EBA Engineering Consultants Ltd.

BOSTON GOLD PROJECT SURFICIAL GEOLOGY AND PERMAFROST FEATURES

0101-96-11259

DECEMBER, 1996

BOSTON GOLD PROJECT SURFICIAL GEOLOGY AND PERMAFROST FEATURES

Submitted To:

RESCAN ENVIRONMENTAL SERVICES LTD. VANCOUVER, BC

Prepared By:

EBA ENGINEERING CONSULTANTS LTD. EDMONTON, ALBERTA

0101-96-12259

DECEMBER, 1996

TABLE OF CONTENTS

		P	age
1.0 INTRODUCTION	, .	• • • • •	. 1
2.0 GENERAL SITE CHARACTERIZATION		• • • • •	. 1
3.0 INVESTIGATION PROGRAM 3.1 GENERAL 3.2 BOREHOLE LOCATIONS 3.3 DRILLING AND SAMPLING 3.4 GROUND TEMPERATURE INSTRUMENTATION	• • • • • • • • • • • • • • • • • • •	• • • • •	. 5 . 6 . 6
4.0 GEOTECHNICAL CONDITIONS 4.1 GENERAL 4.2 BEDROCK 4.3 OVERBURDEN SOILS 4.4 GROUND TEMPERATURE	• • • • • •	• • • • •	. 8 . 8 . 8
5.0 TERRAIN SENSITIVITY TO CONSTRUCTION	• • • • •		10
6.0 CLOSURE	• • • • •		10
REFERENCES	• • • • •		12
FIGURES			
APPENDIX A: Borehole Logs APPENDIX B: Laboratory Testing Results APPENDIX C: Ground Temperature Data			

1.0 INTRODUCTION

BHP Minerals Canada Ltd. (BHP) are evaluating the feasibility of developing an underground gold mine at Spyder Lake, on the east side of Bathurst Inlet in the Northwest Territories. The site known as the Boston Gold Project, is located approximately 670 km northeast of Yellowknife and 170 km southwest of Cambridge Bay. The geological setting is the Hope Bay greenstone belt which lies to the east of Bathurst Inlet within the Buchan Upland. The site is characterized by moderate to low relief, and vegetation typical of high arctic tundra and continuous permafrost. The site is accessible only by aircraft.

EBA Engineering Consultants Limited (EBA) was retained by Rescan Environmental Services Ltd. to conduct a preliminary geotechnical investigation of the project area. The objective was to collect sufficient geotechnical and permafrost data to characterize the local soils and permafrost conditions. The data is required to assess terrain sensitivity to construction-related impacts for purposes of environmental impact assessment. The secondary purpose is to provide engineering data for a mine plan feasibility study. That study will include preliminary layout and design of support infrastructure.

The project was carried out in two phases, the first phase included drilling and logging seven geotechnical boreholes and installation of thermistor cables to measure ground temperature. The second phase included interpretation of terrain and permafrost conditions from low level stereo airphotos that were obtained in July, 1996.

This report presents the findings of a site investigation conducted by EBA between May 10 and May 24, 1996 and the subsequent terrain analysis.

2.0 GENERAL SITE CHARACTERIZATION

2.1 CLIMATE AND PERMAFROST

The closest meteorological weather stations to the Boston Gold site are Contwoyto Lake approximately 280 km southwest of site, and Cambridge Bay approximately 170 km northeast of site. The mean annual air temperature for Contwoyto Lake, based on Environment Canada weather records maintained until 1981, is -11.8°C. The mean annual air temperature for Cambridge Bay, based on Environment Canada weather

records from 1929 to 1990 is -14.9°C. An approximate mean annual air temperature of -13.6°C has been estimated for the Boston Gold site, based on interpolations (proportional to latitude) between the two weather station locations.

The Boston Gold site is situated well within the zone of continuous permafrost. Surficial features typical of permafrost terrain such as frost-mounds, frost-shattered bedrock, sorted circles, mud boils, block fields, and ice wedge polygons are common in the area. Additional details on permafrost conditions are provided in Section 4.0 Geotechnical Conditions.

2.2 REGIONAL QUATERNARY GEOLOGY

The region has been subjected to multiple glaciations during the Quaternary period. During each glaciation, the area was overridden by the northwestern sector of the vast Laurentide Ice Sheet. Clear evidence of only the most recent (Late Wisconsin) glaciation is preserved in the present-day landscape. Striations, orientation of eskers, grooves and drumlins indicate that the predominate glacial ice movement was northnorthwest. Ice movement directions determined by Ryder (1992) range from northwest to north.

The project area became ice-free about 8800 years ago as the southwest to northeast trending ice sheet melted back toward the southeast (Dyke and Prest, 1986) leaving a blanket of basal till as the ice retreated. Immediately following deglaciations, the sea level was about 200 m higher than at present (Dyke and Dredge, 1989). The entire project area was submerged and the edge of the ice sheet abutted the open sea. Meltwater streams from the ice carried fine grained sediments toward the sea, resulting in the accumulation of marine sediments on top of the till with the greatest accumulated thickness in the deeper water zones, which now form the valley bottoms.

Following glaciation, isostatic rebound caused a relative decline in sea level. During emergence, all parts of the land surface were washed by waves. Easily erodible surfaces such as marine sediments, till, and glaciofluvial sands and gravels, were reworked and redistributed by waves, currents and sea ice. Some present day rock outcrops were exposed as the thin soil washed off the uplands and accumulated in the valley bottoms.

Since emergence, the effects of natural slope processes, frost action, and permafrost have applied the finishing touches to the present day landscape.

Several lineaments having north-northwest to south-southeast orientations are evident on the air photos south of the proposed mine site (between Spyder Lake and Stickleback Lake, and south of Stickleback Lake). The lineaments include lines of elongated, interconnected depressions infilled mainly with till, and are typically adjacent to bedrock outcrops. These features are probably associated with faults and fracture zones developed within the Hope Bay greenstone belt.

2.3 TERRAIN ANALYSIS

The area has a low to moderate surface relief with not more than 50 m of differential elevation between low and high points. The surficial deposits that overlie the bedrock consist of glacial till, marine sediments, glaciofluvial deposits, lacustrine deposits, and alluvial deposits.

A map of surficial geology and permafrost features, included as Figure 1, was prepared by interpretation of stereo airphotos at a scale of 1:10,000. The airphoto coverage was obtained specifically for the project in July, 1996. A mosaic of the airphoto coverage is shown in Figure 2. Detailed geotechnical data obtained at seven sites, representative of the various terrain units, was used to "ground-truth" the map in Figure 1.

The following surficial geology units have been identified within the area and are shown on the attached terrain map, Figure 1.

Alluvial Deposits (A)

Alluvial deposits are interpreted within floodplains and low river terraces. Generally, they are sands and gravels that may contain lenses and layers of organic material. In some locations, the alluvial deposits are covered by well developed surface vegetation and some peat.

Lacustrine Deposits (L and Lr)

Lacustrine (lakebed) deposits are typically silt and sand with a few lenses of organic detritus, and underlie lacustrine plains and gentle slopes. They mainly occur adjacent to the vicinity of present lakes as they are lake bed soils that have become exposed as the lakes in the region shrink in size.

Within the area, the lacustrine deposits can be divided into two types: recent (Holocene age) lacustrine deposits (Lr) and lacustrine deposits of Holocene-Pleistocene age (L). The former are clearly identified and are composed of fine-grained soils. The latter are not as easily interpreted, therefore, the boundary between L and other types of deposits is less precise.

Marine Deposits (M)

Deposits covering marine plains and terraces consist typically of silts and clays with traces of sand. Shells are present in the sediments (Borehole 12259-06; EBA's 1996 geotechnical drilling program). The marine deposits are characterized by high ice content. The presence of earth hummocks on the surface is indicative of the marine plains, and it has been used as an indicator when interpreting the airphotos. Large icewedge polygons occur in poorly drained areas of the marine plains and are shown on the map, Figure 1.

In the southwestern portion of the mapped area, the marine deposits compose two well-defined terraces: 1st marine terrace (M_1) and 2nd marine terrace (M_2) . The second marine terrace lies at the highest elevation and is believed to be composed of the oldest sediments, with the maximum amount of reworking by erosion and cryogenic geomorphic processes.

Within the rest of the mapped area, the marine sediments have not been separated into terraces due to the lack of geomorphic indicators and insufficient borehole data, and they are shown as "M" symbol on the terrain map (Figure 1).

Glaciofluvial Deposits (Gf and bGf)

Two types of glaciofluvial deposits are interpreted within the site area: glaciofluvial deposits (Gf) and bouldery glaciofluvial deposits (bGf). Gf are identified mainly as eskers and isolated patches of sand and gravel. The eskers are less than 3 m high and about 10-12 m wide. The glaciofluvial material is typically coarse sand with some gravel.

Areas identified as bGf are boulder lags and cobbly bouldery gravels. They occur in areas where significant thickness of the finer grained till matrix soils have been removed by meltwater, leaving behind the larger cobbles and boulders on the surface.

Till Deposits (Gt)

Till is wide spread in the Spyder Lake area and typically consists of a sand matrix with variable amounts of silt, gravel, cobbles and boulders, and occasionally some clay. It was noted in EBA's Preliminary Engineering Study Report (1993), that surface exposures of till appear to be related to elevation. Interpretation of the recent airphotos support that observation. Below about 80 m elevation, there are few till deposits. Between 80 m and 110 m, the till exposed at surface is commonly observed on the flanks of bedrock outcrops where it is relatively thin (about 1.0 m thick) and infills depressions in the rock.

The thickest till deposit (7 m) was encountered at Borehole 12259-06. The till consists of some gravel, silt and isolated cobbles. The matrix is very fine sand, clasts are coarse sand and fine gravel with some coarse gravel, cobbles and boulders up to 250 mm in diameter. The till is overlain by a 5 m thick marine deposit, which in turn is covered by a glaciofluvial deposit (esker).

In locations where till is thin frost jacked bedrock blocks are common. Scattered boulders resulting from frost jacking and erratics are observed at the surface of the till cover within most of the area.

Bedrock (R)

Glacial meltwater has completely stripped bedrock of its till cover over large areas. The bedrock outcrops are easily interpreted and are shown on the map, Figure 1. Bedrock typically consists of highly altered and foliated grey basalts, that are fractured and frost-shattered at the surface.

3.0 INVESTIGATION PROGRAM

3.1 GENERAL

The geotechnical investigation program was carried out between May 10 and May 24, 1996 and consisted of drilling seven boreholes to various depths. The borehole locations were chosen to ensure reasonable coverage of the dominate terrain units (rock uplands, marine lowlands, till ridges, and lake bottom sediments). A thermistor cable and automatic data logger was installed in three of the seven boreholes.

3.2 BOREHOLE LOCATIONS

Six of the boreholes were drilled on land and one borehole was advanced from the ice surface of Stickleback Lake. Borehole locations, surface elevations and completion depths of each borehole are included in Table 1.

TABLE 1
BOREHOLE LOCATION SUMMARY

Borehole Number	UTM Coordinates		Surface Elevation	Completion Depth
	Northing (m)	Easting (m)	(m)	(m)
12259-01	North Bay of Stickleback Lake			10.9 (below lake bottom)
12259-02	7504141	441213	71.7	4.1
12259-03	7504380	441113	77.6	16.1
12259-04	7504916	442236	73.9	13.9
12259-05	7504778	441172	80.5	15.6
12259-06	7505683	441327	69.7	15.8
12259-07	Not located	-		8.4

NOTE: Borehole coordinates determined by BHP survey crew relative to "mine grid" and converted to North American 1983 datum (NAD83) by Sub-Arctic Surveys Ltd., Yellowknife. Borehole No. 1 and 7 were not accurately located.

3.3 DRILLING AND SAMPLING

The boreholes were drilled using a Boyles Brothers BBS-25A diamond drill that was contracted from Conners Drilling Ltd. of Kamloops, B.C. Five of the boreholes were accessed using a skid-mounted set up and the remaining two holes required helicopter moves.

All six land-based holes were drilled using cold brine as the circulating fluid to preserve permafrost core. The brine was prepared by mixing a predetermined volume of calcium chloride pellets with fresh lakewater and snow. The snow was used to lower the temperature of the drill fluid to -2°C or colder to provide good quality frozen soil cores. Frozen core and bedrock samples were recovered with either an NQ (47 mm diameter) or HQ (63 mm diameter) wireline core barrel using conventional diamond drilling techniques. Core recovery in the permafrost was excellent at over 95%. Soft (unfrozen)

sediments from the lake bottom of Stickleback Lake were recovered using a conventional split spoon. The split spoon was advanced hydraulically using the head of the diamond drill.

All recovered core was examined and logged in the field. Soil and ground ice classification and rock index parameters were determined immediately after the core was retrieved. Rock core samples were placed in wooden core boxes and photographed. Rock core index properties measured in the field included recovery, fracture frequency, and Rock Quality Designation (RQD). Frozen soil core was photographed and selected samples were placed in plastic bags for subsequent testing.

All laboratory testing was conducted in accordance with CSA procedures and specifications. Laboratory tests included the following:

- natural moisture content,
- Atterberg Limits,
- particle size distribution analysis, and
- porewater salinity determinations.

Borehole logs are included in Appendix A. The borehole logs contain geotechnical soil and rock description, including structural characteristics of the recovered rock core, descriptions of the ground ice, and laboratory test results. Appendix B provides a tabulated summary of all laboratory test data and the results of grain size analysis on selected overburden samples.

3.4 GROUND TEMPERATURE INSTRUMENTATION

Three thermistor cables were installed at three separate locations in order to monitor ground temperatures. The thermistor cables are of standard EBA design with ten sensing beads spaced over a total length of 15 m. One cable was installed in Borehole 12259-03 (May 17,1996), which is located just west of the north bay of Stickleback Lake. A second cable was installed in Borehole 12259-05 (May 19,1996) which is located on the rock upland between Stickleback Lake and the exploration camp site. The third thermistor cable was installed in Borehole 12259-06 (May 23, 1996) which is located immediately northwest of the camp on a low lying sand and gravel bar that protrudes into Spyder Lake. All three thermistor cables were connected to automated data loggers which are programmed to record ground temperature information twice daily.

Ground temperature readings from all three cables were taken upon completion of the field program. The data loggers were accessed again in June and the data retrieved. Continuous data will be available throughout the winter 1996-97 to supplement data included in this report. Ground temperature data collected to date are included in Appendix C.

4.0 GEOTECHNICAL CONDITIONS

4.1 GENERAL

The following provides a general description of the engineering characteristics of the rock/soils identified at the borehole locations. A detailed log of each borehole is included in Appendix A and a summary of laboratory test data is included in Appendix B. Ground temperature data obtained from the dataloggers for the period May to June, 1996 is included in Appendix C. Selected data has been plotted to show ground temperature with depth in the upper 15 m of the soil/rock profile.

4.2 BEDROCK

The bedrock encountered by the site investigation is a highly altered basalt that is medium grey in color with variable greenish tints and highlights. Quartz stringers are common. The basalt is highly foliated in a near vertical to vertical direction and is relatively weak igneous rock. Core recovery was generally 100%. The rock quality designation (RQD) and fracture frequency were often difficult to ascertain due to the nature of the rock. Recovered core was typically fractured, but most fractures were observed to be along its natural foliations and appear to be drill induced. The occasional horizontal fracture with iron oxide staining was encountered. Notwithstanding the highly fractured core recovery, the RQD was typically around 60%, but ranged from 0 to 90%. The fracture frequency varied from 1 to greater than 15 per metre.

