70 21 16
Turth	<u>.</u> 		102-105: Thin samptare ½"-4" a conglemente bat 1 at 103" 107-109: Vertical fracture 109-110: Sear: 0-1"	with ""		NQ	13	100	53		9	11	12	30	36
miliu			113-115: "Shin verifistore "	303776 -		NQ	14	99	54		7	5	0	49	36 16
Furthull	16		120-122: Rusty yellow brow sand			NQ	15	99	78		8	o	o		16 78 26 18
<u>ununun</u>			174-137: Busty brown sand, sundstone on top bottom	, thiann		NQ	10	98	63		6	12	22	29	36 17
TILLL			Und of Borchole 3 142 ft.								<u>2-4</u> in	<u>4-8</u>	8-16 in	>16 in	MAX CORE in
ווווווו			Note: -32° plus 21° long c -12° plus 36″ long c	iores ares ares ares											
Turluutuu	anna an Anna Anna Anna Anna Anna Anna A							,							
	M:	L	VERIF	TED BY.							UN	PRAINED	SHEAR kPa	STRE	VGTH

· _

CLIENT: PETER KIEWI PROJECT: YUKON QUAR

-

.

٠

.

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

BOREHOLE 3 1 of 2

		Bulk	Bulk		Uniaxial Point	Load	Unconfine	d	Los	6 1 1 3
		Relative	Relative		Compressive T	ests	Compressi	ve Eseres	Angeles	Sulphate
Depth		Density	Specific	Absorption	Diametral Axi	1a) -:``	Strength	Thaw	Abrasion (% wood)	Soundess (R Loca)
<u>(ft)</u>	Description	<u>(15/11</u> 3)	Gravity	(96)	<u>(psi)</u> (ps	51)		Indw	(% wear)	(76 1055)
	Eine emined colid conditions	167.4	2 604	2 76						
15	Fine grained solid sandstone	102.4	1.004	2.70	16000					
16	Fine grained sandstone	150 1	2 406		10000		10000*			
10// -1/	Fille gramed sandstone	149.0	2 387					F/T		
17.420.1	Eine grained candstone tolid	151 2	2 4 7 5	2 92						
20	rine gramed sandstone, sond	149 5	2 396	2.72				F/T		
222 2 - 22 11	Fine grained light brown solid	14717	21370					-		
24-244	sandstone	151.5	7.430				11400			
24191-25131	Fine grained sandstone (with	12112								
24 / - 2/ /	closed ferric joint)	151.5	2.427				10900*			
25'7"	Fine grained sandstone				19000					
30'	soft weakly cemented sandstone									
	with haematite				0					
33'-33'10"		153.6	2.462					F/T		
35'	Fine grained grey sandstone				16500					
35'4"-35'10"	Fine grained grey sandstone	151.7	2.431		18800		16400#			
37'-37'4"	Fine grained sandstone	149.8	2.403				10500			
41'	Fine grained sandstone with									
	conglomerate	151.2	2.426	2.56						
42.5'	Fine grained sandstone, solid	151.9	2.436	2.44						
43'-43'4"		151.1	2.423				12500	-		
43'0"-43'10"		151.6	2.430					F/1		
47'-54'							12800+			
47'3"	Fine grained grey brown									
	sandstone				12800					
47'6"-48'0"	Fine grained grey brown		0.1.67				17500+			
	sandstone	155.5	2.43/				17500-			
48'	Rusty bonded grey brown line									
	grained sandstone (jointed				#700					
	rusty seams)				19000					
23'6"	Fine grained grey sandstone	150 /	2 411		18000		17300#			
5511"54"5"	Fine grained grey sandstone	150.9	2.411				17,500	F/T		
54'8"-33'3"	Crow fine grained candstone	150.5	2.410					• • •		
<u>,</u> ,	tolid	150.5	2 4 1 4	2 39						
521 52161	Eine grained sandstone	151.2	2 4 2 5	2			13300			
61	tine granied salidatorie	150.4	2.413	2.69						
61-61-6		153.5	2.459	2107	•			F/T		
65111"-6615"	Grev brown sandstone		20027							
0511-005	with rusty bending	150.7	2.416		14600		16400*			
66'6"	Grev brown sandstone									
	with rusty bending				14500					
69'-69'4"	Grev fine grained sandstone	150.2	2.410				10700			
71'	Fine grained sandstone, solid	150.2	2.408	2.69						
75'	Grey fine grained sandstone				17800					
75'1"-75'7"	Grey fine grained sandstone	151.8	2.433		17500		14400*			
77'-77'4"	Grey fine grained sandstone	151.7	2.433				12200			
78'6"	Rusty bended sandstone,									
	horizontally bedded (cleares									
	along rusty planes)				5300					
79'	Friable rusty brown sandstone,			•						
	rusty				0					
80'	Fine grained sandstone, solid	149.3	2.394	2.71						
82'-82'6"	Grey fine grained sandstone	150.4	2.410		21300		17100*			
82'-86'							10400			
82'8"		152.9	2.450					F/T		
83'-83'4"	Grey fine grained sandstone	151.5	2.430				13300			
86'-86'6"	Grey fine grained sandstone	151.6	2.429		19100		13100+			
86'8"					19200					
91'	Grey fine grained, solid	149.0	2.390	2.90						

.

•

.

Note: • Oven dry sample.

CLIENT: PETER KIEWIT SONS CO. LTD. PROJECT: YUKON QUARRY

Bulk Bulk Uniaxial Point Load Unconfined Los Relative Relative **Compressive Tests** Compressive Angeles Sulphate Depth Density Specific Absorption Diameter Axial Strength Freeze Abrasion Soundess <u>(ft)</u> Description <u>(Ib/ft</u>3) Gravity (%) (psi) (psi) (psi) Thaw (% wear) (% loss) 92'-93'4" 150.8 2.416 F/T Fine grained sandstone 103' & conglomerate 151.5 2.430 2.96 7400 104'3" Grey brown fine grained 16300 sandstone Grey brown fine grained 104'6"-105 13500 sandstone 151.8 2.432 14900+ Grey brown fine grained 109'9" sandstone 152.3 2.441 16200* 110'8"-111'10" 151.0 F/T 2.420 113'10" Grey brown bended sandstone; some ferric bands which are joint planes, badly jointed 11900 118 Grey brown fined grained 15300 sandstone Grey brown fine grained 118'3"-118'9" 11800 13800 sandstone 14000* 121' Rusty ochre brown sand (loosely cemented) 0 128'-128'6" Grey brown fine grained 151.4 2.429 15000 15100* sandstone 128'-134' 12400* 129' Fine grained sandstone, solid 152.1 2.440 2.54 129'7"-131'1" 153.8 2.464 F/T 133'3" Grey brown fine grained sandstone 15300 133'6"-134' Grey brown fine grained 152.2 2.439 13000 15100* sandstone 135'8" Bended rusty sandstone; loosely cemented with ferric bands to 12mm, fractured, highly ferric 1300 141'6" Grey brown sandstone with ferric bands small pebbles -- coarse black sand 5200 - uniform material 10000 Crushed sample 0'-40' Sandstone (crushed) 81.4 2.389 3.27 33.4 (see sieve analyses (loose S.A.#2949(a) - 2" crushed core (in lab.), 7% sand density of crushed S.A.#2949(b) - crushed samples) from 33" length of core at 33' depth, 6.1% sand) 40'-90' Sandstone (crushed) 77.5 2.381 3.58 37.6 (see sieve analysis loose S.A.#2950 - 2" crushed density core (in lab.), 7.5% sand) of crushed samples) 90'-140' Sandstone (crushed) 78.9 2.409 3.33 35.4 (see sieve analysis S.A.#2951 - 2" crushed core (loose (bulk Density relative (in lab.), 7.9% sand of density) crushed samples) 0'-140' Poor quality core (miscellaneous crushed) 80.0 2.411 3.71 36.8 (see sieve analysis) (loose density S.A.#2955 - 2" crushed core (in lab.), 3.7% of crushed Sample)

Note: • Oven dry sample.

2 of 2

BOREHOLE 3

	H	н	OGGAN	OFF	ICE	BO	RE	HOLE	RE	CORD	E	PPEND SOREH REPORT	OLE N	0:	4)
CLIE SITE	NT. PE	et er PRC	Kiewit Sons Company Ltd DJECT Quarry Investigatio	• n, Yukor					DATI DATI	E OF BOF	NG: READI	7- <u>8</u> S ng: 1	ept, 3 Sep	1983 st, 1	3 1981	3
			SOIL PROFILE			S	AMP	LES		~ 2	L	ABORAT		ND FI	ELD	
ДЕРТН, F T	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	4)	NOITIONOD	TYPE	NUMBER	RECOVERY	RQD .>4 In	GRAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIC	ے ث wp1	IN SH LABC WATE ML	THESU TU FIEL PRATOR TR CON RBERG	D VAN IY VAN TENT LIMIT	NE C	•
()	Dup		Ground Level					%	%	0020		GRA		CALE	% 10.	<u> </u>
	▽		Overburden with slabs of thin sandstone	Tulu		NQ	1	7	0		0	0	0-10 in	0	C C	•
10						NO	2	25	0		10	0	0	0		
50			Sandstone: Light brown to gave grained becoming m grained at depth -24° plus 24" long - 9, plus 26" long	y fine ine fine cores		NQ	3	95	64		23	6	0	0		
30	20* 21		19-21: Sand sham 23-26: Fractures at 55	ε 60°		NQ	4	71	64		4	o	27	. 3	7	
40			35-36: 75° Dipping fract 39: 65° Fracture	ure		NQ	5	- 92	75	1	2	EDEN AL ANTINA REAL PARTY AND A R	14		58	
50	r le	SIFI	44: 55 Fractura 45: Sand bed -50-51: 80 Dipping trust			- - - (4)	٤,	i • - 77	; 75		5	6	100 A 100 5	7 115		
60	15	No. 1 and a set for a large set of a	59-ma: 70° happing the			NC	7	: : : 97	81		3	15	11	45	56	
78		2152	69: Thin sand bed		* * * * * * * * * *	NQ	8	97	92		0		20	1	68	
20	15	0000	72-74: Rusty brown sand contact at 23 77: Conglomerate bed			NQ	9	100) 96)	0	4	11		81	
	14°		83: 10° Dipping fracture 85-86: 73° Dipping frac 87-89: Conglomerate sear	e ture ns		NQ	10	100) 88	3	0		0	0	77	,

.