4.3 OVERBURDEN SOILS

The boreholes were positioned to provide geotechnical data for the two principal soil landforms at the site: marine silt and clay and morainal till. These have been related to the interpreted surficial geology in Figure 1. A brief summary of the engineering characteristics of the major soil types follows:

Marine Soils

Marine soils that cover the bedrock in all lowlying areas are silt and clay of low plasticity. They have a well developed cover of surface vegetation. The thickness of marine silt and clay is highly variable, reflecting significant undulations in the underlying bedrock (or till) surface. The thickness varied from 1.5 m to 8 m at the three boreholes drilled in this unit.

The boreholes were drilled at a time when the entire soil profile was frozen, however, accumulations of ground ice at a depth of 0.3 to 0.4 m indicate that this is the probable range in the thickness of the active layer (depth of seasonal thaw). The active layer will be somewhat deeper in upland regions where bedrock is exposed. Ground ice within the permafrost soil of marine origin is high, typically ranging from 20 to greater than 50% by volume of the soil.

All marine soils that were tested for salt within the pore ice had significant concentration. The salinities within the permafrost vary from 3 to 48 ppt, which is slightly greater than seawater (32 ppt). The salinity of the marine soils is less near the ground surface where salts have been leached out by moisture migration within the active layer and upper permafrost.

Till

Till core was obtained in the upper 2 m at Borehole No. 5 and below marine soils at Borehole No. 6. The till has a sand matrix with a trace of silt and clay. Cobbles and boulders are disseminated throughout. Till near the surface has a low to moderate ice content as ice inclusions Vx/Vr rather than the thick lenses common in the marine soils. Till at depth has low ground ice content and is quite dense.

4.4 GROUND TEMPERATURE

The ground temperature data collected for late May and June, 1996 is included in Appendix C. Cold continuous permafrost is present everywhere except below lakes of substantial size and depth. Large lakes, such as Spyder Lake, are expected to be windows through the permafrost whereas smaller lakes and ponds may have permafrost at depth below an unfrozen lakebed. The permafrost boundary at the lake shore will characteristically be near a water depth of 2 m, where lake ice no longer freezes to the bottom. The temperature of the lakebed measured at Stickleback Lake was to 0.7° C.

The lakebed soils at that location (BH No. 1) are unfrozen beyond the maximum depth of borehole penetration, 11 m.

The ground temperature below the depth of seasonal variations ranges from -8°C to -11°C. The depth to which seasonal temperatures vary is approximately 10 m. There is insufficient ground temperature data to judge the precise thickness of the active layer but it is anticipated to be about 0.4 m. A full year of ground temperature data will be available from the dataloggers when they are retrieved in the spring, 1997.

5.0 TERRAIN SENSITIVITY TO CONSTRUCTION

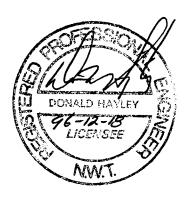
The marine lowlands that are widespread at the site are the most sensitive to disturbance by site development. The well developed surficial organic layer, high ground ice contents and permafrost features such as ice wedges make this terrain unit particularly sensitive to disturbance. Where the site development such as roads and/or an airstrip encroaches on this unit, thicker than normal fills may be required to reduce the risk of thaw and construction should be restricted to the winter (frozen tundra) season.

The construction plans should be developed to ensure that there is no disturbance to the surface vegetation before fill is placed and there is no traffic on the unfrozen surface. Where structure foundations, such as piles are required within the marine soil unit, they must be designed for a high salinity permafrost environment. This will reduce their normal capacity to about 50% of the values used for adfreeze piles in non-saline conditions.

Facilities that are located within the bedrock and till terrain units will be much less susceptible to construction-related disturbance of the permafrost. The basalt bedrock will make an acceptable foundation unit for footings or rock socketed piles. Additional site-specific data will be required to develop foundation design parameters for final design purposes.

6.0 CLOSURE

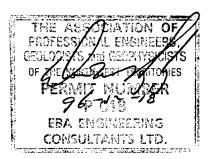
The data presented in this report is based on a preliminary geotechnical investigation, with the objective of collecting sufficient geotechnical and permafrost data to characterize the local soils and ground ice conditions. The information contained in this report is based on the best available data at the time of preparation.



Respectfully submitted, EBA Engineering Consultants Ltd.

E.M. Grozic, P.Eng.

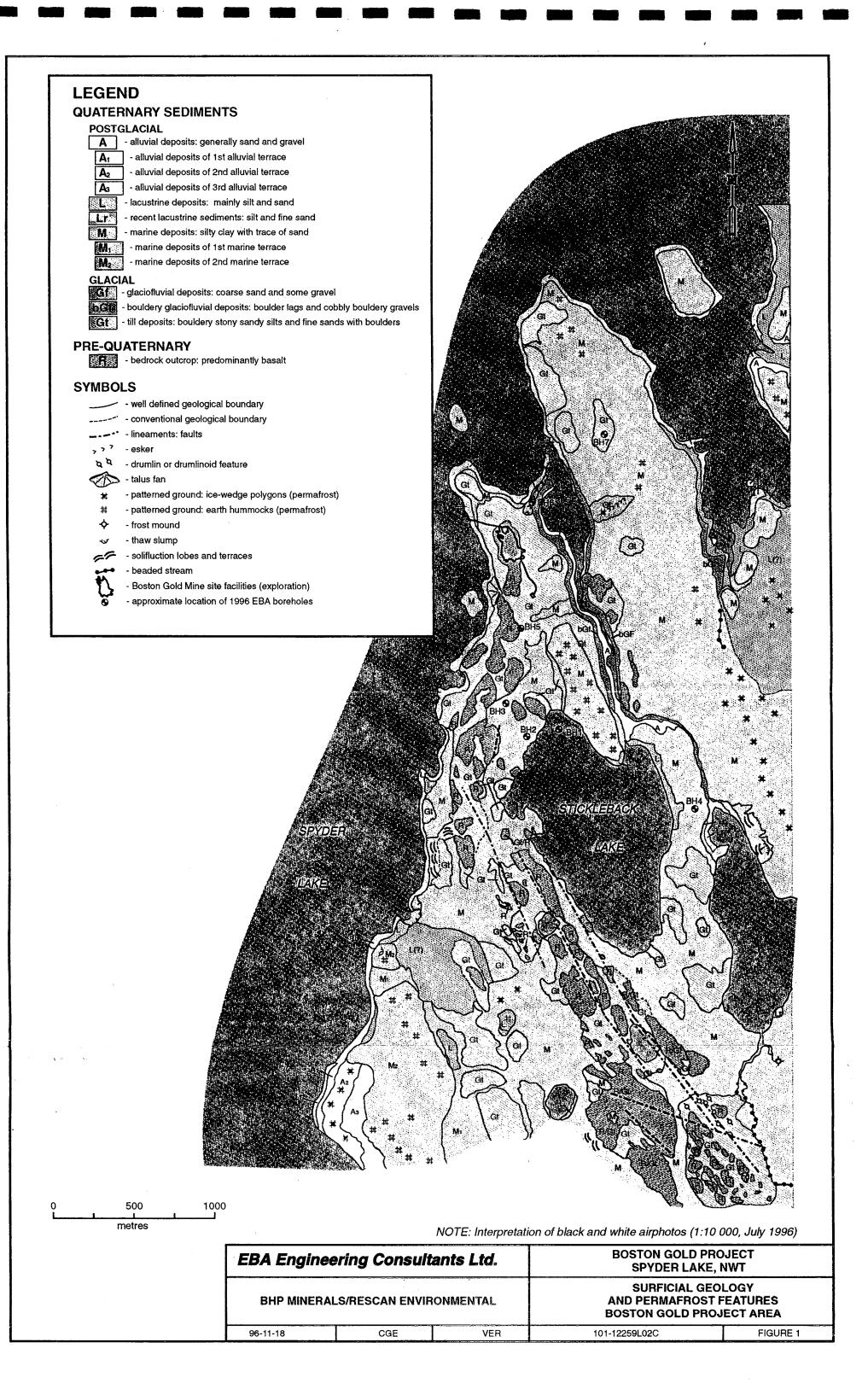
Reviewed by:

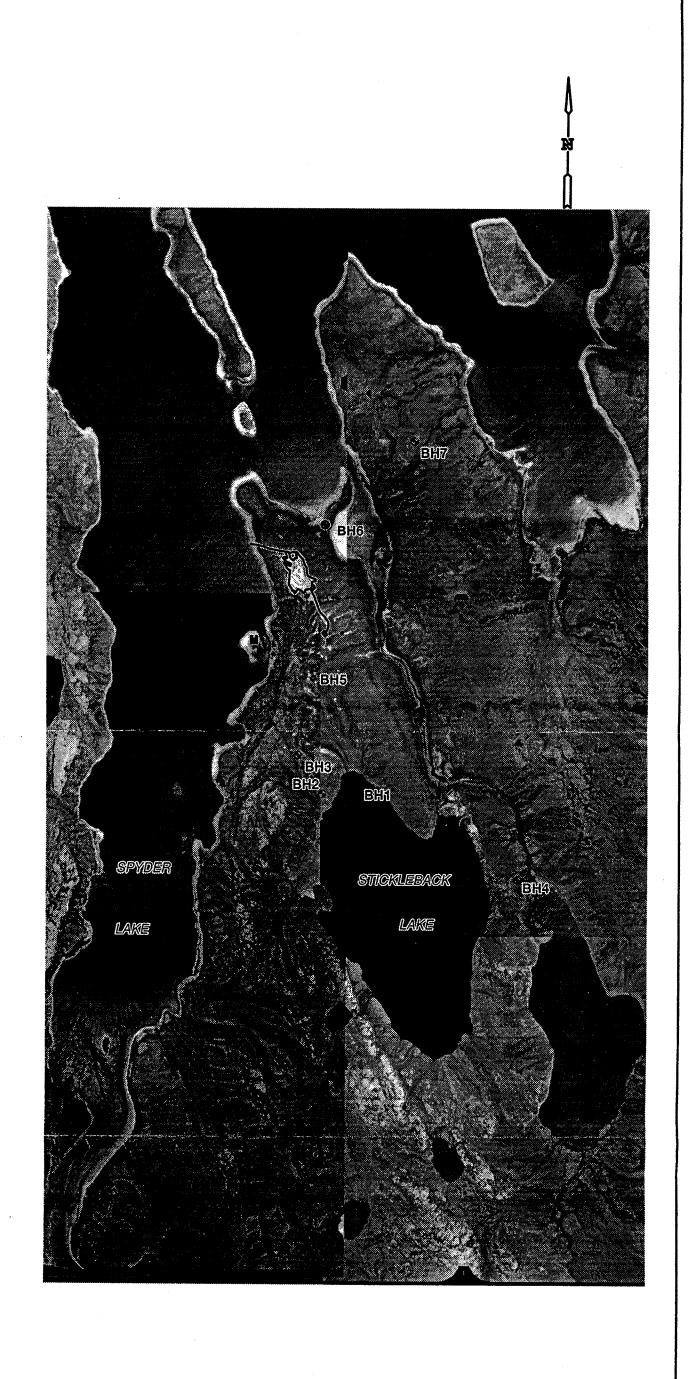

Project Engineer

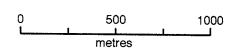
D.W. Hayley, P.Eng. Project Director, Vice President

EMG/VER/DWH/tr

V.E. Roujanski, Ph.D. Terrain Specialist


REFERENCES


- Atmospheric Environment Service, Environment Canada, 1993. Canadian Climate Normals 1961-90, Yukon and Northwest Territories.
- Dyke, A.S., and Prest, V.K. 1986. Late Wisconsin and Holocene retreat of the Laurentide Ice Sheet. Geological Survey of Canada, Map 1702A.
- Dyke, A.S., and Dredge, L.A. 1989. Quaternary geology of the northwestern Canadian Shield. In Quaternary geology of Canada and Greenland. Edited by R.J. Fulton. Geological Survey of Canada, Ottawa.
- EBA Engineering Consultants Ltd., 1993. Boston Gold Project, Preliminary Engineering Study, Surface Facilities and Roads. Report prepared for BHP Minerals International Inc., October, 1993.
- Ryder, J.M. and Associates 1992. Spyder Lake Area (Hope Bay Greenstone Belt) Terrain Analysis and Surficial Geology. Report prepared for W.K. Fletcher, Geological Sciences, University of British Columbia and BHP Utah Mines Ltd.



FIGURES

EBA Engine	ering Consulta	nts Ltd.	BOSTON GOLD PROJECT SPYDER LAKE, NWT		
BHP MINERALS/RESCAN ENVIRONMENTAL			AIR PHO AND BOREHOLE LO		
96-11-18	CGE	VER	101-12259L03A FIGU		

APPENDIX A BOREHOLE LOGS

GEOTECHNICAL REPORT GENERAL CONDITIONS

A.1 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site and development. It is not applicable to adjacent sites nor is it valid for types of development other than that to which it refers. Any variation from the site, or development, necessitates a geotechnical review in order to determine the validity of the design concepts evolved herein.

This report is not to be reproduced in part or in whole without consent in writing from EBA Engineering Consultants Ltd. (EBA). Additional copies of the report, if required, may be obtained upon request. Isolated information, logs of borings, or profiles are not to be reproduced, copied or transferred.

A.2 NATURE AND EXACTNESS OF SOIL DESCRIPTION

Classification and identification of soils are based upon commonly accepted methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system prevail, they are specifically mentioned.

Classification and identification of soil and geologic units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

A.3 LOGS OF BORINGS

The boring logs are a compilation of conditions and classification of soils as obtained from field observations and laboratory testing of selected samples. Soil zones have been interpreted. Change from one geologic zone to the other, indicated on the logs as a distinct line, is in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil zone transition elevations may require special evaluation.

A.4 STRATIGRAPHIC AND GEOLOGIC SECTIONS

The stratigraphic and geologic sections indicated on drawings contained in this report are evolved from logs of borings. Stratigraphy is known precisely only at the locations of the borings. Actual geology and stratigraphy between borings may vary from that shown on these drawings. Natural variations in geologic conditions are inherent and a function of historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of exact locations of geologic units is necessary, it is cautioned that such determination requires special attention.

A.5 GROUNDWATER CONDITIONS

Groundwater conditions represented in this report refer only to those observed at the times recorded on logs of borings, and/or within the text of this These conditions vary with geologic detail between borings; annual, seasonal and special meteorologic conditions; and with construction activity. Where instruments have been established to record groundwater variations on an ongoing basis, the records will be specifically referred to. Interpretation of groundwater conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and construction activity. Deviations from these observations, may occur. No other warranty, express, or implied, is made by EBA.

A.6 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geologic materials to meteorological elements. Many geologic materials deteriorate rapidly upon exposure to climatic elements. Severe deterioration of materials may be caused by precipitation and/or the action of frost on exposures. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from elements, particularly all forms of moisture, desiccation from arid conditions and frost action.

SYSTEM INTERNATIONAL UNITS

QUANTITY	NAME	SYMBOL	EXPRESSED IN TERMS OF OTHER SI UNITS	EXPRESSED IN TERMS OF BASE AND SUPPLEMENTARY UNITS
SI UNITS				
length	metre	m		
mass	kilogram	kg		
time	second	s		
electric current	ampere	A		
thermodynamic temperature	kelvin	K		
amount of substance	mole	mol		
luminous intensity	candela	cd		
SI SUPPLEMENTARY UNITS				
plane angle	radian	rad		
solid angle	steradian	sr		
EXAMPLES OF SI DERIVED UNITS WITH SPEC	HAL NAMES			
frequency	hertz	Hz	1/s	ş:1
force	newton	N	m · kg/s²	m·kg·s ²
pressure, stress	pascal	Pa	N/m²	m ⁻¹ · kg · s ⁻²
energy, work, quantity of heat	joule	j	N · m	m²·kg·s ^{·2}
power, radiant flux	watt	W	J/s	m² · kg · s ^{· 3}
EXAMPLES OF SI DERIVED UNITS WITHOUT	SPECIAL NAMES			
velocity - linear	metre per second		m/s	m · s · 1
- angular	(radian per second)		rad/s	rad · s ^{· 1}
acceleration - linear	(metre per second) per second		m/s²	m·ś²
- angular	(radian per second) per second		rad/s ²	rad · s·²
concentration (of amount of substance)	mole per cubic metre		mol/m³	mol·m·3
dynamic viscosity	pascal second		Pa·s	m ⁻¹ · kg · s ⁻¹
moment of force	newton metre		N - m	m² · kg · s·²
surface tension	newton per metre		N/m	kg·s·²
heat flux density, irradiance	watt per square metre		W/m²	kg·s·3
heat capacity, entropy	joule per kelvin		J/K	m ² · s ⁻² K·1
specific heat capacity, specific entropy	joule per kilogram kelvin		J/(kg⋅K)	m ² · s · ² · K · ¹
specific energy	joule per kilogram		J/kg	m ² · s ^{·2}
thermal conductivity	watt per metre kelvin		W/(m - K)	m ⋅ kg ⋅ s ^{⋅3} ⋅ K ^{⋅1}

OTHER UNITS PERMITTED FOR USE WITH SI

QUANTITY	NAME	SYMBOL	DEFINITION
time	minute	min	1 min = 60 s
· · ·	hour	h	1 h = 3,600 s
	day	d	1 d = 86,400 s
	year	а	
plane angle	degree	5	$1^2 = (n/180) \text{ rad}$
2,0	minute	•	1' = ("/10,800) rad
	second	"	1" = ("/648,000) rad
area	hectare	ha	$1 \text{ ha} = 10,000 \text{ m}^2$
volume	litre	L	$1,000 L = 1 m^3$
	degree Celsius	°C	0° C = 273.15° K
temperature	acgree seisias	_	temperature interval 1 C° = 1 K°
mass	tonne	t	1 t = 1,000 kg = 1 Mg

MULTIPLYING FACTOR	PREFIX	SYMBOL	MULTIPLYING FACTOR	PREFIX	SYMBOL
,000,000,000,000,000,000 = 1018	exa	Ε	$0.1 = 10^{-1}$	deci*	ď
1,000,000,000,000,000 = 1015	peta	P	$0.01 = 10^{-2}$	centi*	С
1,000,000,000,000 = 1012	tetra	T	$0.001 = 10^{-3}$	milli	m
1,000,000,000 = 109	giga	G	$0.000,001 = 10^{-6}$	micro	4
1,000,000 = 106	mega	M	$0.000,000,001 = 10^{-9}$	nano	n
1.000 = 10 ³	kilo	k	$0.000,000,000,001 = 10^{-12}$	pico	p
100 = 102	hecto*	h	$0.000,000,000,000,001 = 10^{-15}$	femto	f
10 = 101	deca*	da	$0.000,000,000,000,000,001 = 10^{-18}$	atto	а

					UNIFIED SOIL	CLASSIFICATIONT
ŗ	MAJC	OR DIVISI	ons	GROUP SYMBOLS	TYPICAL NAMES	CLASSIFICATION CRITERIA
		ieve	CLEAN GRAVELS	GW	Well-graded gravels and gravel-sand mixtures, little or no fines	$\begin{array}{c cccc} & C_{U} = D_{60}/D_{10} & \text{Greater than 4} \\ & & & & \\ \hline & & \\ $
s.) sieve	GRAVELS 50% or more of coarse fraction retained on No. 4 sieve	CLEAN (GP	Poorly-graded gravels and gravel-sand mixtures, little or no fines	Solve the second section of the second section $C_c = \frac{1}{D_{10} \times D_{60}}$ Between 1 and 3 Not meeting both criteria for GW
SOIL	No. 200	GR 50% coar etained	GRAVELS WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures	Atterberg limits plotting in hatched area are borderline classifications re-
AINE	ned on	ے	GRAVEL WITH FINES	GC	Clayey gravels, gravel-sand clay mix- tures	Atterberg limits plot above 'A' line and plasticity index greater than 7 bols
COARSE-GRAINED SOILS	More than 50% retained on No. 200 sieve	oarse I sieve	CLEAN SANDS	sw	Well-graded sands and gravelly sands, little or no fines	Not meeting both criteria for GW Not meeting both criteria for GW Not meeting both criteria for GW Atterberg limits plot below 'A' line or plasticity index less than 4 derline classifications requiring use of dual symbols Atterberg limits plot below 'A' line or plasticity index less than 4 derline classifications requiring use of dual symbols Cu = D ₆₀ /D ₁₀ Greater than 7 Cu = D ₆₀ /D ₁₀ Greater than 6 C _c = (D ₃₀) ² D ₁₀ xD ₆₀ Not meeting both criteria for SW
8	More tha	SANDS More than 50% of coarse fraction passes No. 4 sieve	CLEAN	SP	Poorly - graded sands and gravelly sands, little or no fines	Section 1 and 3 Co = \frac{(D_{30})^2}{D_{10}xD_{60}} = \frac{(D_{30})^2}{D_{10}xD_{6
		S ore thar ction pa	DS TH ES	SM	Silty sands, sand-silt mixtures	Atterberg limits plot helow 'A' line Atterberg limits plotting
		M. fra	SANDS WITH FINES	\$C	Clayey sands, sand-clay mixtures	or plasticity index less than 4 in hatched area are borderline classifications requiring use of dual symbols Atterberg limits plot above 'A' line quiring use of dual symbols
		AYS		ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands	PLASTICITY CHART For classification of fine-grained soils and fine fraction of coarse
SOILS	200 sieve*	SILTS AND CLAYS	50% or less	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	grained soils Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols
FINE-GRAINED SOILS	passes No.	SILT	OL Organic silts and of low plasticity		Organic silts and organic silty clays of low plasticity	Equation of 'A' line: PI = 0.73(LL - 20)
FINE-GR	50% or more passes No. 200 sieve*	SILTS AND CLAYS	20%	МН	Inorganic silts, micaceous or diato- maceous fine sands or silts, elastic silts	20 MH & OH
	22	TS AND CL	greater than 50%	СН	Inorganic clay of high plasticity, fat clays	ML & OL
		SILT	grea	ОН	Organic clays of medium to high plasticity	0 10 20 30 40 50 60 70 80 90 100 LIQUID LIMIT
н	GHL'	Y ORGANIC	SOILS	PT	Peat, muck and other highly organic soils	*Based on the material passing the 3 in. (75 mm) sieve †ASTM Designation D 2487, for identification procedure see D 2488

GROUND ICE DESCRIPTION

ICE NOT VISIBLE

GROUP SYMBOLS	SYMBOLS	SUBGROUP DESCRIPTION	
	Nf	Poorly-bonded or friable	2
N	Nbn	No excess ice, well-bonded	
	Nbe	Excess ice, well - bonded	

NOTE:

- NOTE:

 1. Duel symbols are used to indicate borderline or mixed ice classifications

 2. Visual estimates of ice contents indicated on borehole logs ± 5%

 3. This system of ground ice description has been modified from NRC Technical Memo 79, Guide to the Field Description of Permafrost for Engineering Purposes.

LEGEND

Soii

VISIBLE ICE LESS THAN 50% BY VOLUME

GROUP SYMBOLS	8YMBOLS	SUBGROUP DESCRIPTION	
	Vx	Individual ice crystals or inclusions	
	Vc	Ice coatings on particles	.5.
V	Vr	Random or irregularly oriented ice formations	
	Vs	Stratified or distinctly oriented ice formations	-2-10-E

VISIBLE ICE GREATER THAN 50% BY VOLUME

	ICE + Soil Type	Ice with soil inclusions	- 1200
ICE	ICE	lce without soil inclusions (greater than 25 mm (1 in.) thick)	

ROCK DESCRIPTION TERMS USED ON BOREHOLE LOGS

ESTIMATED MECHANICAL STRENGTH

TERM	UNCONFINED	CON	IPRES	SIVE STRENGTH
Very Low Strength	1	to	4	MPa
Low Strength	4	to	15	MPa
Medium Strength	15	to	50	MPa
High Strength	50	to	200	MPa
Very High Strength	More	than	200	MPa

GRAIN SIZE

OTHER ROCKS

Very Coarse Grained

NON-CARBONATE	DETRITAL
SEDIMENTARY	ROCKS

Conglomerate or Breccia Conglomerate or Breccia Sandstone 1

FISSILE

NON-FISSLE

Silt Shale Mud Shale Clay Shale Siltstone Mudstone Claystone

Coarse Grained Medium Grained Fine Grained

Fine Grained Very Fine Grained More than 80 mm 4 to 80 mm 80 μm to 4 mm

GRAIN SIZE

>2/3 silt-sized (2 to 80 μ m) silt and clay-sized (<80 μm) >2/3 clay-sized (<2 µm)

DISCONTINUITY SPACING

BEDDING

Very thicly Bedded Thickly Bedded Medium Bedded Thinly Bedded Very Thinly Bedded Laminated Thinly Laminated Fissile

OTHER DISCONTINUITIES Very Widely Spaced
Widely Spaced
Widely Spaced
Moderately Widely Spaced
Closely Spaced
Very Closely Spaced
Extremely Closely Spaced
Extremely Closely Spaced
Extremely Closely Spaced
Extremely Closely Spaced

SPACING

More than 2 m 600 mm to 2 m 200 to 600 mm 60 to 200 mm 20 to 60 mm 6 to 20 mm 2 to 6 mm Less than 2 mm

WEATHERED STATE

DEGREE

No visible signs of weathering Weathering only on open discontinuity surfaces Rock mass weathered but not friable Rock mass weathered and partly friable Wholly decomposed but texture and structure preserved Original rock texture and structure destroyed

CORE RECOVERY

DESCRIPTION

Total recovery expressed as a percentage of run length Solid recovery expressed as a percentage of run length Sum of lengths of solid core more than 100 mm long expressed as a percentage of run length Number of breaks per metre of solid core (FI's in excess of 30 denoted as 30+)

Fracture Index (FI)

Rock Quality Designation (RQD)

Solid Recovery

TERM Total Core Recovery

TERM

Slightly Weathered Moderately Weathered Highly Weathered Completely Weathered Residual Soil

Fresh

ROCK QUALITY

TERM	RQD
Very Poor Quality	0 to 25
Poor Quality	25 to 50
Fair Quality	50 to 75
Good Quality	75 to 90
Excellent Quality	90 to 100

¹Sandstone further subdivided where appropriate into fine, medium, coarse

SPYDER LAKE, NWT		N GOLD PROJECT	RESCAN ENVIRONMEN		BOREHOLE NO: 12259-01
SAMPLE TYPE SHELBY TUPE DISTURBED SPIT NO RECOVERY CORE LITHOLOGICAL DESCRIPTION DESCRIPT					· · · · · · · · · · · · · · · · · · ·
LITHOLOGICAL DESCRIPTION DESCR			1		
DESCRIPTION DESCR	SAMPI	E TYPE SHELBY TUBE DISTURBED	SPT	NO RECOVERY CORE	
DESCRIPTION DESCR	H(m)	LITHOLOGICAL	GROUND	● FRACT. FREQ. (per m 4 8 12 1	1) ◆ ■ SALINITY (ppt) ■
SLT – some clay and organics, trace of fine grained sand, very soft, medium brown with slight grayish highlights -1.0 CLAY AND SLT (CLAY) - trace of sand, stiff, low plastic, medium to dark grey -3.0 SAND (TILL) – sitty, trace of gravel, fine to medium grained sand -6.0 BASALT (BEDROCK) – occosional quartz stringers, broken and blocky, lolated and othered, soft, grey – natural toliations about 25 degrees to vertical	DEPTI	DESCRIPTION	DESCRIP	TION 40 60 80 10	D)
fine grained sand, very soft, medium brown with slight greysh highlights trace of organics, becoming stiffer with depth, becoming grey CLAY AND SLIT (CL-ML) - trace of sand, stiff, low plastic, medium to dark grey SAND (TLL) - silty, trace of grovel, fine to medium grained sand Fig. 6.0 BASALT (BEDROCK) - occosional quartz stringers, broken and blacky, foliated and attered, soft, grey - natural foliations about 25 degrees to vertical	0.0	017			0 20 40 60 80 0.0
with deptin, becoming grey CLAY AND SILT (CL-ML) — trace of sand, stiff, low plastic, medium to dark grey -3.0 SAND (TILL) — silty, trace of grovel, fine to medium grained sand BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, folioted and oftered, soft, grey — natural foliotions about 25 degrees to vertical	- 0.0 - - - - -	fine grained sand, very soft, medium brown with slight greyish highlights	1\ / {		•
SAND (TILL) — sitty, trace of gravel, fine to medium grained sand SAND (TILL) — sitty, trace of gravel, fine to medium grained sand BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, folioted and oltered, soft, grey — natural foliations about 25 degrees to vertical	1.0	with depth, becoming grey CLAY AND SILT (CL-ML) — trace of sand,			1.0
SAND (TILL) — sitty, trace of gravel, fine to medium grained sand -5.0 BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey — natural foliations about 25 degrees to vertical		·			•
SAND (TILL) — sitty, trace of gravel, fine to medium grained sand -6.0 BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, folioted and altered, soft, grey — natural foliations about 25 degrees to vertical	2.0				2.0
SAND (TILL) — silty, trace of gravel, fine to medium grained sand - 6.0 BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey — natural foliations about 25 degrees to vertical	3.0				■
SAND (TILL) — silty, trace of gravel, fine to medium grained sand BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey — natural foliations about 25 degrees to vertical	- - - - 4.0				4.0
SAND (TILL) — silty, trace of gravel, fine to medium grained sand - 7.0 BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey — natural foliations about 25 degrees to vertical					5.0
BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey natural foliations about 25 degrees to vertical	- 5.0 - - - -				•
BASALT (BEDROCK) — occasional quartz stringers, broken and blocky, foliated and altered, soft, grey natural foliations about 25 degrees to vertical	6.0	to mediani granico cano			6.0
stringers, broken and blocky, foliated and altered, soft, grey - natural foliations about 25 degrees to vertical	7.0				7.0
foliated and altered, soft, grey natural foliations about 25 degrees to vertical	8.0		*		8.0
	9.0	foliated and altered, soft, grey — natural foliations about 25 degrees to vertical			9.0
TIDA ENGINEEDING CONCILITANTE ITD LOGGED BY: EMG COMPLETION DEPTH: 10.9 m		DA ENGINEEDING CONCUE	TANITO LET	LOGGED BY: FMG	COMPLETION DEPTH: 10.9 m
EBA ENGINEERING CONSULTANTS LTD. REVIEWED BY: EMG COMPLETE: 96/05/13	E	BA ENGINEERING CONSUL	TANTS LTD.		COMPLETE: 96/05/13
		EDMONTON, ALBERTA			Page 1 of 2