	H		но	G	G	A	N
--	---	--	----	---	---	---	---

APPEN(). K I

REPORT NO

BOREHOLE No.

4

CLIENT: Peter Klewit Sons Company Ltd.

DATE OF BORING 7-8 Sept, 1983

SITE AND/OR PROJECT: QUARTY Investigation, Yukon

DATE OF WE READING 10 Sept, 1983

			SOIL PROFILE		S	AMP	LES		z	L.A	BORAT	ORY AND) FIFLD)
DEPTH, F.T. 61 EVATION	DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION (4)	CONDITION	ТҮрЕ	NUMBER	RECOVERY	R Q D . > 4 In	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	2 23 29 20 20 20 20 20 20 20 20 20 20 20 20 20	TEST IN SIT LABOI WATE ATTER L	RESUL U FIFLD RATORY R CONTE REPORT	TS VANE : VANE : ENT : W MIT	8- C-g-
	ip 						%	°,0	0 / 20	1	00 1) 10	ю
turtur		X 7	iti-Mi: Phantumki sandstone T		NQ NQ	10	99	88 64		0 10	0	0	6	7 18 0 17 37
	7	>	104: Sated poetket, 6" 106-117: Pusty brown soft Satestrate and satel		l Ng		81	ւ		6		11	0	
, , , , , , , , , , , , , , , , , , ,	51	+40.0	121. " bonaloop mata tava a		NO NO		100	90		6	22	33	36	24 19
minufi		• • • • •	1 возди области смикар втор Борк. Призоди области смикар втор Борк.		×.	1:	Эг, 1	71		8	0	22	44	31 28
IIIII			14-156: Rusty brown cline and soft sandstone fracture		NÇ	i. ()	, tî	-,9		17		9	34	21 20
111		*	142-143: SOLT Bandstone proken = 146" Conclomenate bed = =											18
пÎш			150; "Conglomerate bed =		. NQ	10	100	89		59	32	26	31	20
u Ťuu Lu I	.9-		155: "" Conglomerate bod		NQ	17	100	90		10	28	27	35	42
		57.0	Formation of soft gray coarse sanston and conglements with some layers of shale and coal. 164-166: Conglemente bed with coal sam (1") 166-171: Shale with some layers of sanstone	a de la constante de la constan	NQ NQ	18	100 100			-	-	-	-	MAX CORE
natur	аналык олонай анто И 1 -		ZERIFIED BY						и ^н ини	UNE	RACIEL	SHEAP	SIEL 1	

		Н	OGGAN	OFI	FICE E	OR	EHOL	.E R	ECORD	a B	PP:->0+ OFE++C EPORT	Y DLE NA NO	4
CDE) SITE	nt Pe	ete: PRC	r Kiewit Sons Company Ltd Meor Quarry Investigatio	• n, Yuko	n			DA DA	te of Bor Te of Wl F	IN-5 READI	7-8 S NG 1	ept, 3 Ser	1983 ht, 198
DE9719	FLEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL PROFILE SOIL DESCRIPTION	4 #4	CCNDITION TVPL	SAN	APLES (LEVO)EL	R Q D . > 4 in	SHAM SIZE SCRONETER UNITWENETER CONSOLONATION		BORATI IEGT IN SCT (ABO) WATE MATER	OPY AN PESU USE USE RATOPY RUONT RESPON	ID FIELD I VANE IS Y VANE IS Y VANE O V VANE O I VI V V LIMIT
1801	Dip		171-212: Coarse grey sal pepper sandston to very soft wi shale zones d	t & = e soft th	N		9 10. 0 10.	*** }	ຸທິທ ×ິ 	-	-	<u>-</u>	- -
	! <i>î</i>		187 - 188 190 - 1915 192 - 197 1" rud seams at and 212	206	Ň	2 2	i 10')		-	-	-	_
					N	2 2	. 98	~		-	-	-	-
			212-222: Shale with some of sandstone, t bedded	layers hinly	N) 2.	3 100)		-	-	-	-
			End of Borenole # 222 f	t									
						All Manual at		-					
میں مربقہ میں مربقہ مربقہ مربقہ مربقہ								1					

•

		Bulk Relative	Bulk Relative		Uniaxial F	Point Load	Unconfine	đ	Los	Sulphate
Depth		Density	Specific	Absorption	Diametra	l Axial	Strength	Freeze	Abrasion	Soundess
<u>(ft)</u>	Description	<u>(16/11</u> 3)	Gravity	(%)	(psi)	(psi)	(psi)	Thaw	<u>(% wear)</u>	(% loss)
0- 15'	Fine grained sandstone									
20'-20'6"	solid, reddish Grev fine grained sandstone	149.8	2.403	3.16						
20181	(some coarse particles)	146.8	2.352		10600		8900*			
200	(some coarse particles				10300					
21.	(medium hard)	147.3	2.362	3.53						
21'-21'4"	Fine grained brown solid sandstone	148.5	2.382				10000	-		
22'4"-23'2" 25'-32'	Sandstone	158.0	2.535				9800	F/T		
25'4"-25'10"	Pale brown fine grained									
26'0"	sandstone Pale brown fine grained	148.3	2.3/7		8100		11/00+			
32'2"	sandstone Brown grey fine grained				6600					
32'5"-32'11"	sandstone Brown grey fine grained				11800					
331 331/1	sandstone Fine grained sandstone	149.1	2.389		11900		12800* 7400			
43'	Grey sandstone, fine grained	140.7	2.500	~ ~ ~			/400			
43'5"-43'9"	some conglomerate Grey brown solid sandstone	150.5	2.414 2.419	2.83			12000			
46'4"	Grey brown fine grained sandstone, some ferric bands				8500					
46'6"-47'	Grey brown fine grained	145 2	2 376				11500+			
4.91(1) 50100	sandstone, some terrie bands	147.2	2.520				11500*	F/ T		
48'6"-50'9" 54'6"-55'	Grey brown fine grained	131.2	2.424					F/1		
55'-65'	sandstone Grey brown fine grained	149.6	2.398		15800		14600*			
55'3"	sandstone Grey brown fine grained						10600*			
56'- 56'4"	sandstone Fine grained sandstone	148 6	2 384		15400		12200			
60'	Grey fine grained sandstone	148.6	2.384	3.12	•		12200		-	
6767.6.	sandstone	151.5	2.427				16200*			
65'9"	Brown grey fine grained sandstone				15200					
67'-67'4"	Brown grey fined grained sandstone	149.1	2,391				9100			
67'11"-68'5"	Brown grey fine grained	149.7	2 399		10100		15500			
68'8''	Brown grey fine grained	14747	2.377		14100		17700			-
68'10"-69'8"	sandstone Brown grey fine grained				13300					
74'7"-75'1"	sandstone Brown grey fine grained	151.4	2.428					F/T		
751611	sandstone Brown gray fine grained	150.8	2.417		15600		17100*			
771 771/0	sandstone				13500		10000			
//-//4*	sandstone	150.1	2.408				10900			
82'	Brown grey sandstone (some rusty coarse grains cemented									
82'3"-82'9"	in sandstone matrix) Brown grey sandstone	150.2	2.407		15900 13500		13300*			
82'6"-90'	0,						11300			
90'0"	Grey brown fine grained	147 0	2 367	2 71	1 \$ 300					
90' 3"-90'9 "	Grey brown fined grained	147.0	2.337	3.71	15300					
98'-98'6"	sandstone Fine grained sandstone(closed	150.0	2.404		13100		14900*			
100'9"-101'3"	joint at top of specimen) Fine grained sandstone (with	149.6	2.399				6300			
102'-102'4"	closed joint) Brown grey sandstone	151.0	2.421				2300 8000			
102'6"	Brown grey sandstone, jointed						2000			
1081	ferric bands)				10700					
100	(between sand layers)				7800					
113'9"-114'2" 118'	Sandstone Brown grey sandstone (immediate	153.21 ly	2.457				9200			
	below fractured sandstone with rusty joint planes & above thin									
	layer of conglomerate)				12300					