y or and

prosection electricity,

Non-more and oppose

Secure Characteristics

(Congressors)

for a large state of the state

ppresenter factorite

Maramana sa sa gili

Physics on Contraction (C)

de la constant de la

	N GOLD PROJECT		ONMENTAL SERVI	BOREHOLE NO: 12259-01 PROJECT NO: 0101-96-12259					
	CHNICAL SITE EVALUTATION		5A DIAMOND DRI				12259		
	R LAKE, NWT	1	N7503950 E44		ELEVATIO	N:			
SAMP	LE TYPE SHELBY TUBE OISTURBED	SPT	ШЛИО	RECOVERY CORE	·				
(m)	LITHOLOGICAL	₩ GRO	OUND ICE	• FRACT. FREQ. (per m 4 8 12	n) •	■ SALINITY (ppt) 20 30 40) ■ (a) 50		
ОЕРТН(м)	DESCRIPTION		CRIPTION	▲ RQD (%) ▲ 40 60 80 1 ■ RECOVERY (%) ■	00 PLAS	STIC M.C.	DEPTH(m)		
					30	20 40 60	80 - 10.0		
10.0	BASALT - (continued)								
11.0 - - - - - - - -	END OF BOREHOLE (10.9 metres) Single bead thermistor installed at lakebed. Initial ground temperature 0.7 degrees C.						11.0		
12.0	Borehole drilled from the ice surface of Stickleback Lake. Water Depth: 3.2 metres						12.0		
13.0							13.0		
14.0							14.0		
15.0							15.0		
16.0							16.0		
17.0							17.6		
18.0							18.0		
19.0							19.1		
20.0		TANTO IT		BY: EMG		PLETION DEPTH			
	BA ENGINEERING CONSUL	IANIO LI		ED BY: EMG	СОМ	PLETE: 96/05/			
96/12/18	EDMONTON, ALBERTA		Fig. No:	12259-01			Page 2 of 2		

. .

Service Commence and

Military and Market an

life year vertilities

(personal constraint)

Acres and a second

general control of the second of the second

Mary Company of the Company

president concentration of the second

A comment of the second

BOSTON GOLD PROJECT	RESCAN ENVIRONMENTAL SEI		BOREHOLE NO: 12259-02
GEOTECHNICAL SITE EVALUTATION	DRILL: BBS-25A DIAMOND I		PROJECT NO: 0101-96-12259
SPYDER LAKE, NWT SAMPLE TYPE SHELBY TUBE DISTURBED	UTM ZONE: 13 N7504141 E	141213 NO RECOVERY CORE	ELEVATION: 71.7 (m)
	GROUND ICE	● FRACT. FREQ. (per m) 4 8 12 16	SALINITY (ppt) ■
E LITHOLOGICAL DESCRIPTION	DESCRIPTION	▲ RQD (%) ▲ 40 60 80 10 ■ RECOVERY (%) ■	
ORGANICS — silty, some clay, numerous rootlets, dark greyish brown, (50mm thick)	Vs 5%, Ice lenses <2mm thic	20 40 60 80 k	0 20 40 60 80 - 0.0
CLAY (CL) AND SILT — some fine grained sand, occasional organic inclusions and rootlets, medium plastic, olive brown	about 60% ice. Vs/Vr 40%, Ice lenses to 25mm thick. 80mm thick ice seam, 60% Vs/Vr 30%, Ice lenses to	ce	1.0
- trace of fine grained sand SAND AND SILT - some clay, trace of gravel to 25mm diameter, fine grained sand	15mm thick.	1	2.0
BASALT (BEDROCK) — moderately weather altered, foliated, friable, soft, grey — more intact, foliated approximately	ed,		3.0
25 degrees to vertical, many fractures along foliations, most appear drill induced, weak			4.0
END OF BOREHOLE (4.1 metres)		14	
- 5.0			5.0
- 6.0			6.0
7.0			7.0
- 8.0			8.0
			9.0
— 9.0			
EBA ENGINEERING CONSUL	LIANIS LID. REVIE	ED BY: EMG WED BY: EMG	COMPLETION DEPTH: 4.1 m COMPLETE: 96/05/15
EDMONTON, ALBERTA	A Fig. 1	No: 12259-02	Page 1 of 1

Figure and the second

Constitution or supplied to

The second secon

A constant

become come position of

per productives

the consumers

Section 1 - 50

Targettergytchied Beautispotend

But approximate of

No. 1 188

Management of the state of the

L	ON GOLD PROJECT	RES	CAN ENVIRONMENTAL SERVI	CES LTD.	——	EHOLE N		259-03	
	CHNICAL SITE EVALUTATION	 	L: BBS-25A DIAMOND DRI					96-12259	9
	ER LAKE, NWT LE TYPE SHELBY TUBE DISTURBED		ZONE: 13 N7504380 E44 SPT N0	RECOVERY CORE	1	VATION: 7	7.6 (m _.)	
SAMP	LE TYPE SHELBY TUBE DISTURBED		Z SPI UNO	RECOVERT LOCKE	-				
ЭЕРТН(м)	LITHOLOGICAL	ЕТҮРЕ	GROUND ICE		n) ● 16	■ S 20	ALINITY (j 30 4	opt)∎ 0 50	ОЕРТН(м)
DEPT	DESCRIPTION	SAMPL	DESCRIPTION	■ RECOVERY (%) ■		PLASTIC	M.C.	LIQUID	DEPT
- 0.0 -	ORGANICS — silty, trace of sand and clay, numerous rootlets, black, (150mm		Nbn Vs 30%, ice lenses to 5mm	20 40 60 8	80	20	40 6	0 80	- 0.0
-	thick) CLAY — silty, trace of organic inclusions, medium plastic, medium olive brown		thick. 125mm thick ice rich seam, 60% ice. Vs 30%, Ice lenses to 8mm						
- 1.0 - - - - -	SILT AND SAND — trace of gravel to 25mm diameter, fine to medium grained		thick. Vs/Vr 20-30%, Ice lenses to 10mm thick.				•		1.0
2.0	ICE — grey silty clay inclusions		Vr 20-30% ice. occasional Vs						2.0
	SILT (ML) AND CLAY — inorganic silt, trace of fine grained sand, medium plastic, grey		lenses to 2mm thick. Decreasing ice content with depth.						- - - - -
3.0	reticulate vein ice reticulate vein ice becomes coarser with depth							•	3.0
		Z						•	
— 4.0 - - -									4.0
5.0	- slightly darker grey		Vertical to steeply inclined ice seams 10–30% ice, lenses to 25mm thick.						5.0
						•		•	
- 6.0 									6.0
- - - - 7.0	SAND AND SILT — trace of clay and gravel, occasional laminations horizontal								7.0
	and slightly inclined, fine grained sand, low plastic — 125mm thick gravel and sand seam			•	1				
8.0	BASALT (BEDROCK) — occasional quartz stringers, highly altered, foliated in near vertical direction,	'							8.0
- - - - - - 9.0	fractured and broken, many fractures are likely drill induced, grey horizontal joint, iron oxide staining	S							9.0
- - - -	 horizontal joint, iron oxide staining horizontal joint, iron oxide staining reddish staining on core 								
10.0	- horizontal joint, iron oxide staining		TO IMD LOGGED	BY: FMC	<u> </u>	COMDI ETI	או הבסי	TH: 16.1 m	10.0
E	BA ENGINEERING CONSUL'	ľAN		BY: EMG		COMPLETE			
I .	· EDMONTON, ALBERTA		Fig. No:						1 of 2

American market and the second

Transmitter register and

West procession and

Separate Street

Security of the second

Hammonometer 11

And the second s

(April 1990) Comment

Secular anaparents

per consequence of

	ON GOLD PROJECT		NTAL SERVICES LTD.		HOLE NO: 1					
 	CHNICAL SITE EVALUTATION	DRILL: BBS-25A D		PROJECT NO: 0101-96-12259						
	R LAKE, NWT	UTM ZONE: 13 N750		 	ATION: 77.6 (1	m)				
SAMP	LE TYPE SHELBY TUBE DISTURBED	SPT	NO RECOVERY	CORE	····					
DEPTH(m)	LITHOLOGICAL	GROUN	D ICE FRACT. FREQ	. (per m) ● 12 16	■ SALINITY 20 30	(ppt) ■ 40 50	(w)			
DEPT	DESCRIPTION	JID DESCRI	■ RECOVER	80 100 Y (%)■	PLASTIC M.C		DEPTH(m)			
10.0	BASALT — (continued) — core recovery highly fractured, gravel and cobble fragment sizes		20 40	60 80	20 40	60 80	10.			
11.0	— highly fractured recovery		• • • •				- 11.			
12.0	— iron oxide staining						- 12.			
13.0	— distinct drill induced fracture along foliation plane		• •	*			- 13.			
14.0	 distinct drill induced fracture along foliation plane more weathered and altered, friable, 						- 14.			
15.0	highly fractured, near vertical foliations						- 15.			
16.0	END OF BOREHOLE (16.1 metres)						- 16.			
- - - - - - - 17.0	Thermistor string #1049 installed.						- 17.			
18.0							- 18.			
19.0							- 19.			
20.0							20.			
E	BA ENGINEERING CONSULT	CANTS LTD.	LOGGED BY: EMG REVIEWED BY: EMG		OMPLETION DE					
	EDMONTON, ALBERTA		Fig. No: 12259-03	100	OMPLETE: 96/0	Page 2 c	of 2			
96/12/18 1	1:45AM (0:01-10N)		1. 19. 110. 12200 00			1 090 2 0	<u> </u>			

Figure street street

The lease of the last

Acc. 12

Amount strength

Brenderstein State State

E

Specific recovery of the second

		RESCAN ENVIRONMENTA DRILL: BBS-25A DIAM			REHOLE NO: 1225 DJECT NO: 0101-96	59-04 -12259
L		JTM ZONE: 13 N75049			VATION: 73.9 (m)	12255
	LE TYPE SHELBY TUBE DISTURBED	SPT	NO RECOVERY	CORE		
DEPTH(m)	LITHOLOGICAL DESCRIPTION	GROUND DESCRIPT	ION 40 RE	FREQ. (per m) • 8 12 16 RQD (%) • 60 80 100 COVERY (%) •	SALINITY (ppt) 20 30 40 PLASTIC M.C.	DE PTH (
- 0.0	ORGANICS — silty, trace of sand and clay,		20	40 60 80	20 40 60	80 0.0
1.0	numerous rootlets, black SILT AND CLAY — some sand, trace of rootlets, occasional organic inclusion, dark brown ICE — clay inclusions SILT (ML) AND CLAY — trace of fine to	Vs, lenses become the with depth, lenses to thick, 30% ice, ice concreases with depth 60-70% ice. Vr 20% ice.	20mm ontent			1.0
2.0	medium grained sand, blocky, reticulate ice structure, clasts become larger with depth, medium plastic, dark greyish brown — shell fragments disseminated throughout	Increased ice conten	t 25-35%			2.0
3.0		ice content 40%, ice	opaque.		<u> </u>	3.0
4.0	CLAY (CL) AND SILT — trace of fine grained sand, trace of gravel, low plastic, medium to dark grey				H-H	4.0
5.0	GRAVEL (TILL) — sandy, some silt, medium brown — cobbles and boulders disseminated throughout					5.0
6.0	BASALT (BEDROCK) — schistose, weak, highly altered, near vertical foliations, grey					7.0
7.0	- 3mm thick quartz stringer, natural foliations at 200mm					
8.0	— fragmented and shattered below 7.9 metres, recovery <75mm in size					8.0
9.0			LOCCED DV. ENG		COMPLETION SERVICE	9.0
E	BA ENGINEERING CONSULT	ANTS LTD.	LOGGED BY: EMG REVIEWED BY: EMG		COMPLETION DEPTH: COMPLETE: 96/05/	
	EDMONTON, ALBERTA		Fig. No: 12259-04			Page 1 of 2

*

Manager and discovering

Mary companies representation of the second

Separate and the separate sepa

Manual control on stills

Maria Lavaragi

je.

Sur commodition of Last

The same processes and

· -

÷ .2

No came on a constraint

CECTECNICAL SITE (VALUATION DIRLL SEC-25A DIAMOND DRILL PROJECT NO. 0101-36-12259	ļ	N GOLD PROJECT		N ENVIRONMEN			LTD					BOF	REHO	LE N	10:	1225	59-()4
SAMPLE TYPE		The state of the s															5-122	59
Comparison Com												ELE	VATIC)N: 7	73.9 ((m)_		··
DESCRIPTION	SAMPI	LE TYPE SHELBY TUBE DISTURBED		SPT	∭N0	REC	OVER	?Y	Ц		RE							
10.3 BASALI - (continued)	(m)H.	LITHOLOGICAL	1 1	GROUND	ICE		● FR <i>A</i>	8		12	16	•		■: 20	Salinit 30	Y (ppt)) ■ 50	Н(m)
100 385ALT - (continued)	DEPT	DESCRIPTION	SAMPL	DESCRIP'	ΓΙΟΝ			60 RECC) OVER	80	100)	+					DEPT
- more intact, less broken - 110 - bands of alteration more frequent - 130 - bands of alteration more frequent - 130 - 140 ENO OF BOREHOLE (13.9 metres) - 150 -	10.0	RASALT - (continued)				-		40)				-	20	40	60	80	_ 10.
- 13.0	E																	ŀ
- 13.0	F										<u>.</u>							
- 13.0	F		H				:		4				•			: !		F
- bands of alteration more frequent - 13.0 - 14.0 END OF BOREHOLE (13.9 metres). - 15.0 - 15.0 - 15.0 - 16.0 - 17.0 - 18.0 - 19.0 -	11.0																	
- bands of alteration more frequent - 13.0 - 14.0 END OF BOREHOLE (13.9 metres) - 15.0 - 1	<u> -</u>																	<u> </u>
- bands of alteration more frequent - 13.0 - 14.0 END OF BOREHOLE (13.9 metres) - 15.0 - 1	 																	F
- bands of alteration more frequent - 13.0 - 14.0 END OF BOREHOLE (13.9 metres) - 15.0 - 1	12.0							ļļ.										12.
13.0 END OF BOREHOLE (13.9 metres) 14.0 END OF BOREHOLE (13.9 metres) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	E	 bands of alteration more frequent 																E
14.0 END OF BOREHOLE (13.9 metres) 15.0 16.0 17.0 18.0 18.0 19.0 EBA ENGINEERING CONSULTANTS LTD. LOCGEO BY: EMG COMPLETION DEPTH: 13.9 m COMPLETE 95/05/17 EDMONTON, ALBERTA EDMONTON, ALBERTA Page 2 of 2 o	E	,											ļ <u>.</u>					<u>E</u>
14.0 END OF BOREHOLE (13.9 metres) 15.0 16.0 17.0 18.0 18.0 19.0 EBA ENGINEERING CONSULTANTS LTD. LOCGEO BY: EMG COMPLETION DEPTH: 13.9 m COMPLETE 95/05/17 EDMONTON, ALBERTA EDMONTON, ALBERTA Page 2 of 2 o	E																	E
-15.0 -16.0 -17.0 -18.0 -19.0	13.0		H						• 4	•								13.
-15.0 -16.0 -17.0 -18.0 -19.0	F															:		F
-15.0 -16.0 -17.0 -18.0 -19.0	-																	E
-15.0 -16.0 -17.0 -18.0 -19.0	E 140							ļ į,										- 14
- 16.0 - 17.0 - 18.0 - 19.0 - 20.0 - EBA ENGINEERING CONSULTANTS LTD. - EDMONTON, ALBERTA - 16.0 - 17.0 - 18.0 - 18.0 - 19.0 - 20.	F 14.0	END OF BOREHOLE (13.9 metres)																F 14.
- 16.0 - 17.0 - 18.0 - 19.0 - 20.0 - EBA ENGINEERING CONSULTANTS LTD. - EDMONTON, ALBERTA - 16.0 - 17.0 - 18.0 - 18.0 - 19.0 - 20.		·											ļ	. į į				. E
- 16.0 - 17.0 - 18.0 - 19.0 - 20.0 - EBA ENGINEERING CONSULTANTS LTD. - EDMONTON, ALBERTA - 16.0 - 17.0 - 18.0 - 18.0 - 19.0 - 20.	E																	E
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	15.0							ļļ.										15.
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	-															:		F
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	-							1										F
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m																:		-
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m REVIEWED BY: EMG COMPLETE: 96/05/17	16.0																	16.
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG																:	i : :	-
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG	-															:		-
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	17.0							ļļ.										17.
EBA ENGINEERING CONSULTANTS LTD. EDMONTON, ALBERTA LOGGED BY: EMG REVIEWED BY: EMG COMPLETION DEPTH: 13.9 m REVIEWED BY: EMG COMPLETE: 96/05/17 Fig. No: 12259-04 Page 2 of 2	Ē.								:									<u> </u>
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	E							·				,						<u>.</u>
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	E											:		1.				<u> </u>
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	18.0							<u>.</u>				•						18.
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	F .						:											F
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	-																	
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	10 0		description of the second															19
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	F 13.0																	-
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	E										L.İ.							
EBA ENGINEERING CONSULTANTS LTD. LOGGED BY: EMG COMPLETION DEPTH: 13.9 m	E		-					ŧ .		i								1.1.1
EBA ENGINEERING CONSULIANTS LID. REVIEWED BY: EMG COMPLETE: 96/05/17 Fig. No: 12259-04 Page 2 of 2		D. DIGILIZADINA CONCU	m + 2 777	lo Imp	I DOCED I	RY-	FMC.	: -	- 1		· · ·	- <u>:</u> T	COME		UN D	EPTH-	130	
EDMONTON, ALBERTA Fig. No: 12259-04 Page 2 of 2	E.			S LID.	REVIEWED) BY	: EN	1G									17	
	96/12/1R 1	EDMONTON, ALBERTA			Fig. No:	122	59-	04									Pag	e 2 of 2

1,

1

1-4

in the second se

Total and the second

	N GOLD PROJECT	 	AN ENVIRONMEN			D.						59-05	
J	CHNICAL SITE EVALUTATION .	+	: BBS-25A DIA									5-12259	9
	R LAKE, NWT		ZONE: 13 N750						OITAV	N: 80.5	(m)		
SAMPI	LE TYPE SHELBY TUBE 🖊 DISTURBED	[SPT	∭N0	RECOVE	RY	COR		.,				
ОЕРТН(м)	LITHOLOGICAL	TYPE	GROUND) ICE	● FR 4	ACT. FR	EQ. (per r 12	n) ● 16	2	■ SALINI 20 30	TY (ppt 40) ■ 50	ОЕРТН(м)
EPTI	DESCRIPTION	SAMPLE	DESCRIP	TION	40		0 (%) ▲ 80 1	00	PLAST	TIC N	1.C.	LIQUID	EPT
۵	DESCRIPTION	SA	DESCRI	1101		■ RECOV	ERY (%) ■		1 -	20 40	60	 	0
_ 10.0	BASALT - (continued)				20	40	1	50	1	U 40	60	80	- 10.0
-	• /												F
-	acceptional raddish brown staining on												F
11.0	— occasional reddish brown staining on core							·		: : :			E 11.0
-	— horizontal joint, natural joint, iron												<u> </u>
	oxide staining along surface — natural horizontal joint						Ī.	<u>.</u>	.T.				-
-	 highly fragmented recovery for 1.2 												<u>-</u> -
12.0	metres							† -					12.0
-													-
-													F
- 13.0			•					<u> </u>			<u> </u>		13.0
-													<u> </u>
								<u></u>			<u> </u>		<u>-</u> -
- -													<u>-</u>
14.0 -						- ∳		ii.					14.0
-													F
F													F
_ 15.0								ļļ					15.0
					†	-			•				- - -
-									1				-
- - -	END OF BOREHOLE (15.6 metres)								T :		1 +		-
— 16.0	Thermistor string #1050 installed.			Parket and American				† †					16.0
													-
- -													E
17.0								ļļ			ļļ		17.0
-													F
				-									F
													F
— 18.0 -													18.0
- -							ļ			: . : }	i		<u>-</u>
_													ļ.
- 19.0								ļļ			ļļ	ļ	19.0
F				1									Ė
F											<u></u>	<u>.</u>	F
20.0													20.0
	BA ENGINEERING CONSULT	<u></u> ГД N′	TS ITD	LOGGED E								15.6 m	
لظا		I LI I	IU LID.	REVIEWED Fig. No: 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				COMPL	ETE: 96	/05/		2 of 2
96712718 1	EDMONTON, ALBERTA			1119, 140.	12239-	UJ			L,			ruge .	2 01 2

The second second

Recommended or control

The second street

the landscore

1

į. .;

	GOLD PROJECT		INTAL SERVICES LTD.		DREHOLE NO			
	HNICAL SITE EVALUTATION	DRILL: BBS-25A D			ROJECT NO:		5-12259	
	LAKE, NWT	UTM ZONE: 13 N75			EVATION: 69	9.7 (m)		
SAMPLE	TYPE SHELBY TUBE DISTURBED	SPT	NO RECOVERY	CORE			····	
DEPTH(m)	LITHOLOGICAL DESCRIPTION	GROUN JAW DESCRI	PTION 40 ■RE	FREQ. (per m) ● 8 12 16 RQD (%) ▲ 60 80 100 COVERY (%) ■	PLASTIC	LINITY (ppt 30 40 M.C.	LIQUID	DEPTH(m)
. 0.0 5	SAND (SP) — some gravel, trace of silt,		20	40 60 80	20	40 60	80	0.0
— 1.0	fine to coarse grained, poorly graded, brown - organics and rootlets to 75mm - trace of gravel - clayey silt seam - fine grained sand and three 25mm gravel clasts, gravel is subrounded SAND — some clay, trace of gravel and silt, fine grained sand, olive brown	Nbe Ice and soil lens	e 50-60%.					- 1.0 - 2.0
3.0 S	SILT (ML) AND CLAY — some sand, occasion shell fragments, reticulate ice matrix, low plastic — clay clasts and separating ice lense	Vs/Vr 10-20%, 5mm thick.	ice lense to		F			- 3.0
- 4.0	— irregular structure	Vr 20%, Ice Iens thick.	e to 25mm					- 4.0 - 5.0
- 6.0					•	•		- 6.0
- 7.0 S	SAND (SM) AND SILT — occasional gravel, clasts, fine grained sand, olive grey — trace of silt	Vr 5–10% ice.						7.0
- 8.0 S	SAND (SM) (TILL) — some gravel and silt, cobbles disseminated throughout, matrix is very fine sand, clasts are coarse grained sand and fine gravel with some coarse gravel and cobbles	Nbe/Nbn						8.0 9.0
10.0			LOGGED BY: CRH		COMPLETIO	N DEDTU-	15.2	10.0
EΒ	BA ENGINEERING CONSULT	'ANTS LTD.	REVIEWED BY: EMG		COMPLETE:	-		
	EDMONTON, ALBERTA		Fig. No: 12259-06			/ / /		of 2

-

Francisco Control

ge establishment for the second secon

WALLESTON PROPERTY OF A

And the second second

disconnect major speed

Merce a considered

Mary and a star page of the

dispersion of the party of the

For a superaction

A . .

24

Martin Company (1988)

EOTECHNICAL SITE EVALUTATION PYDER LAKE, NWT AMPLE TYPE SHELBY TUBE DISTURBED LITHOLOGICAL DESCRIPTION 10.0 SAND (TILL) – (continued) – 250mm boulder 11.0	UTM Z	BBS-25A DIAMOND DRI DNE: 13 N7505683 E44 SPT	1327 RECO		Y]cof	EL		ECT 1 ATION				1/2	259	
AMPLE TYPE SHELBY TUBE DISTURBED LITHOLOGICAL DESCRIPTION 10.0 SAND (TILL) - (continued) - 250mm boulder	TYPE	SPT NO	RECO		Y	1]cor		.L. V/	THON	. 05	1.1	111/			
LITHOLOGICAL DESCRIPTION 10.0 SAND (TILL) - (continued) - 250mm boulder	TYPE) VEN	I 		Joor	١Ł						<u> </u>		
10.0 SAND (TILL) — (continued) — 250mm boulder		GROUND ICE							Т							
10.0 SAND (TILL) — (continued) — 250mm boulder	SAMPL		_	FRA 4				m) ● 16		20	■ SA)	LINITY 30	(ppt) 40	5 0		DEPTH(m)
– 250mm boulder	1 1	DESCRIPTION		40 20	60	VERY	(%) I	100 80	_	PLASTI I— 20		M.0)——	LIQI 	JID G	그 고
- 250mm boulder					10			- 00	+	- 20		10	-00	- 00		10.0
11.0										•					- - - - -	
					ļļ.										E	11.0
											<u>.</u>				E	
12.0					<u> </u>										E	12.0
															- E	
13.0											<u> </u>				<u>-</u>	13.0
															<u>-</u> -	
14.0																14.0
					j.										-	
15.0 BASALT (BEDROCK)																15.0
	_														-	
16.0 END OF BOREHOLE (15.8 metres) Thermistor string #1051 installed.						 										16.0
47.0																17.0
17.0																17.0
18.0																18.0
				:			ļ									
19.0															E	19.0
20.0		ag imp LOGGED	DV.	CDI					10	OMPL	ETIC)VI D	DTU.	15.0		20.0
EBA ENGINEERING CONSUL' EDMONTON, ALBERTA		TS LTD. REVIEWE Fig. No:	D BY	: EN	4G					OMPL				22	m je 2 o	of 2

Andrews and a second

March 1977 1976 Francisco de Contractor de

The second second

The second second

Assessing the state of the stat

Para 17

Tanana mandal

Burney Company of the State of

in comments

Calegoricovicos

Jerusponta occurs

BOSTO	N GOLD PROJECT		CAN ENVIRONMENTAL SERVI				<u> 259–07</u>	
ļ	CHNICAL SITE EVALUTATION	<u> </u>	: BBS-25A DIAMOND DRI			OJECT NO: 0101-	96-12259	
<u> </u>	R LAKE, NWT	<u></u>	ZONE: 13 N7506000 E442			VATION:		
SAMPL	E TYPE SHELBY TUBEDISTURBED		SPT INO	RECOVERY C	ORE			
l(m)	LITHOLOGICAL	TYPE	GROUND ICE	• FRACT. FREQ. (pe	er m) ● 16	■ SALINITY (p 20 30 40	pt) ■ 1 50	-(m)
ОЕРТН(т)	DESCRIPTION	SAMPLE	DESCRIPTION	▲ RQD (%) ▲ 40 60 80	100	PLASTIC M.C.	LIQUID	DEРТН(m)
		l'S		■ RECOVERY (% 20 40 60	3) ■ 80	20 40 60	80	
0.0	ORGANICS — silty, organic fibers, numerous		Nbe					- 0.0
Ė	rootlets, dark brown, (150mm thick)		Vx/Vr 5% Ice		<u> </u>			
-	SILT AND SAND — trace to some clay, fine grained sand, brown							
1.0	granica saria, brown				ļļļ			- 1.0
-	CAND (CM) - 'III. ('''		25mm ice lense inclined to vertical.					
Ē	SAND (SM) — silty, fine grained, olive brown		25mm ice lense inclined to vertical.					-
2.0	3101111		Nbe					2.0
E								
-								
F	- olive grey							- ,
— 3.0 E						•		— 3.0 -
-	SAND (SM) AND SILT (TILL) — gravelly,		Nbe					
E	trace of clay, occasional cobbles, matrix supported, brown		Inoc			•		
- - 4.0	- olive grey				<u>. į į į.</u>			4.0
F "								-
F		<u> </u>			. 			-
E	— fine to medium grained sand	\angle						-
5.0								5.0
F								
F		\vee						-
E	- some gravel							
6.0	- Some graver	I						— 6.0 -
-								
E								-
7.0					.ii			7.0
E							: :	-
 								
E								<u> </u>
8.0								8.0
Ė								-
F	END OF BOREHOLE (8.4 metres)							<u>-</u>
F								9.0
9.0								- 5.0
E							i i Harifanianianianianianianianianianianianiania	F
F								<u> </u>
10.0			LOCATO	BY: CRH		COMPLETION DEPT	Ш. Р.4	10.0
E	BA ENGINEERING CONSUL'	TAN		D BY: EMG		COMPLETION DEPT		
	EDMONTON, ALBERTA			12259-07			Page	1 of 1
96/12/18	11:42AM (0101-10N)							

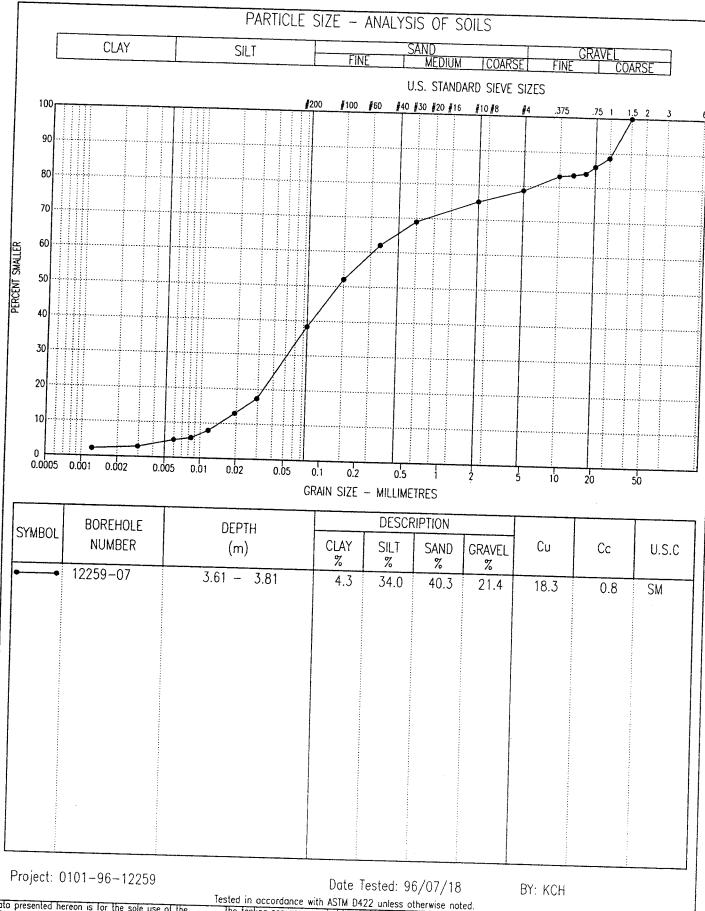
. .