CLIENT:	PETE
PROJECT:	YUK

•

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

		Bulk	Bulk		Uniaxial Po	oint Load	Unconfine	d	Los	C. 1-1-4-
Denth		Relative	Relative	Absorption	Diametral	Avial	Strength	Freeze	Angeles	Soundess
Depth (ft)	Description	(Ib/ft3)	Gravity	(%)	(psi)	(psi)	(psi)	Thaw	(% wear)	(% loss)
<u>uu</u>	Description	<u>(10/11</u>)/	<u>ururry</u>			(101)			<u>(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u></u>
122'	Sandstone	148.9	2.388	3.21						
126'11"-127'5"	Sandstone	149.5	2.398				9300			
129'-129'4"	Sandstone	147.4	2.365				7600			
135'6"	Brown weakly cemented									
	sandstone				5600					
137'4"-137'11"	Fine grained sandstone	146.5	2.350				6600			
139'-139'4"	Fine grained sandstone	147.3	2.362				8000			
146'-146'6"	Grey fine grained sandstone	148.8	2.386				11400			
146'9"	Grey fine grained sandstone				11800	10600				
147'6"	Grey fine grained sandstone				9100					
155'	Solid sandstone with									
	conglomerate	152.0	2.438	3.14						
1 57'-1 57'6"	Fine grained sandstone,									
	brown grey	149.5	2.398				10200			
1 57'6"	Brown grey fine grained				10000					
	sandstone				12800					
1 57'8"	Brown grey fine grained				15/00					
1.6011.00	sandstone				13600	12800				
109.10	Grey brown sandstone	152.0	2 1.20		14600	12800	13700			
160'-160'6"	Grey brown sandstone	152.0	2.438			12800	15700			
1607	Brown grey sandstone fine					12800				
1077	matrix with coarse medium grains				15400	11400				
163'6"-164'	Brown grey sandstone, medium	•			17400	11400				
1020 101	grained (with closed joint)	155.3	2.491				9300			
166'	Grey shale (broken	136.8	2.194	8.15						
174'-174'6"	Medium grained sandstone	152.2	2.442				6200			
174'7"	Medium grained sandstone				8100					
178'	Medium grained sandstone									
	soft/weak	145.1	2.328	4.28						
200'	Medium grained sandstone									
	medium soft with coal	147.5	2.366	3.61						
200'3"-200'7"	Medium grained sandstone	121.6	2.431		7000		9000			
200'9"	Medium grained sandstone				7000					
207'	Medium to line grained	1	2 2/0	4.08	•					
20014	sandstone with coal	14/.1	2.360	4.78	7/00	6100				
207'4"	Medium grained sandstone	11.2 7	2 252		/600	5100	5000			
210/2"-210'8"	meaium grained sandstone	140./	2.375				2000			

Crushed Samples

0'-80'	Sandstone crushed S.A.#2956 - 7% sieve #4	78.8 2.346 (loose density of crushed sample)	3.90	40.5
80'-113'	Sandstone crushed S.A.#2960 - 6.9% seive #4	80.6 2.364 (loose density of crushed sample)	3.99	42.1
163'-211'	Soft sandstone (salt & pepper) S.A.#2960 - 6.9% sieve #4	80.2 2.288 (loose density of crushed sample)	5.55	67.3

1

1

1 1 1

1

1

1 1

1 1

.

ł

ยดกมลิ ส

Ler A PRO ALIGRAPHY	Kiewit Sons Company Ltd. DJECT: Quarry Investigation SOIL PROFILE SOIL DESCRIPTION Ground Level Overburden of soft sands fragment with some sand and voids Sandstone: Grey sandston Fractured int less than 3" 17. Thin bed of sand	5 stone	CONDITION	S IYPE	NUMBER	RECOVERY		GRAIN SIZE VDROMETER UNIT WEIGHT NNSOLIDATION	RING: S READII LA	ABORAT IN SIT LABO WATE	Sept, 3 Sept 0RY ANI 1 RESUL U FIELD RATORY R CONTI	1983 , 19 D FIEL TS VANE VANE	83 D . C _u
STRATIGRAPHY	SOIL PROFILE SOIL DESCRIPTION Ground Level Overburden of soft sands fragment with some sand and voids Sandstone: Grey sandston Fractured int less than 3"	5) stone	CONDITION	S IYPE	NUMBER	RECOVERY		GRAIN SIZE IVDROMETER JNIT WEIGHT		ABORATI TEST IN SIT LABO	ORY ANI RESUL U FIELD RATORY R CONTI	D FIEL TS VANE VANE	.D .S., . C.
STRATIGRAPHY	SOIL DESCRIPTION Ground Level Overburden of soft sands fragment with some sand and voids Sandstone: Grey sandston Fractured int less than 3"	5) stone	CONDITION	TYPE	NUMBER	RECOVERY	3 Q D , > 4 in	GRAIN SIZE IYDROMETER JNIT WEIGHT DNSOLIDATION		TEST IN SIT LABO	T RESUL U FIELD RATORY R CONTI	TS VANE VANE	. S., . Cu
	Ground Level Overburden of soft sands fragment with some sand and voids Sandstone: Grey sandston Fractured in less than 3"	stone					u.	тэо	wp A	ATTER	RBERG L	MiT	7. 96
	Overburden of soft sands fragment with some sand and voids Sandstone: Grey sandstor Fractured in less than 3"	stone				%	³ /0	ഗ≺ ഗ ്	1	GRAF 00 10	20 10	ALE % U 1	00
	Sandstone: Grey sandston Fractured in less than 3"	no 🚬 II		NK	1	70			<u>2-4</u> in	4-8 10	8-16 in	> 16 'n	
	The second secon	to piece - 4"	23	NO	1 2	100	27		13	27	0)	
	min yea er bara			NQ	3	100	71		29	7			
000. (41) 	Shale, nucleone, siltetone & sandstone, thinly bodied with seams easily split. 24-28: Soft cunglemente area 29-58: Siltsone thinly be	soft black a edded		NQ	-	83	12		0	12			
	42: Mud seam 4"			NQ	с) (92			-		-	-	
				NQ	6	100	`		-	-		-	
	59-67: Mudstone very bro	ken		NQ	7	100			-	-	-	-	
3	67-75: Soft sandstone brachinly bedded	oken		NQ	8	100			-	-		-	
r	Sandstone: Madium hard & brow to fine grained wi grey interbads	n, medium th some -		NQ	9	98	90		9	12	9	68	23 58
111	-43 plus 24" long -26% plus 36" long 84-86: Brown sandstone so bedded with coal	cares = cares = oft =		NQ	10	98	91		3	24	20	47	36 21
	E SS	59-67: Mudstone very bro 67-75: Soft sandstone bro thinly bedded Sanistone: Malium hard & brow to fine grained wi grey interbals -43° plus 24" long -26° plus 36" long 84-86: Brown sandstone so bedded with coal	59-67: Mudstone very broken 67-75: Soft sandstone broken thinly bedded Sanistone: Madium hard & brown, madium to fire grained with some grey interbads -43° plus 24" long cores -26° plus 36" long cores 84-86: Brown sandstone soft bedded with coal	59-67: Mudstone very broken 67-75: Soft sandstone broken thinly bedded Sanistone: Mailim hard & brown, mailing to fine graind with some grey interback -43° plus 24" long cores -26° plus 36" long cores 84-86: Brown sandstone soft bedded with coal	59-67: Mudstone very broken 67-75: Soft sandstone broken thinly bedded Sankstone: Madium hard & brown, medium to fire grained with some grey interback -43° plus 24" long cores -26° plus 36" long cores 84-86: Brown sandstone soft bedded with coal	59-67: Mudstone very broken 67-75: Soft sandstone broken thinly bedded Sandstone: Mailim hard & brown, madium to fine grained with some grey interbads -43: plus 24" long cores -43: plus 24" long cores -43: plus 36" long cores -44: plus 36" long cores -44: plus 36" long cores -45: plus 36" lon	Sanistone: Madium hard & brown, medium to fine grained with some grey interbads NQ 6 100 Sanistone: Madium hard & brown, medium to fine grained with some grey interbads NQ 9 98 43- plus 36" long cores -43- plus 36" long cores NQ 10 84-86: Brown sandstone soft bedded with coal NQ 10 98	Sanistone: Maxim hard & brown medium Sanistone: Mark mark	Sandstone: Malian harl & brown medium to fire grained with some grey interbals NQ 6 100 Sandstone: Malian harl & brown medium to fire grained with some grey interbals NQ 9 98 90 -43° plus 24" long cores -43° plus 24" long cores NQ 10 98 91 34-86: Brown sandstone soft bedded with coal NQ 10 98 91	59-67: Mudstone very broken NQ 6 100 - 59-67: Mudstone very broken NQ 7 100 - 67-75: Soft sandstone broken NQ 8 100 - Sanistone: Mailim hard & brown medium to fine grained with some grey interbols NQ 9 98 90 - Sanistone: Mailim hard & brown medium to fine grained with some grey interbols NQ 9 98 90 - Sanistone: Mailim hard & brown medium to fine grained with some grey interbols -43° plus 24" long cores NQ 9 98 90 - Sanistone with coal NQ 10 98 91 3 -	Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 7 100 - - Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 9 98 90 9 12 Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 9 98 90 9 12 Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 9 98 90 9 12 Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 9 98 90 9 12 Sanistone: Mathian haril & brown mathant to fine grained with some grey interbals NQ 9 98 91 3 24 Model with coal NQ 10 98 91 3 24	Solution NO 6 100 - <td< td=""><td>Solution Solution Solution Solution Solut</td></td<>	Solution Solution Solut

CLIENT: Poter Kiewit Sons Company Ltd. DATE OF BORING 9-10 Sept. 1983 STE AND/OR PROJECT: QUATTY Investigation, Yukon DATE OF BORING 9-10 Sept. 1983 Soll PROFILE SAMPLES Soll profile Soll profile Soll profile	Ĥ		н	OGGAN	OFF	FICE	E BC	DREI	HOLE	RE	CORD		APPEND BOREH REPORT	IX OLE N	1 10: (5
SOIL PROFILE SAMPLES Laboratory AND FLE 1 200 100<	CLIENT SITE AN	Pet	er PRC	Kiewit Sons Company Ltd. NECT: Quarry Investigati	on, Yuk	on				DAT DAT	E OF BOF E OF WL	RING REAI	9–10 DING: 13	Sept. Sept	, 198 t, 198	3 33
$\frac{1}{400}$ $\frac{1}{100}$ $\frac{1}$				SOIL PROFILE			S	AMP	LES		a z		LABORA			D
Opp NQ NQ <t< th=""><th>DEPTH, FT</th><th>DEPTH AND WATER LEVEL</th><th>STRATIGRAPHY</th><th>SOIL DESCRIPTION</th><th>5</th><th>CONDITION</th><th>ТҮРЕ</th><th>NUMBER</th><th>RECOVERY</th><th>R Q D. > 4 in</th><th>GRAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIO</th><th>v,</th><th></th><th>TU FIEL DRATOF ER CON RBERG</th><th>LD VANE RY VANE NTENT. V</th><th>:. S :. C V. (</th></t<>	DEPTH, FT	DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	5	CONDITION	ТҮРЕ	NUMBER	RECOVERY	R Q D. > 4 in	GRAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIO	v,		TU FIEL DRATOF ER CON RBERG	LD VANE RY VANE NTENT. V	:. S :. C V. (
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D	nip					10		%	%	0 <i>∽</i> ∿0		GRA	PHIC S	CALE%	00
110 108-109: Thinly bedded zone with coal NQ 12 98 80 13 9 71 110 112-115: Rusty brown soft sandstone 113-116: Vertically fractured NQ 13 100 89 9 0 0 89 120 113-116: Vertically fractured NQ 13 100 89 9 0 0 89 130 133-136: Sandstone very fractured and sand some NQ 14 99 90 0 6 6 6 140 140-143: Rusty brown sand NQ 15 95 34 8 6 10 18 160: 163: 168: Sandstone, black soft grey, salt and pepper thinly bedded NQ 16 100 93 7 46 45 0 176 NQ 18 100 93 7 46 45 0	100	اچ °		92-105: Sandstone thinly	bedded		NQ	11	100	87		13	24	17	47	
112-113: Racky prown sort 113-116: Vertically fractured 118: Conglomerate bed 120 130 130 130 130 130 130 131-136: Sandstone very fractured and sand scars 140 140-143: Rusty brown sand 140-143: Rusty brown sand 160 160 160: 163: 168: Sandstone, black soft grey, salt and pepper thinly bedded 176 160 160 160 160 160: 163: 168: Sandstone, black soft grey, salt and pepper thinly bedded 176 176	110			108-109: Thinly bedded z with coal	one		NQ	12	98	80		13	9	0	7	1
$130 \\ 130 \\ 140 \\ 150 \\ 160 \\ 100 $	120111			112-115: Rusty brown sor sandstone 113-116: Vertically frac 118: Conglomerate bed	tured		NQ	13	100	89		9	0	o	89	
140 140-143: Rusty brown sand NQ 15 95 34 8 6 10 18 150 10° 140-143: Rusty brown sand NQ 16 100 90 3 12 18 60 150 10° 163: Mud seam (6") NQ 163-168: Sandstone, black soft grey, salt and pepper thinly bedded NQ 18 100 93 7 46 45 0 170 100 91 0 5 20 7 46 45 0	13 <mark>01 - 1</mark>		72	133-136: Sandstone very	111111		NQ	14	99	90		0	6	0	84	
150 10° 160 160 163: Mud seam (6") 163: Sandstone, black soft grey, salt and pepper thinly bedded NQ 18 100 93 7 48 45 0 5 20 7 7	14 0 14 0			140-143: Rusty brown san	d III		NQ	15	95	34		8	6	10	18	
160 163: Mud seam (6") 163-168: Sandstone, black soft grey, salt and pepper thinly bedded NQ 17 100 91 0 7 30 60 7 48 45 0 NQ 18 100 93 7 48 45 0 NQ 19 100 98 0 5 20 73	15 01 1	L0°	•		, und und		NQ	16	100	90		3	12	18	60)
170 170 170 170 170 170 170 170	160			163: Mud seam (6")			NQ	17	100	91		0	7	30		}
H NO 19 100 98 0 5 20 73	17 0 111			grey, salt and thinly bedded	pepper		NQ	18	100	93		7	48	45	0	
	180						ŴQ	19	100	98		0	5	20	7	3

	Ĥ	Н	OGGAN	OF	FICE	E BC	REI	HOLE	RE	CORD	E	PPENI BOREH REPOR	DIX HOLE N IT NO.:	1 No:	(5
CLIE	NT. Pet	ter	Kiewit Sons Company Ltd.				•		DAT	E OF BOF	ING:	9-10	Sept	, 198	13
SITE	AND/OR	PRO	JECT: Quarry Investigatio	on, Yuko	n I				DATI	E OF WL	READI	NG:		pc, 1	.90
DEPTH. FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL PROFILE SOIL DESCRIPTION (Cont.inuat.ion_of_Borehold	5 #5	CONDITION	ТҮРЕ	NUMBER	RECOVERY	R 0 D, > 4 In	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	ند ان ان ان ان	IN SI LABI WAT	ST RESI	ULTS D VAN RY VAN V?ENT. G LIMIT	E. S E. C W.
180-	Dip							%	%	<u></u> 0∝ ≻0		GR/ 100	APHIC S	CALE 9	100
			184-186: Thinly bedded s	sandston	e	NQ NQ	19 20	100 100	98 62		O B	16	16	40	73
						NQ	21	100	87		8		0	9	1
200		115	201-206: Sandstone vert fractured	ically		NQ	22	100	79		0	7	0	7.2	
210						NΩ	23	99	96		4	16	13		67
220	- 16°		220: Conglomerate bed			NQ	24	100	82		8	9	0	۔ اب	73
230			230-233: Very soft rusty sandstone	y brown		NQ	25	99	61		2	0	8	5	3
			End of Borehole 3 233 ft												
-	L			· · · · · · · · · · · · · · · · · · ·				j			UND	RAINE	D SHEA	R STR	ENG

CLIENT: PROJECT:

•

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

•

Depth (<u>ft)</u>	Description	Bulk Relative Density <u>(lb/ft</u> 3)	Bulk Relative Specific Gravity	Absorption (%)	Uniaxial Pe Compressi Diametral (psi)	oint Load ve Tests Axial (psi)	Unconfine Compressi Strength (psi)	d ve Freeze <u>Thaw</u>	Los Angeles Abrasion (% wear)	Sulphate Soundess (% loss)
12'5"-13'5"	Fine grained grey solid									
	sandstone	149.5	2.398	3.00	14300	9300	11700			
21-21.3	sandstone	148.2	2.378				7700			
21'3"-21'7"				3.02						
22'-22'5"	Fine grained grey solid sandstone				10900	10700				
23'-23'5"	Fine-medium grained brown solid sandstone	150.9	2.42	3.06	15100	13300	11300			
34'	Fine grained grey soft				2800	3300				
34121-34161	Grev fine grained sandstone	156.8	2.518	4.73	2000	///	11100			
45'-46'	Identical, very soft sandstone	160.4	2.572	4.05	2500	3300				
69'-69'8"	Grey brown sandstone	147.9	2.372	4.20			10000			
70'	Grey sandstone, trace of conglomerate				9300	7600				
72'-72'8''	Brown sandstone	144.2	2.312	6.34						
73'	Brown-medium grained soft sandstone				5400	2900				
76'-76'8"	Brown sandstone	145.6	2.336	3.94			8600			
77'5" 86'-87'5"	Brown solid sandstone Brown soft sandstone, trace				12600	11400				
	of coal	138.5	2.222	6.02	6400	7200	5500			
99'-100'	Grey sandstone	144.7	2.321	4.66	9100	6800	6400			
100'4"-100'8"	Brown grey	146.8	2.354	4.52		-	6200			
105'9"-106'9"	Brown solid sandstone	140.5	2.234	3.37	8200	7500	6600			
117-120	fine grained	144.1	2.312	4.02	10700	9700	8000			
132-133	fine grained	151.6	2.431	3.03	14900	12900	12800			
146'-147'	Brown solid sandstone									
158-159	fine grained Fine grained grey solid	150.3	2.410	3.22	16300		6900			
1610 1651	sandstone	148.4	2.38	2.87	13200	11400	14200			
104-107	some stratified	148.1	2.375	3.38	10100	9700	8400			
173'5"-174'5"	Grev sandstone	151.4	2.428	2.91	10100	14800	12000			
175	Grey fine grained sandstone				20300					
182'-183'	, ,	149.4	2.397	2.93	16900	11700	10000			
196'5"-197'	Fine grained grey solid			2.74	15700	14200	11500			
205'-206'	Fine grained brown sandstone	151.3	2.426	2.95	17300	12300	12000			
221'5"-222'	Brown solid sandstone	150.6	2.416	3.40	15700	10500	10600			
229'-230'	Grey fine grained sandstone	145.2	2.329	4.01	10300	8580	10200			
Crushed Sampl	es									
10'-28'	Sandstone (crushed) (see sieve analysis S.A.#2964 - 2" crushed core (in lab.), 6.4% sand)	80.0							36.1	
82'-126'	Sandstone (crushed) (see sieve analysis S.A.#2965 - 2" crushed core (in lab.), 7.3% sand)	75.0							43.3	
130'-173'	Sandstone (crushed) (see sieve analysis S.A.#2966 - 2ª crushed core (in lab.), 5.5% sand)	76.4							38.5	
183'-226'	Sandstone (crushed) (see sieve analysis S.A.#2967 - 2" crushed core (in lab.), 5.0% sand)	76.0			÷.				33.9	

KIEWIT QUARRY DEPTH - 2.4 - 57.9m BOREHOLE" G 4.0 m 7.0 m 10.1 m 35 13.1m 1 2 3 4 6 16.1 m 19.2m 22.2m 25.3m 28.3m 31.4 M -0.45 2 3 5 4 34.4m 113 37.5 m 40.5m 43.6m 46.6 m 1 49.7 m 2 5 3 4 52.7m 55.8M 579m END.

Γ

1

Γ

Γ

F

Γ

Γ

Borehole No. 6 8 ft. - 190 ft.

the second second

APPENDIX I

BOREHOLE No:

(6)

CLIENT Peter Kiewit Sons Company Ltd.