Dr. managementaria

Santage of the sand

General Landstone

boropropagation


Name of Associated

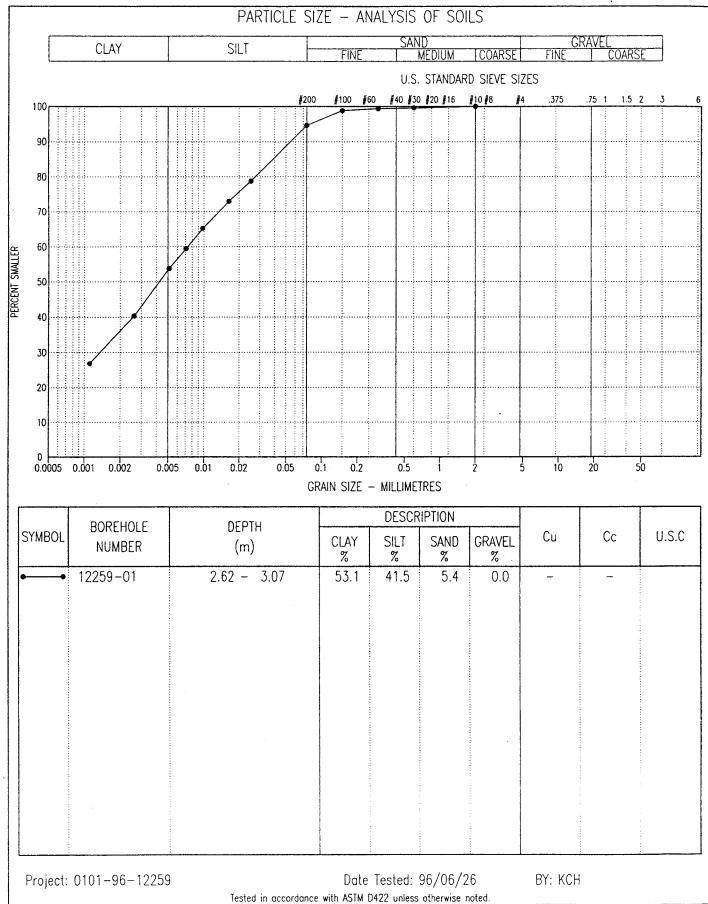
2.14 c. 3.46

Maria Caracteria

The second secon

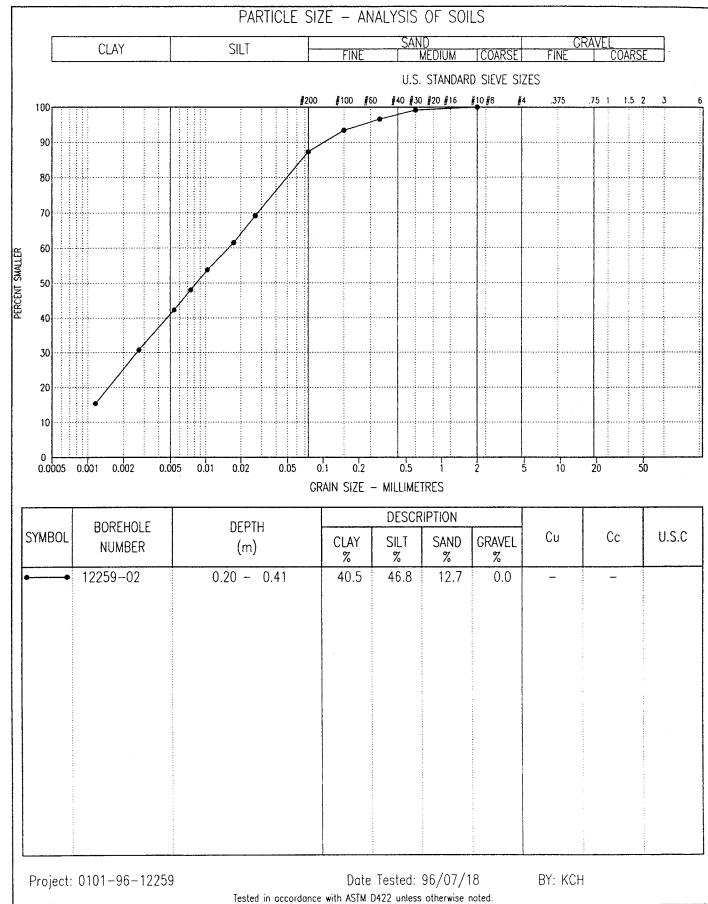
Service of the servic

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

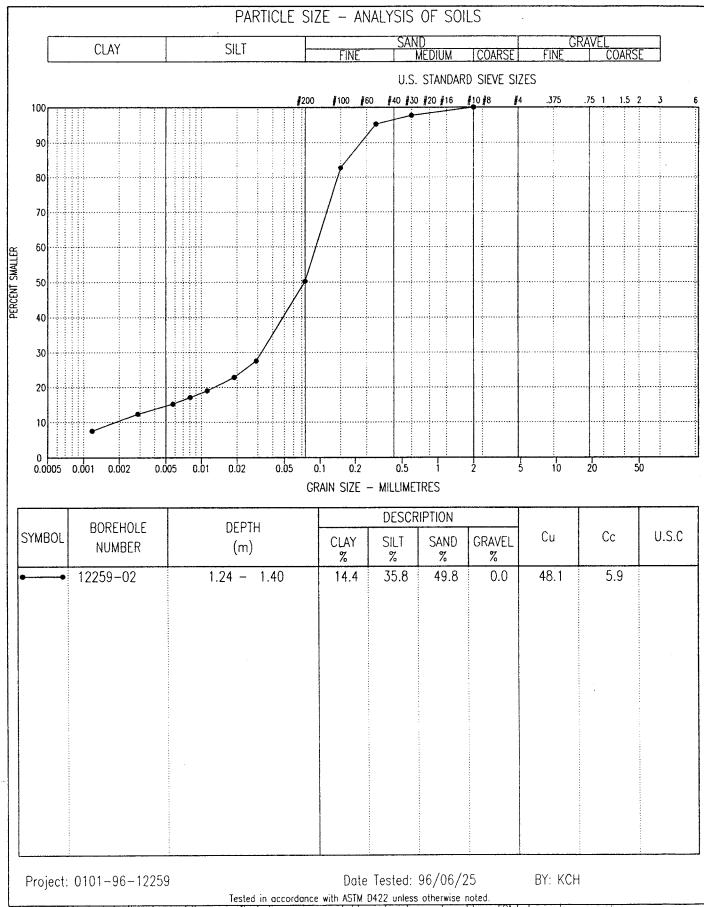


•		
- 2	1	
ι	1	
•	d	ĺ
	è	
ě	2	
	5	i
•		
-		ì
(Į	Ì
1		
5		
•	ę.	į
Į	1	ı
١		
:		
7	>	•
(ĭ	
1	-	١
1	•	•
ľ		
•	۹	Ĺ
1	Ý	
7	4	Š
(ı
1	Ĭ	١
4	d	۲
		١
•	-	•

American Company of the second
Page 1 of 2

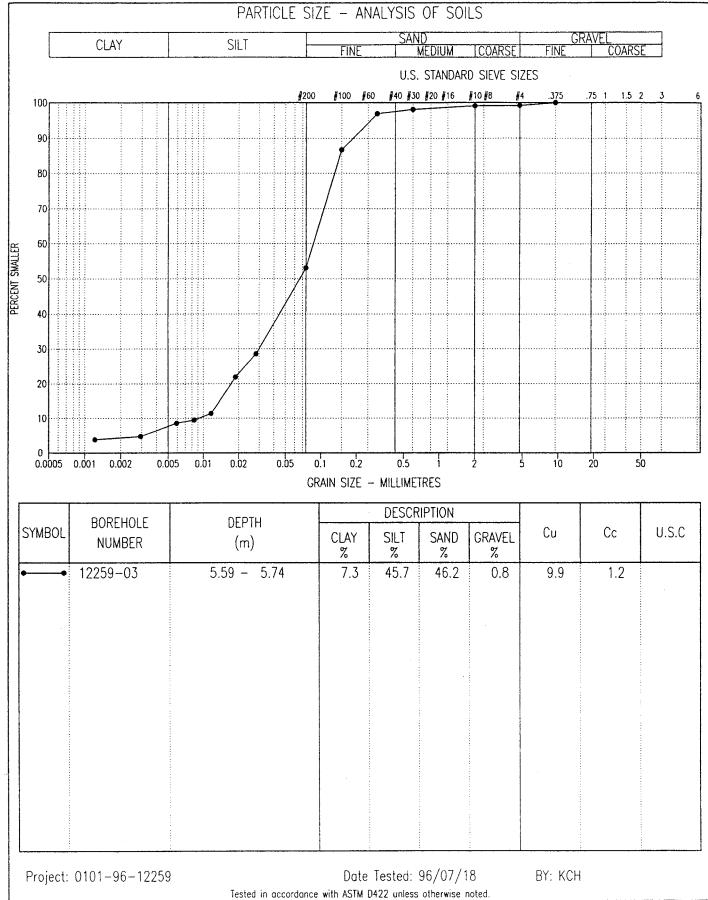

Borehole	Sample	Depth	Moisture	Salinity	Liquid	Plastic	Plasticity	OBC	Clay	Silt	Sand	Gravel
		(m)	(%)	(ppt)			Y POP	Olassiiicanoii	(%)	(%)	(%)	(%)
12259-01	<u>+</u>	0.00 - 0.15	54.8									
12259-01	1p		41.0									
12259-01	7	1.42	35.2									
12259-01	ო	2.18	31.6									
12259-01	4	•	37.2	က	24	18	9	CL -ML	53.1	41.5	5.4	0.0
12259-01	ហ		23.5									
12259-01	9	6.91 - 7.95									•	
12259-02	-	0.20 - 0.41	29.3		30	21	6	CL	40.5	46.8	12.7	0.0
12259-02	2	0.79 - 0.94	85.8									
12259-02	ო	1.24 - 1.40	32.9						14.4	35.8	49.8	0.0
12259-03	,- -	1.04 - 1.17	50.6									
12259-03	2	2.64 - 2.82	75.4		48	29	19	M	45.0	54.5	0.5	0.0
12259-03	ო	3.33 - 3.48	68.5									
12259-03	4	4.42 - 4.57	61.3									
12259-03	2	5.18 - 5.54	77.9	48								
12259-03	9	5.59 - 5.74	56.6						7.3	45.7	46.2	8.0
12259-04	_	0.25 - 0.41	254.5						41.8	44.4	13.8	0.0
12259-04	8	1.27 - 1.42	97.0	13								
12259-04	က		42.6		44	29	15	ML	55.5	38.3	6.2	0.0
12259-04	4		64.0									
12259-04	ις	3.43 - 3.58	67.7	39								
12259-04	9	4.70 - 4.95	49.5		25	91	o o	CF	43.2	50.9	5.7	0.2
12259-05	-	0.38 - 0.66	19.0									
12259-05	2	0.91 - 1.52	15.5					₩ S	3.2	35.9	42.4	18.5
12259-06	-	0.15 - 0.30	17.3		*							
12259-06	2	0.66 - 0.86	9.7					SP	0.0	3.3	81.7	15.0
12259-06	က	1.52 - 2.03	20.5					SC	15.9	6.5	73.9	3.7
12259-06	4	3.45 - 3.61	57.8		43	33	10	ML	49.6	38.6	11.8	0.0
12259-06	5	,	9.99									
12259-06	9	,	39.2	27								
12259-06	7	٠	16.6									
12259-06	8a	•	23.2									
12259-06	8b	1	23.7					SM		34.4	65.5	0.1
12259-06	6	8.53 - 8.84	10.1					₩ S		25.4	55.8	18.8
12259-06	10	10.16 - 10.36	12.1									

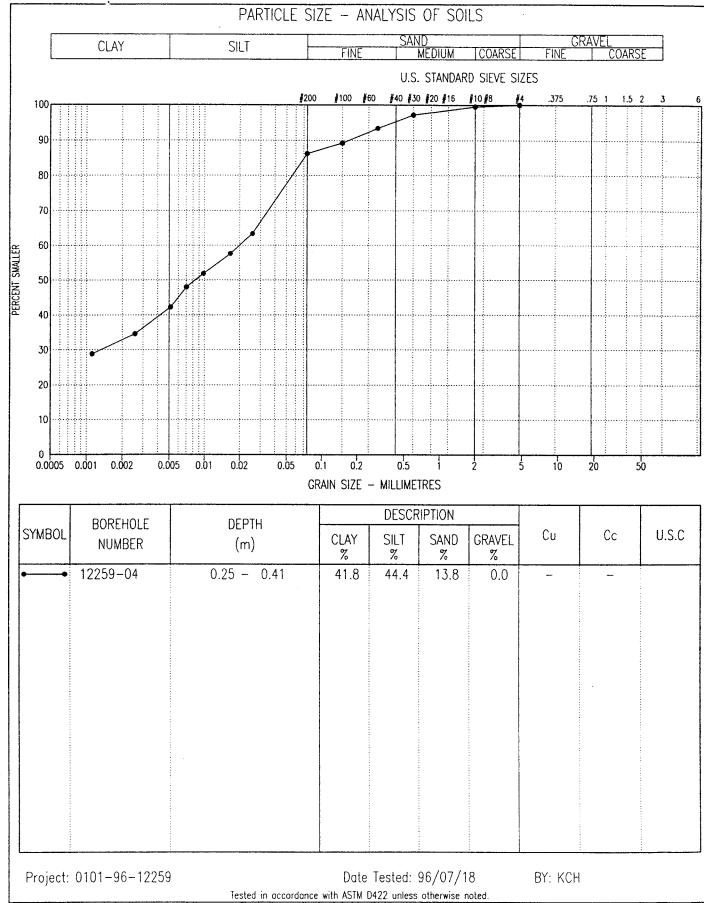
Gravel	(%)	0.1	0.0		21.4		
Sand	(%)	44.3	63.7		40.3		
Silt	(%)	45.0	36.3		34.0		
Clay	(%)	10.6			4.3		
USC	Olassincanon		NS.		ωs		
Plasticity	V D						
Plastic Limit							
Liquid	111111						
Salinity	(ppt)						
Moisture	(%)	47.2	25.7	25.5	13.8	20.0	17.0
Depth	(m)	0.18 - 0.33	1.80 - 1.98	2.87 - 3.18	3.61 - 3.81	4.50 - 4.80	5.33 - 5.59
Sample	ia di lina.		2	က	4	2	9
Borehole		12259-07	12259-07	12259-07	12259-07	12259-07	12259-07

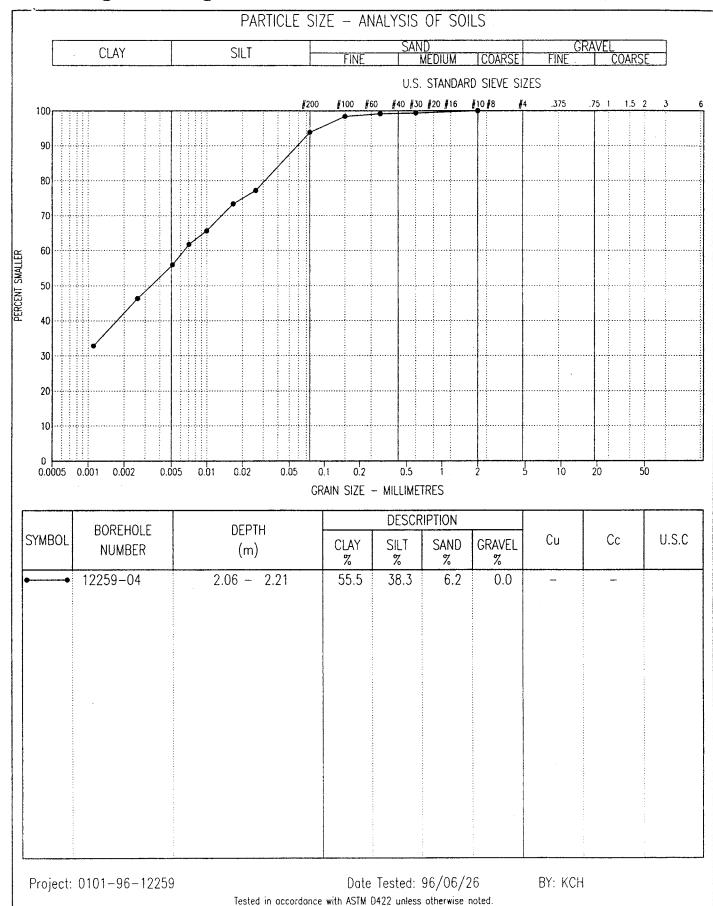


Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

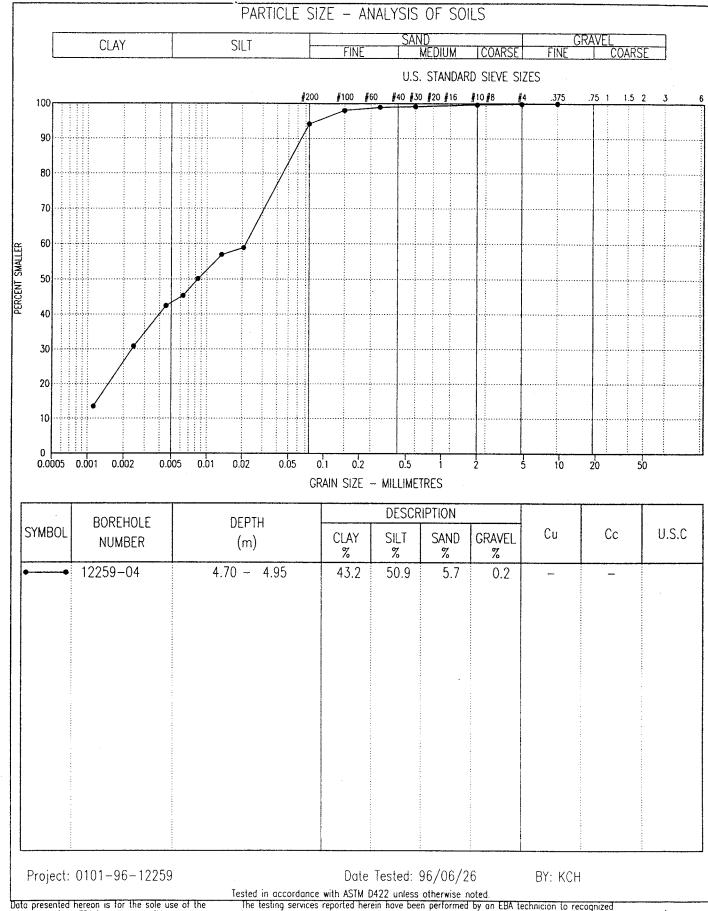


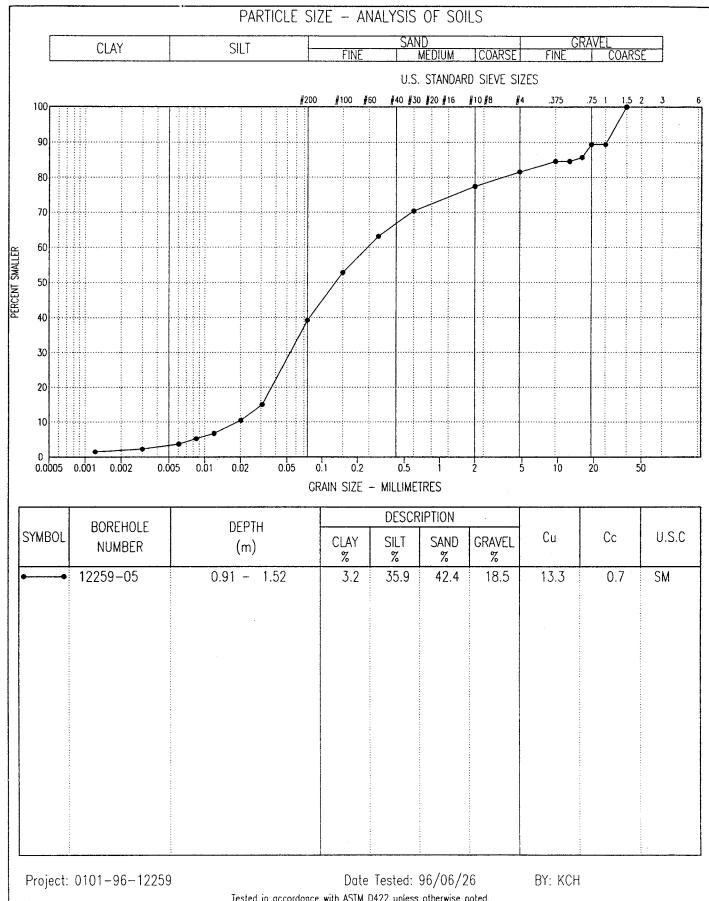


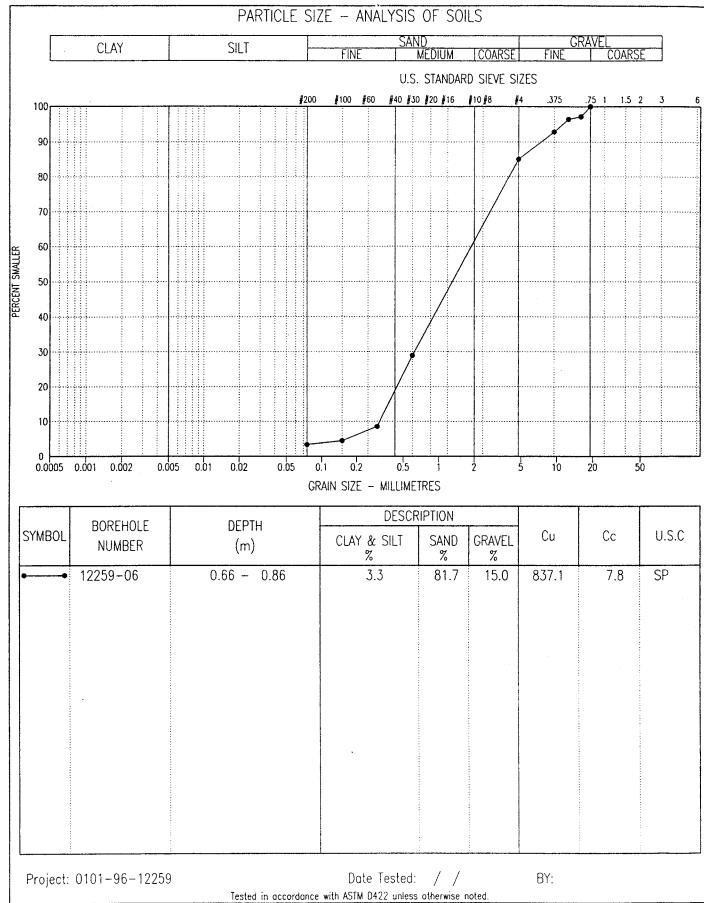

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

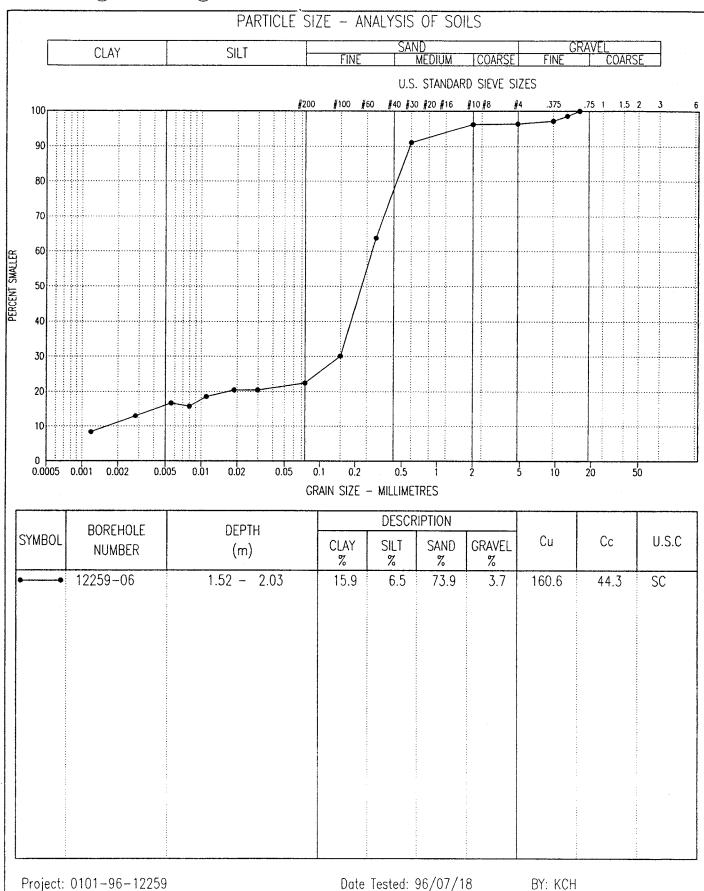


Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

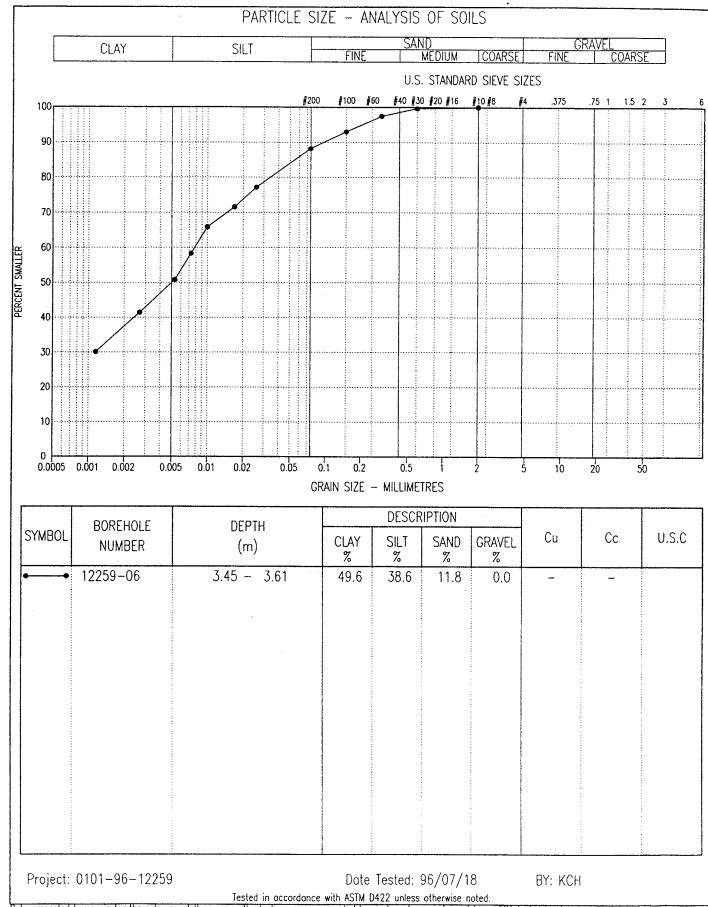


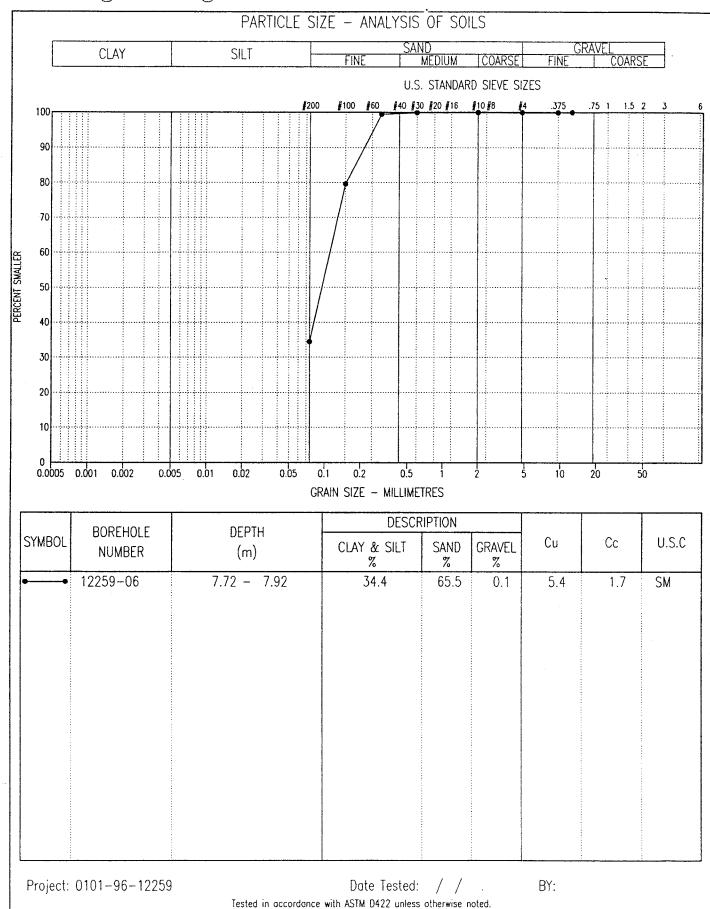



Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

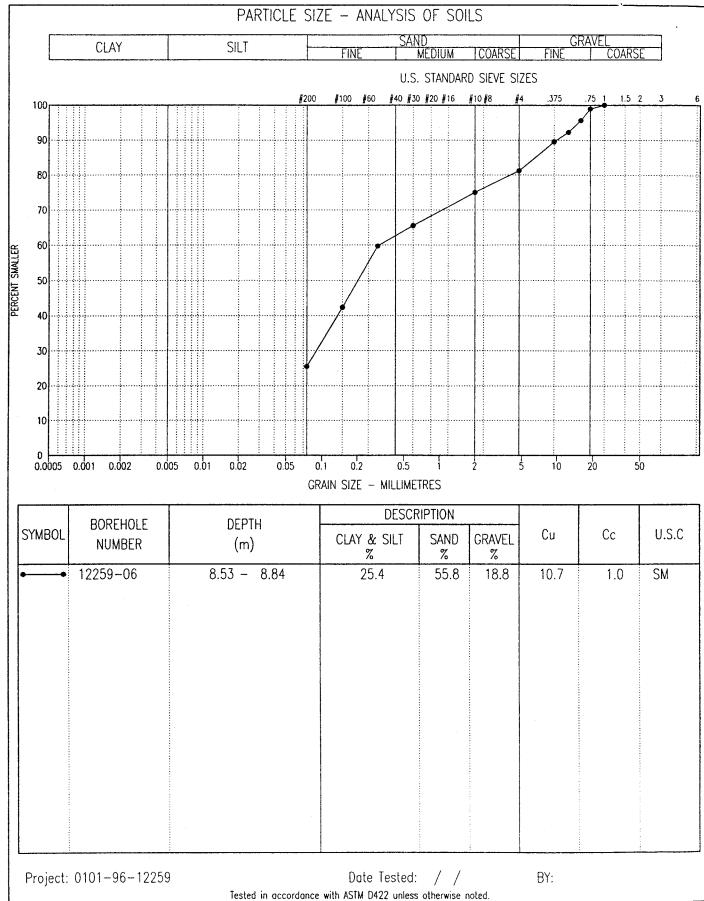


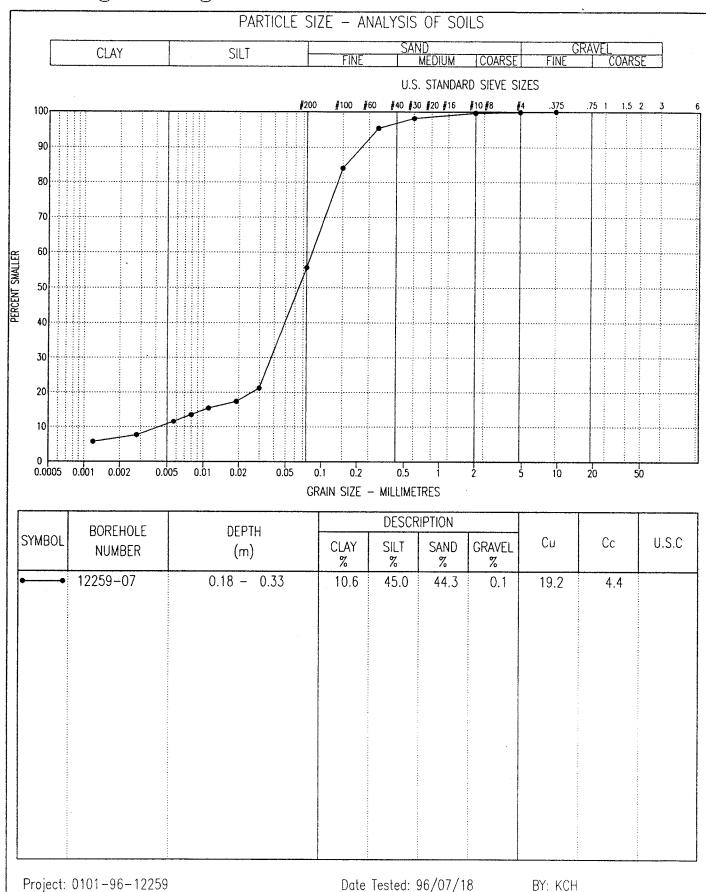
Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

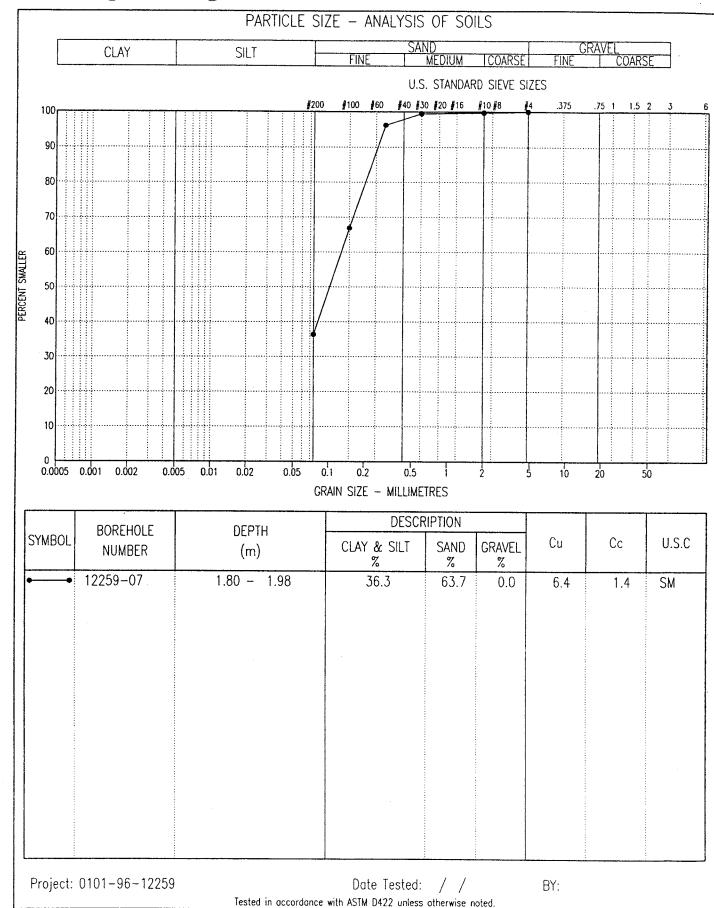



Tested in accordance with ASTM D422 unless otherwise noted.

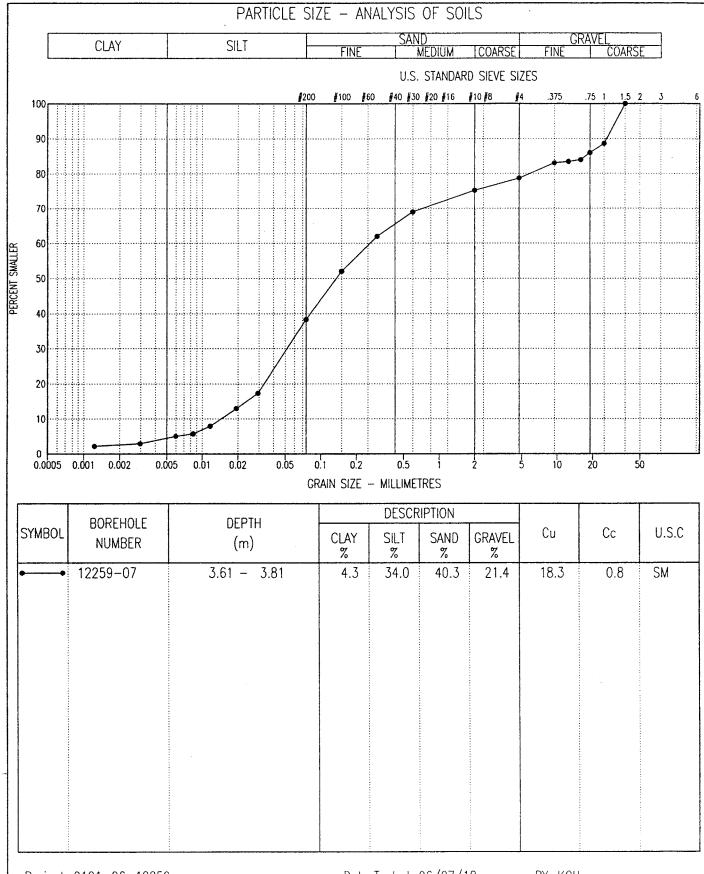
bota presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA







Dota presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA



Project: 0101-96-12259