DATE OF BORING 11-12 Sept/83

SITE AND/OR PROJECT: Quarry Investigation, Yukon

DATE OF WL READING:13 Sept/83

				SOIL PROFILE		S	AMP	LES		7	LA	BORAT	ORY AI	ND FIE	LD	
	DEPTH. FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION 6	CONDITION	түре	NUMBER	RECOVERY	R Q D > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	⊲ ⊂) vp	TES IN SIT LABO WATE ATTEI	T RESU U FIEL RATOR R CON RBERG	LTS D VANI Y VANI TENT. LIMIT	E. S. E, C. W ^o r	.1
		Dip		Cround Level				%	3%	და≻ი	1	GRA 00 1	PHIC SI	5ALE % 00	6 100	
		16°		 Cround Level Overburden of broken sandstone with voids Water return to bottom of hole Sandstone: Brown fractured with some broken zenes, medium hard sandstone and broken Peor recovery below 30 ft. Some 16 to 24" long cares in 10 to 28 ft. depth 33: Mud seam (2") Sandstone: Grey to brown sandstone, fine grained, redium hard. 44: Conglomerate bed (0.5") 47: Sillstone pocket 50: Fractured at 45° Maximum cares usually 20" long with some longer cares below 80ft. -32: Plus 24" long cares -17 Plus 36" long cares 73: Fractured 60° 			1 2 3 4 5 6 7 8 9 10 11 12 13	 * 50 90 83 100 92 58 33 89 58 98 98 100 98 99 90 90 90 90 90 90 	15 43 58 0 46 29 19 7 74 47 93 97 89 89		$ \frac{2-4}{10} $ 13 16 0 333 25 25 11 5 10 8 3 3 2 7 7	$\begin{array}{c} 00 \\ 4 \\ 10 \\ 15 \\ 13 \\ 17 \\ 0 \\ 29 \\ 19 \\ 17 \\ 13 \\ 12 \\ 13 \\ 12 \\ 13 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	00 8-16 0 0 0 46 0 0 0 26 32 16	00 >16 17 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0		AX PRE 10 16 29 28 16 29 28 16 20 17 35 18 22 21 21 32 17 23 19 21
F	90 E										L					45
	DAT	UM.		VERIFIED BY:							UND	RAINED	kPa	r sthe	ENG.	TH

CLIENT SITE AN DE DE EI ENATION		PRC	er Kiewit Sons Company Lt DECT Quarry Investigatic SOIL PROFILE	d. m, Yuk	on					the state of the s					the second s
DEPTH.FT	DEPTH AND WATER LEVEL	RAPHY -	SOIL PROFILE						DATI DATI	e of bor e of wl f	ing 1 readin	1–12 IG. ¹³	Sept Sept	/ <u>83</u> /83	-
DEPTH. FT	DEPTH AND WATER LEVEL	RAPHY -				s	AMPI	LES		z	LA	BORAT	ORY A	ND FIE	ELD
<u>-90</u>		STRATIG	SOIL DESCRIPTION	6 #6	CONDITION	түрЕ	NUMBER	RECOVERY	R Q D . > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATIO	⊲ □ ⊖ vpv	IESI IN SITI LABOI WATEI ATTEF	HESU FIEL RATOR R CON RBERG	D VAN Y VAN TENT. LIMIT	ie, s ie, c w, ·
-	Dip							%	٩,	დო ≻ი	10	GRAF		CALE 00	<u>*100</u>
			Longer cores in this	zone		NQ	14	- 98	88		3	10	7	- 	71
10 0	21°			-		NQ	15	93	96		2	8	18		70
	L7°	69365	104: Thin sand bed	-		NQ	16	86	78		2	4	8		67
1200 1111			121: Thin sand seam .			NQ	17	100	87		12	Hard State of the second s	21		-8
13000000000000000000000000000000000000			138-143: Rusty brown sar	ĸl		NQ NQ	18	94 03	67 80		1 8 12	46	21	0	ю
15 0						NQ	20	98	70		3		0		63
160		5		-		NQ	21	100	36		8		33	0	
17 0 1	[2°]	₹ }	Formation of grey sandst with some thin beds of c and severely broken core between 160 - 168.	one oal s		NQ	22	100	26		25	23	J 0	0	
			178-180: Conglomerate be	ed		NQ	23	100	81		6	29	47	0	

Ĥ	HOGGAN	OFFI	CE E	BORE	HOLE	RECORD	APPENDIX BOREHOLE No: 6
CLIENT: Pet	er Kiewit Sons Company Ltd.	•	· · .		_ D	ATE OF BOI	RING. 11-12 Sept/83
SITE AND/OR	SOIL PROFILE	on, rukon		SAME	LES	ATE OF WL	LABORATORY AND FIELD
DEPTH, FT ELEVATION DEPTH AND WATER LEVEL	SOIL DESCRIPTION	6 #6	CONDITION	NUMBER	RECOVERY	HYDROMETER GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	TEST RESULTS △ IN SITU FIELD VANE, S _U □ LABORATORY VANE, C _U ○ WATER CONTENT, W. % H ATTERBERG LIMIT WP WL
Dip				%	%	0~ 20	GRAPHIC SCALE % 100 100 100 100
190	Continuation of grey med to coarse grained sandst	lium in income income in income in income income income in income		2 23 2 24	100 98 7	72	7 33 33
DATUM:	VE	RIFIED BY:	_		<u>_</u>		UNDRAINED SHEAR STRENGT KPa

CLIENT:	PETER KIEWIT SONS CO. LTD.
PROJECT:	YUKON QUARRY

Depth (ft)	Description	Bulk Relative Density (lb/ft3)	Bulk Relative Specific Gravity	Absorption (%)	Uniaxial Pe Compressiv Diametral (psi)	oint Load ve Tests Axial (psi)	Unconfine Compressi Strength (psi)	d ve Freeze Thaw	Los Angeles Abrasion (% wear)	Sulphate Soundess (% loss)
19'	Brown moderately hard									
	sandstone	150.2	2.407		14600	10400	10500			
26'-26'6"	Grey sandstone	153.3	2.457		14900	13800	12000			
47'-48'	Brown fine grained sandstone	151.6	2.430		16300	14800	12900			
55'	Grey fine grained sandstone	152.0	2.436		16300	14200	13200			
66'	Grey fine grained sandstone	150.9	2.418		16000	13000	12600			
75'	Grey brown sandstone,									
	moderately hard	152.4	2.442		16300	8300	11800			
85'	Fine grained solid sandstone	148.8	2.385		14100	8300	9100			
93'6"-94'	Grey fine grained sandstone	151.6	2.429		13900	12000	10300			
101'6"-102'	Fine grained solid sandstone	153.5	2,460		15100	11400	12200			
108'	5	153.0	2.452			10800	9800			
125'-125'6"	Brown sandstone	155.8	2.496		13900		14400			
149'	Grey to brown sandstone									
	fine grained, long core	152.7	2.447		15100	12000	11900			
158'6"	Brown fine-medium grained									
	sandstone; trace of conglomerate	151.0	2.422		16000	12100	10600			
168'6"		160.8	2.576		6100		8700			
176'0"	Grey conglomerate	160.0	2.565				6200			
179'0''	Grey sandstone with coal				9400	7100				
182'6"	-	153.9	2.466				11200			
189'		154.0	2.467				8100			

Crushed Samples

0'-60'	Sandstone (crushed) (see sieve analyses S.A.#2961 6.6% #4 sieve)	79.5 (loose density of crushed samples)	2.376	3.93	39.9
60'-120'	Sandstone (crushed) (see sieve analysis S.A.#2962 6.5% #4 sieve)	79.3 (loose density of crushed samples)	2.355	4.12	41.6
167'-190'	Sandstone (crushed) (see sieve analysis 5.A.#2963 6.9% #4 sieve)	78.6 (loose density of crushed samples)	2.37 1	4.84	38.6

BOREHOLE 6

GRAIN - SIZE DISTRIBUTION

L

}

)

Borehole No. 7 5 ft. - 93 ft.

HOGGAN			OFFICE BOREHOLE RECORD						B	BOREHOLE No: (
CLIEN SITE A	T: Pe	ter PRO	- Kiewit Sons Company Lte JECT:Quarry Investigat	l	ion -			-	DAT DAT	E OF BOR E OF WL F	ING:	13-14 NG 14	Sept, Sept,	19 19
			SOIL PROFILE		SAMPLES						LA	BORAT	ORY AN	D FIE
D ЕРТН, F T	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	7	CONDITION	түре	NUMBER	RECOVERY	R Q D, >4 In	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATIO	∆ □ ○ I ₩₽	IN SITI LABOI WATEI ATTEF	RESUL U FIELD RATORY R CONT RBERG L	VANI VANI ENT, IMIT
	Dip				ļ			%	%	<u>ഗ</u> ഗ ഗ	1	GRAF	20 10	ALE 9 0
	<u>⊻</u> 18°		 Overburden of soft broken sandstone Fractured sandstone Medium hard Muistone, shale, soft grey s and sand layers 18: Conglomerate seam (18-33: Very soft sandstone 33-42: Mudstone 42-65: Very soft coarse sandstone 	andstane 1") one		NQ NQ NQ NQ NQ NQ NQ NQ	1 3 4 5 6 7 8 9 10 11	19 38 67 13 83 72 100 94 100 100 67	42			4-8 in 225		
60 70 80 80	16°		65-78: Very soft conglor 78-93: Sand, mud seam ar soft sandstone End of Borehole @ 92 f	nerate 			12 13 14 15 16 17 18 19 20	83 40 83 74 5 38 13 42						

CLIENT: PROJECT:

•

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

BOREHOLE 7

Depth (<u>ft)</u>	Description	Bulk Relative Density (lb/ft3)	Bulk Relative Specific <u>Gravity</u>	Absorption (%)	Uniaxial Po Compressiv Diametral (psi)	oint Load ve Tests Axial (psi)	Unconfined Compressiv Strength (psi)	i ve Freeze <u>Thaw</u>	Los Angeles Abrasion (% wear)	Sulphate Soundess (% loss)
11.5	Fine grained brown sandstone				15700					
11-11-12-3"	solid sandstone	151.3	2.426			10700	10900			
12'3"-12'10" 24'-24'4"	Fine to medium grained			3.54						
24141 26171	brown sandstone, medium hard	139.3	2.235	5 39			7600			
25'	Soft conglomerated						/000			
29'	(not enough material) Very soft grey sandstone				5300 1300	8200	6900			
29'3"-29'10"	Soft brown sandstone			5.97						
55' 55'-55'4"	Medium soft sandstone Medium soft sandstone	148.7	2.386		17300					
55'4"-55'8"				4.19						

١

Π KIEWIT OUARRY DEPTH - 1.8-80.2m BOREHOLE*8 Γ 4.0 m 7.0 M Π 10.1 m 13.1 m Г 1 2 3 4 5 Π 16.1m 19.2M Γ V-BH#8.Box 4. GEWIT G 22.2 m 23.3 m Γ 28.3 m Π 31.4 m 3 5 2 4 34.4 m 17 430 37.5 M Π 40.5M 6 4 2 3 1 Π 43.6 m 46.6 m Γ . 0 U Borehole No. 8 6 ft. - 160 ft.

Borehole No. 8 Continuation 179 ft. - 218 ft., 256 ft. - 263 ft.
		Н	OGGAN	OFF	-ICE	E BC	DRE	HOLI	E RE	CORD	E F	APPENDI BOREHC REPORT	X I DLE Ni NO.	o:	8
CLIEN SITE A	t: Po' ND/OR	ter PRC	Kiewit Sons Company Ltd. DECT — Quarry Investigat:	ion, Yuk	on		·······		DAT DAT	E OF BOR E OF WL F	ING: READI	15-16 NG 16	Sept Sept	, 19 , 19	83 83
	. Paalitelikasi tahun akti dagka ay	,	SOIL PROFILE			5	SAMF	PLES	*	z	L	ABORAT	ORY AN	ND FIE	LD
	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	8)	CONDITION	TYPE	NUMBER	RECOVERY	R Q D, > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATIO		IN SIT LABOI WATEI ATTER	HESU FIELI RATOR R CON IBERG	LTS D VAN Y VAN TENT. LIMIT	E, S., E, C.u W. %
	Dip		· · · · · · · · · · · · · · · · · · ·					%	9%	00 ×0		GRAF	PHIC S(CALE 9 00	100
	<u> </u>		Overburden of broken Sandstone								2-4	4-8	8 - 16	>16	
-		. <u>.</u>				NQ	1	7	0		0	0,	0	0	
	12°	28	13: Conglomerate seam (0) Sandstone: Brown to grey sar medium hard, fine	ic 5") dstone, grained		NQ	2	90	0				0	5	*
	19° 10°	•••	19-20: Vertical fracture 23: Rusty brown sand (4" 23-24: Soft sandstone ver Fractured 28: Conglomerate seam (0.) -y .5")		NQ	4	99	85		6	28	10	47	2
			40: Lost of drilling wate	er –		NQ	5	100	79		8	21	19	39	2
			-295 Plus 24" long c -165 Plus 36" long c	ores		NQ	6	98	86		4	0	18		2 58 3 3
						NQ	a a a a a a a a a a a a a a a a a a a	100	96		4	.	36	5	2 7 4
TTTTTTT			65-77: Fractured sandsto Bralso break,vert 73-74: Sand and soft san	one ically idstone		NQ	8	98	79		10	40	23	16	۱
		3	74: Conglomerate seam (9 82-84: Soft sandstone 1).5")		NQ	9	100	82		a 0	21	13	46	3
ппп		X.	broken and brown sand	rusty		NQ	10	97	57		23	18	0	39	1
ATU	M:		VE	RIFIED BY:							UNE	DRAINED	SHEAI kPa	RSTR	ENGT

Ĥ	HOGGAN	OFF	ICE B	ORE	HOLE	E RE	CORD	AF B(OLE NO	o:	8
CLIENT: Pe	eter Kiewit Sons Company Lt ROJECT — Quarry Investigati	d. Ion, Yuk	on		85° ku	DAT DAT	E OF BORI	NG:15	5-16 NG16	Sept, Sept,	198 198	3
	SOIL PROFILE			SAMF	LES	c	R F O	LA	BORAT	ORY AN	ID FIE	LD
DEPTH FT ELEVATION DEPTH AND WATER LEVEL	SOIL DESCRIPTION	8 #8	CONDITION	NUMBER	RECOVERY	R 0 D,>4	GRAIN SIZE HYDROMETE UNIT WEIGH CONSOLIDATI	а С ФР ^ж	IN SIT LABO WATE ATTEI	U FIELD RATOR R CONT RBERG	D VANI Y VANI TENT, T LIMIT	E.S. E.C. W.º6
90 Dip					%	%	ഗ≺ ഗ <u>്</u>	1	GRA 00 1	PHIC SC	DALE 9	100
	•• 98: Conglomerate seam (0).5")	ΝÇ	$\begin{array}{c c} 10 \\ \hline 11 \\ 11 \\ \hline 11 \\ 11 \\ \hline 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	97 100	57 68		3	22	10	36	24 19
	105-112: Vertical fract	nin bed re	NC	2 12	100	85	ſ)	5	45	35	20 22
12 01 15	114-117: Vertical fract. 118-120: Vertical fractu oxydate	ire finn	NC	2 13	100	73		18		38	41	16 16 17
	122.140 The store is and is		NÇ	2 14	100	82		4	3	17	6	30 2 17 27
	133-140: Fractured sands with vertical f 134: Very soft rusty bro sandstone	Tracture	NK) 15	100	75		8	0	7	18	22
	•• 145: Conglomerate seam ((0.5") 	NK	2 16	100	95		D	16	24	5	18 5 48
	152: Conglomerate seam ((0.5")	r k	2 17	100	90		6	10	9		16 71 30 22
170	•• 171: Conglomerate seam		N(2 18	99	98)	6	33	5	- 21 9 27 23
	180: Conglomerate seam ((0.5")	NC	2 19	100	-98		2	6	0	92	81 2 29
DATUM:	VE	RIFIED BY:						UNDI	RAINED) SHEAF kPa	A STRE	ENGTH

		Н	OGGAN	OFF		E BC	DRE	IOLE	RE	CORD		APPENC BOREH REPOR	IX IOLE N FNG	! ! o: 	8
CLIEN	nt: <u>Pe</u> and/or	ter PRC	Kiewit Sons Company Ltd. DJECT - Quarry Investigati	lon, Yuk	on				DAT DAT	E OF BOF	RING: READ	15-16 ING: 16	Sep Sep	t, 19 t <u>, 1</u> 9	983 983
DEPTH. F T	ELEVATION DEPTH AND VATER LEVEL	тватідварну	SOIL PROFILE	3)	CONDITION	ТҮРЕ	NUMBER	RECOVERY	R 0 0 > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT SONSOLIDATION		ABORA TES IN SI LABO WATE	TORY A ST RESU TU FIEL DRATOF ER CON	ND FIE JLTS D VAN RY VAN ITENT.	E, S _a E, C _U W, %
180-	Dip	S	Continuation of Borehole	2 #8				%	%	კა აღ	WP	WL GRA 100	PHIC S	CALE 9	100
19011	12°	***	190: Conglomerate seam (0.25"		NQ	20	100	98		0	7	19		73
	14°	400 951 00	201: Conglomerate seam (204: Conglomerate seam (0.5") 2")		NQ	21	99	98		0	0	7	91	
1111 <u>9</u> 1111		***	208: Thin conglomerate s	seam (0 4		NQ	22	100	99)	0	°	:	30
20111			Mudstone, soft sandstor Shale and conglomerate	ne -		NQ	23	100	82		0	13	0		69
шнянц						NQ	24	100			-		-		
mu				111111		NQ	25	100			-	: 		-	
1111 <u>6</u> 1111			253: Coal bed (0.5")	huuluu		NQ	26	100			-		.	- -	1
Тин 26 Д ги	20°					NQ	27	100			_	- -	—		•
<u>uut</u>			End of Borehole @ 263 ft	·				 Notice and an annual sector of the sector of					·		
DATL	JM:		VE	RIFIED BY:		⊾J	I		d		UNE	DRAINE	D SHEA	R STR	ENG

CLIENT: PROJECT:

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

BOREHOLE 8

Depth (ft)	Description	Bulk Relative Density (Ib/ft3)	Bulk Relative Specific Gravity	Absorption (%)	Uniaxial Po Compressiv Diametral (psi)	oint Load ve Tests Axial (psi)	Unconfined Compressiv Strength (psi)	i ve Freeze <u>Thaw</u>	Los Angeles Abrasion (% wear)	Sulphate Soundess (% loss)
14'-14'5"	Fine grained brown solid									
	(very hard) sandstone	151.3	2.426	3.05	13800	13200	9100			
26'5"-27'	Fine grained grey solid									
	sandstone	150.4	2.412	3.55	10300	7800	6000			
34'5"-35'5"	Fine grained brown solid									
	sandstone	152.2	2.441	3.13	16600	14000	12700			
56'5"-57'	Grey solid sandstone	152.1	2.439	2.77	19400	13300	13800			
71'5"-72'	Brown solid sandstone	152.7	2.449	3.03	19400	12700	9600			
84'5"-85'	Brown solid sandstone									
	very hard	152.6	2.447	2.51	24200	19105	10200			
98'-98'5"	Brown solid sandstone, very hard	154.8	2.484	2.80	20100	11000	10900			
112'-112'5"	Brown solid sandstone	150.7	2.416	2.92	20700	11600	14500			
125'-126'	Fine grained grey solid									
	sandstone	150.9	2.42	2.92	16100	10800	12700			
141'-142'	Brown solid sandstone									
	fine grained	151.7	2.433	2.89	15900	11000	12400			
149'-149'5''	Grey sandstone fine grained	150.8	2.419	3.18	15700	1100	10200			
159'-160'	Brown solid sandstone									
-	fine grained	153.1	2.456	3.29	13200	8000	10200			
179'-180'	Fine grained brown solid									
	sandstone	151.5	2.429	3.04	16300	10900	11600			
196'-197'	Grey sandstone fine grained	151.1	2.424	3.00	14400	8400	13800			
205'-206'	Brown solid sandstone									
	fine grained	151.3	2.426	3.07	18800	10800	13100			
215'-216'	Fine-medium grey sandstone									
	some conglomerate	149.3	2.394	2.82	16900	13600	11100			
261	Shale				4800					

-

4

.

Ĩ	Н	OGGAN	OF	FICE	BC	RE	HOLE	ERE	CORD	AF BI RI	PPENDI OREH(EPORT	X I DLE No NO.:	. (9
CLIENT: PO	ter PRO	Kiewit Sons Company Ltd. JECT: Quarry Investigatio	on, Yuka	on				DAT DAT	E OF BOR E OF WL F	ING 1 READIN	18–19 NG: 24	Sept Sept	, 198 , 198	33 33
		SOIL PROFILE			S	AMP	LES	,	z	LA	BORAT	ORY AN	D FIEL	D
DEPTH, FT ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION (9	CONDITION	ТҮРЕ	NUMBER	RECOVERY	ROD, >4 in	GRAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIO	∆ ○ vpw	IN SIT LABO WATE ATTEF	I RESUL I FIELD RATORY R CONT RBERG L	VANE VANE ENT. V	. Տ., Ե.Ըս Խ. Կ
0 5							%	%	. GO YO	1	GRAF 00 1	PHIC SC 00 10	ALF %	00
10 20 30 40	a the attack of the state	Permafrost: Frozen silty and c Glacial till with grey silty clay in bottom 10 feet. -no loss of water during drilling of this hole	layey some							1		10		
utuuluutuuliutuuluutuuluut ä		Very soft grey sandstone thinly bedded, shale, fr in 2-4" long pieces	acture		22 22 22 22 22 22 22 22 22 22 22 22 22	1 2 3 4 5 6	67 100 70 100 100 83			0 0 0	0 0 0 0 22		0 0 0 0	
an -1				. –										

		н	OGGAN	OFF	FICE	E BO	REI	HOLE	ERE	CORD	E F	PPEND BOREH REPORT	OLE NO.:	p: (9
CLIEN SITE A	nt: Pe	etei PRC	r Kiewit Sons Company Ltd DECT Quarry Investigatio	l. on, Yuko	n				DATE	E OF BOR	ING: READI	18-19 NG: ²⁴	Sept Sept	, 198 , 198	33 33
DEPTH, FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL PROFILE SOIL DESCRIPTION	9 . #9	CONDITION	түре S	NUMBER	RECOVERY S	RQD, > 4 in	BHAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION		ABORAT TES IN SIT LABO WATE H ATTEI	ORY AN T RESU TU FIELD RATOR RECON	ND FIEL LTS D VANE Y VANE TENT, V LIMIT	.D S. Cu V, %
-90 <u>-</u>			Soft grey sandstone, th	inly =		NQ	6	% 83	% 22	<u></u> γν ≻Ο	0	GRA 100 1 22	00 1	00 1 00 1	00
T			bedded with shale.	-		NQ	7	100	0		0	0	0	0	
100		1	Sandstone:			NQ	8	96	37		6	0	0	37	27
110 110			Crey brown sandstor fine grained, mediu -50% plus 24" long c	ne, m hard cores		NQ	9	100	96		4	9	23	6	4 77
			-37: plus 36" long c	ores		NQ	10	86	86		0	0	لم . 9		71 77 21
120			120: Conglomerate seam (0.5") -											
1301		404	127: Conglomerate seam (4")		NQ	11	98	81		12	3	43	35	25
14 0 1						NQ	12	100	99		3	B	28	6	31 3 49
15 0 1						NQ	13	100	97		0	13	36	48	16 41
******			End of Borehole @ 153 ft									ы. 			
DATI	UM:			RIFIED BY:							UNE	DRAINED) SHEAI kPa	RISTRE	NGTH

SITE A	T: Per	PRC	DJECT Quarry Investigati	ion, Yuk	on.		- · · · · · · · ·	-	DAT DAT	E OF BOF	READIN	'-18 IG:	Sept	, 198	33	
DEPTH, F T	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL PROFILE	10	CONDITION	TYPE (0	NUMBER NUMBER	RECOVERY	RQD - > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION		BORAT TES IN SIT LABO WATE ATTEI	ORY A T RESU U FIEL RATOF R CON RBERG	ND FII JLTS D VAN RY VAN ITENT	ELD IE, 9 IE, 0 . W,	Sa Cu No
-0-	Dip							%	%	ია აი	1(PHIC S	CALE	% 100	'n
			Overburden of sandstone broken with many voids Water return to full de of hole.	pth II		NQ NQ	1 2	50 45	0 0		2-4 0	4-8 (n 0	0 0		6 c	0
20		AX	Sandstone: Brown to grey, a hard, fine grain	nedium I ned II		NQ NQ	3 4	100 100	66 72		25 13	3 3	33	0	;	
Huntur	16 °		-48 Plus 24" long -37 Plus 36" long 19-20: Very fractured	cores cores l		NQ	5	96	90		2	22	7		61	3
uluulu		K N	 36-38: Very fractured ar thinly bedded 40-42: Very fractured ar thinly bedded sa 	nd Ind Ind Andstone		NQ	6	100	83		10	29	8	3	3	1
пли	17°	•••	46: Conglomerate seam (C 50-52: Very fractured).5")		NQ	7	100	81		15	3	22		56	ł
uluulu				. 1		NQ	8	100	98		0	0	7	91		7
ווווונו		XX XX	65-66: Very fractured zo 69-70: Very fractured ar bedded soft sands	ne nd thin l stone	Y	NQ	9	98	76		5	10	o		66	24
				luuli		NQ	10	100	90		3	4	9	a contraction of the second	77	72
TTTT	16°	••• 88	84: Conglomerate seam (C 86-88: Fractured soft sa 88: Conglomerate seam).5") – Indstone		NQ	11	100	86		6	0	13		73	

1	L

OFFICE BOREHOLE RECORD

APPENDIX I

BOREHOLE No:

REPORT NO .: _____

(10)

CLIENT: Peter Kiewit Sons Company Ltd. DATE OF BORING:17-18 Sept, 1983

HOGGAN

SITE AND/OR PROJECT: Quarry Investigation, Yukon DATE OF WL READING:

$\frac{1}{100}$ $\frac{1}$	ND FIELD
$\frac{100}{100}$	LTS D VANE, S _u Y VANE, C _U TENT, W, % LIMIT
90: Conglomerate seam NQ 11 100 86 6 0 13 93.5-96: Thinly bedded sandstone fractured NQ 12 100 87 5 10 8 111-112: Thinly bedded soft sandstone NQ 13 100 84 3 16 10 111-112: Thinly bedded soft sandstone NQ 14 100 83 7 6 9 119-121: Thinly bedded soft sandstone fractured NQ 14 100 83 7 6 9 17° 128-130: Soft sandstone thinly bedded and rusty brown sand NQ 15 90 64 7 8 15	CALE % 00 100
111-112: Thinly bedded soft sandstone NQ 13 100 84 3 16 10 111-112: Thinly bedded soft sandstone NQ 14 100 83 7 6 9 119-121: Thinly bedded soft sandstone fractured NQ 14 100 83 7 6 9 17° 128-130: Soft sandstone thinly bedded and rusty brown sand NQ 15 90 64 7 8 15	73 67 69 16
119-121: Thinly bedded soft sandstone fractured NQ 14 100 83 7 6 9 128-130: Soft sandstone thinly bedded and rusty brown sand NQ 15 90 64 7 8 15 NQ 16 100 94 2 10 10	39 58 30
17° 128-130: Soft sandstone thinly NQ 15 90 64 7 8 15 10 bedded and rusty Image: NQ 16 100 94 2 10 10	61 68 20
H NQ 16 100 94 2 10 10	41 25
141-142: Thinly bedded and fractured sandstone	72 74 1 7
NQ 17 100 88 6 4 7	48 77 44
Conglomerate seam (1") 154-155: Rusty brown sand and thinly bedded sandstone NQ 18 100 39 0 7 23 0	18 59 32 39
•••• 165: Conglomerate seam (1") •••• 167: Conglomerate seam (0.5") 70 •••	39 58 30
16° •••• 175: Conglomerate seam	26 47 30
DATUM: VERIFIED BY: UNDRAINED SHEA	STRENGTH

		Н	OGGAN	OF	FICI	E BC	REI	HOLE	E RE	CORD	APPEN BORE REPOF	DIX I HOLE No: RT NO.: -	10
CLIEI SITE	nt: Pet and/or	Ler PRC	Kiewit Sons Company Ltd. DJECT Quarry Investigat	ion, Yu	ukon				DAT	E OF BOF E OF WL	RING: 17–1 READING:	.8 Sept, 1	1983
		·····	SOIL PROFILE			S	AMP	LES	r	~ Z	LABOR	ATORY AND F	IELD
DEPTH FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION (Continuation of Borchole	10 #10	CONDITION	TYPE	NUMBER	RECOVERY	RQD > 4 in	URAIN SIZE HYDROMETEF UNIT WEIGHT CONSOLIDATIO	A INS LAE O WA ₩₽₩L ATT	STRESULTS STUFIELD VA SORATORY VA TER CONTENT ERBERG LIMI	NE, S NE, C _U F. W. ‰
80	Dip	 	Uand Candat and		-			<u>%</u>	%	വ ഗപ	00 10	100 100	100
		-	Soft formation of sandst coarse grain, salt & per colored	ione oper	11111111	NQ	20	100	63		20 37	8 18	17 22
0 0 0				-		NQ	22	100	78		o 9	-1 -56 - 13	- 16
			End of Borehole @ 203 f	t									
			L		-1				ļ		LH.DRA N	et seevens	ana nortymys

CLIENT: PROJECT:

.

•

PETER KIEWIT SONS CO. LTD. YUKON QUARRY

BOREHOLE 10

Depth (ft)	Description	Bulk Relative Density (<u>lb/ft</u> 3)	Bulk Relative Specific Gravity	Absorption (%)	Uniaxial P Compressi Diametra (psi)	oint Load ve Tests Axial <u>(psi)</u>	Unconfine Compressi Strength (psi)	d ve Freeze <u>Thaw</u>	Los Angeles Abrasion (% wear)	Sulphate Soundess (% loss)
12'6"-12'10"	Fine grained brown sandstone	151.5	2.43				12000			
12'10"13'1"	Solid brown sandstone			3.17	12900	11300				
20'-20'4" 20'4"-21'	Fine grained grey sandstone Grey sandstone	149.7	2.401	2.97	13200	11800	12000			
36'5"-37'	Brown-reddish fine grained					1200	12100			
	solid sandstone	151.3	2.426	2.74	11400	1300	13100			
43'-43'4"	sandstone	152 9	2 4 5 3				13100			
45'4"-46'	Grev solid sandstone, trace	172.7	2.477				19100			
	of conglomerate			2.6	17700	16500				
50'5"	Brown solid sandstone, trace									
	of conglomerate				11900	12600				
51'10"-52'5"	Fine grained light brown									
	solid sandstone	151.7	2.433	3.22			14400			
59'5''-60'	Brown solid sandstone, trace									
	of conglomerate	150.6	2.416	2.6	18100	18100	12400			
67'-68'	- Grey sandstone, fine grained	151.3	2.427	2.98	12600	11400	13800			
81'-82'2"	Grey sandstone, fine grained	153.3	2.459	2.97	16800	9100	13800			
89'-90'	Grey sandstone, fine grained									
	trace of conglomerate	151.2	2.425		15700	13800	14200			
94'8''-95'	Grey sandstone	152.9	2.453				11600			
95'-95'4"	Grey sandstone			2.5						
104'-105'	Grey sandstone, fine grained									
	trace of conglomerate	151.5	2.429	3.09	14300	12600	10200			
118'-118'8"	Grey solid sandstone	154.3	2.475	2.92	12800	13000	13500			
126' <i>5</i> ''-127' <i>5</i> ''	Grey brown sandstone									
	& conglomerate	151.4	2.428	2.73	16400	12500	5800			
134'4"-134'8"				3.02						
136'-136'5"	Grey solid sandstone, trace									
	of conglomerate	152.2	2.441		16700	14400	14400			
150'-151'	Grey solid sandstone	151.1	2.423	2.92	13300	11100	12700			
163'5"-164'5"	Grey solid sandstone	151.1	2.423	2.91	15700	11400	14400			
173'-174'	Brown sandstone	150.2	2.408	3.16	13700	14100	11100			
184'5"	Grey medium grained soft									
	sandstone				6200					
185'-185'10"	Medium to fine grained grey									
	sandstone	152.8	2.451	4.07		7200	5460			
198'-199'	Medium fine grained grey									
	sandstone & conglomerate	153.7	2.465	2.65	8100	5600	5090			

	Ĥ	Н	OGGAN	OFF		BO	REI	HOLE	RE	CORD	AF B	PPEND OREH EPORT	OLE N	o: (IJ
CLIE	NT: Pet	ler	Kiewit Sons Company Ltd.	. .	· · · · · ·				DATI	E OF BOF	ING:				
SITE	AND/OR	PRC	DJECT: Quarry Investigati	on, Yuko	on .				DATI	E OF WL	READIN	vg: 20	Sept/8	33	
	r		SOIL PROFILE		r	s	AMP	LES		z سر	LA	BORAT		ND FIEL	D
DEPTH, F T	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION		CONDITION	ТүрЕ	NUMBER	RECOVERY	RQD, > 4 in	GRAIN SIZE HYDROMETEI UNIT WEIGHI CONSOLIDATIO	4 0 • •	IN SIT LABC WATE ATTE	TU FIELI DRATOR ER CON RBERG	D VANE. Y VANE TENT. W LIMIT	, S., , C., /, %
								%	%	დო ჯი)		PHIC SC	CALE %	00
	Dip		Overburden of broken sa slabs with sand and sil towards bottom No water loss in this h	ndstone t	Ν	Q	1	28	0		2-4 in 0	$\frac{4-8}{0}$	8-16 <u>in</u> 0	> 16 $\frac{1}{0}$	in ax core in
			Sand stone: Brown to grey, h	ard I	N	Q	2	100	42		58	42		0	•
20		000	-44% Plus 24" long -33% Plus 36" long	cores	N	Q Q	3	95 100	77 100		7 0	43 33	34	0	2
30		163	20: Conglomerate seam 28: Fractured zone	1	Ν	Q	5	100	82		3	n	20	51	19 30
40		Σ	35-37: Sub vertical frac	tured	Ν	Q	6	91	81		7	13	1) 	7	20 3 53
50		a	50: Conglomerate seam	uhuuhu	Ν	Q	7	98	92	-	4	5	18	65	53 30
60				Juniliu	N	ю.	8	99	98		0	o	o		118 98
		500	72: Conglomerate seam (1 76: Conglomerate seam		И	Q	9	100	98		0	20	16	63	40 35
80		***	84: 86: Conglomerato seam	milinti	Ν		10	100	98		2	4	45	49	59
90 DAT	UM:		88:	RIFIED BY:	N	Q		100	100		3 UND	20 RAINEI) SHEAI kPa	A3 R STREI	: 53 i

i

1

1

÷

į.

•

	H	н	OGGAN	OFFICE BOREHOLE RECORD								BOREHOLE No:				
		ter	Kiewit Sons Company Ltd.	on, Yuko	 Sn							NG: 2	0 Sept	/83	- P	
			SOIL PROFILE		T		SAM	PLES			LA	BORA	TORY A		ELD	
DEPTH FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION	1)	CONDITION	TYPE	NUMBER	RECOVERY	R0D, > 4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	TEST RESULTS △ IN SITU FIELD VANE. □ LABORATORY VANE. ○ WATER CONTENT. W ↓ ATTERBERG LIMIT wPwL					
-90-	Dip				╡┲			%	%	ഗ≺ ഗവ	2	GRA 00	100	100	% 100	
Lutur		400	92: Conglomerate seam 94: Conglomerate seam			NQ	11 12	100	100 95		3	12	33		3 50	
1 0			Mudstone, shale and soft sandstone			NQ	13	- 98	73		-	L				
1201 1201		new course of a spectrum of the course of the course of				NQ	14	100					· · · · · · · · · · · · · · · · · · ·	,		
1 Muulu 13			124: Mud seam			NQ	15	100			-		-	· ·		
			132: Mud seam 137-139: Broken up			NQ	16	100			_		- -			
15 U						NQ	17	100	a man demonstration of the second sec			-		· -		
ттр 16Д			153: Mud seam			NQ	18	100				-		· · · ·		
17 0 1						NQ	19	100	and Marcine Anna calledo			-	· -		•	
1201						NQ	20	100				-	-	· · · ·		
1801 DATI	UM:			RIFIED BY					<u>.</u>	1 	UND	RAINE	D SHE kPa	AR STR	76	

	Ĥ	Η	OGGAN	OFFICE BOREHOLE RECORD							AF B R	APPENDIX I BOREHOLE No: 11 REPORT NO:				
CLIEN	NT: Pe	ter	Kiewit Sons Company Ltd.	· · · ·					DAT	E OF BOR	NG:		1			
SITE	AND/OR	PRO	SOIL PROFILE		11		SAME	LES	DAT	EOFWLI		BORAT	DRY ANI	D FIEL	D	
DEPTH.FT	ELEVATION DEPTH AND WATER LEVEL	STRATIGRAPHY	SOIL DESCRIPTION (Ú 1 #11	CONDITION	CONDITION TYPE NIIMBER		RECOVERY	RQ D, >4 in	GRAIN SIZE HYDROMETER UNIT WEIGHT CONSOLIDATION	TEST RESULTS					
180-	Dip					10	20	°.6	%	<u>ഗം ഗ</u> ാ				0 1 -	00	
190			188-193: Coal bed			NQ	20	100			-		-			
200011						NQ	22	100			-	-				
21 0						NQ NQ	23 24	100 100			-			-		
22 21 21 21 21 21 21 21 21 21 21 21 21 2			End of Borehole 0 217 f													
DAT	им: _			ERIFIED BY	1						UND	RAINED	SHEAR kPa	STRE	ENG	

Fig. 1 General view of Moose Channel formation, King Point, Yukon

: PETER KIEWIT SONS CO. LTD. -: KING POINT YUKON : SEPTEMBER 1983

BOREHOLE LOCATION PLAN

SITE DATE

CLIENT : PETER KIEWIT SONS CO. LTD. -PROJECT : KIEWIT QUARRY : King Point Yukon : SEPTEMBER 1983

BOREHOLE LOCATION PLAN

:	PETER KIEWIT SONS CO. LTD
:	KIEWIT QUARRY
:	King Point Yukon
:	SEPTEMBER 1983
	•

Fig. 1 General view of Moose Channel formation, King Point, Yukon