Date Tested: 96/07/18

Tested in accordance with ASTM D422 unless otherwise noted.

BY: KCH

Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA

APPENDIX C GROUND TEMPERATURE DATA

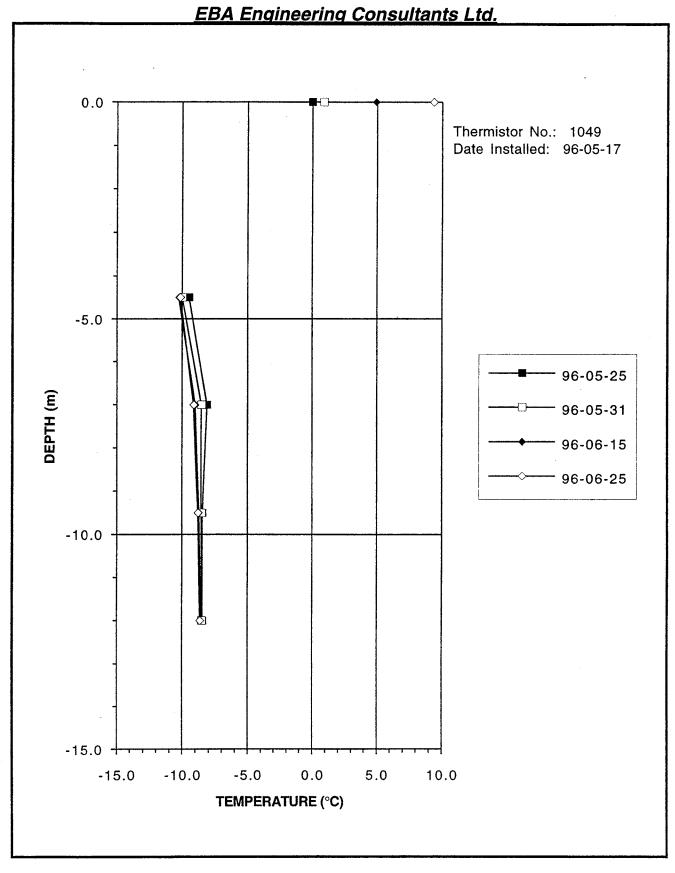


FIGURE C.1 GROUND TEMPERATURE PROFILE BOREHOLE 12259-03

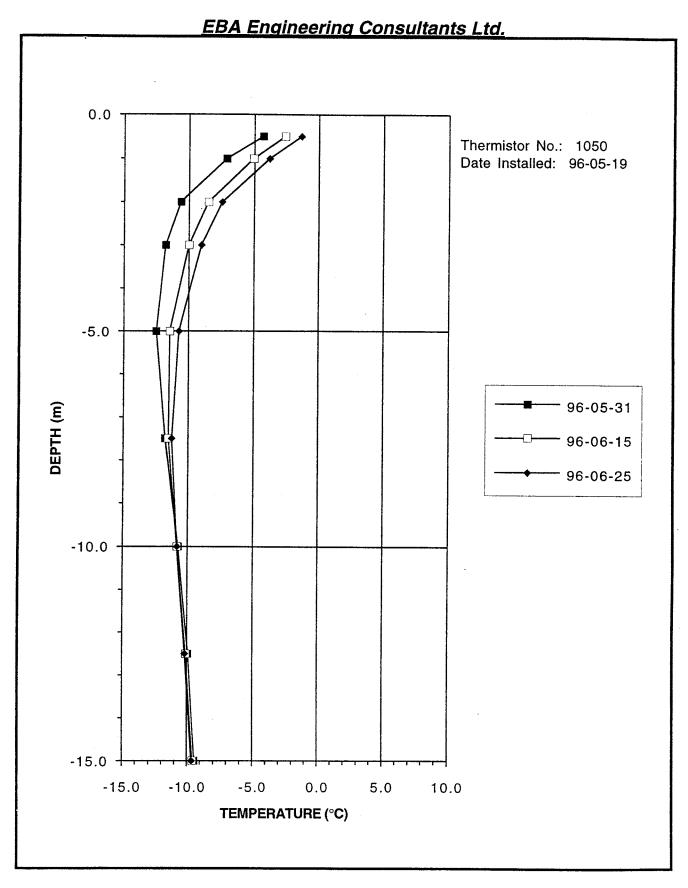


FIGURE C.2

GROUND TEMPERATURE PROFILE BOREHOLE 12259-05

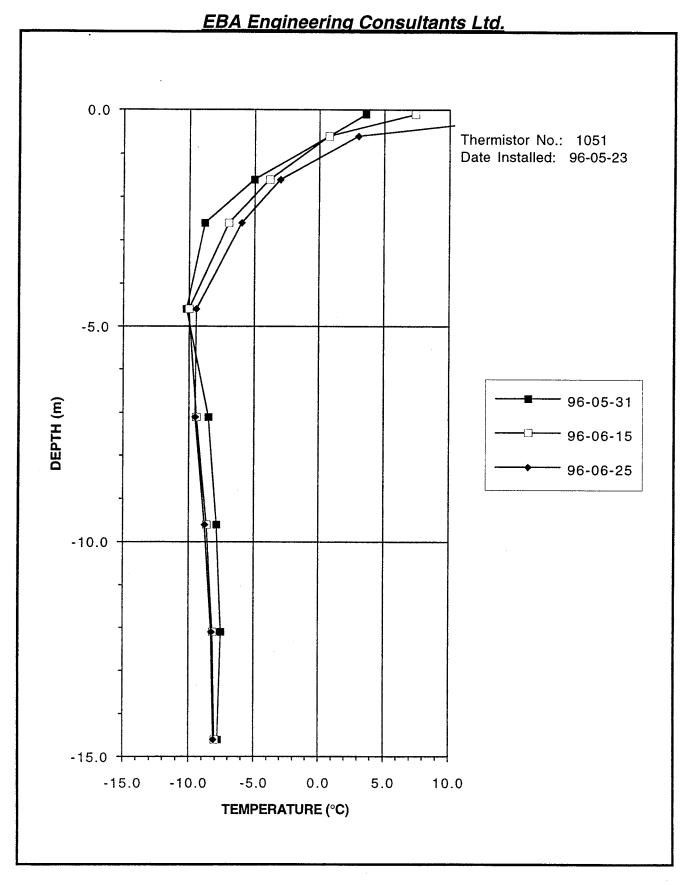


FIGURE C.3

GROUND TEMPERATURE PROFILE BOREHOLE 12259-06

The second second Name and Associated Spiriters and Associated S E. . . . i.e.) granting extended Proposition of the Party of the for any and destroys Screen meteoral Agent of the Total

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-03

Thermistor No: String #1049

DATE	TIME	Depth (m)	Depth (m)	Depth (m)	Depth (m)	Depth (m)
MM/DD/YY	HH:MM:SS	0	-4.5 °C	-7 ℃	-9.5 °C	-12 °C
		°C	~ <u>`</u>	*C		
05/26/96	0:00:00	-0.8	-9.6	-8.2	-8.5	-8.5
05/26/96	12:00:00	0.6	-9.6	-8.2	-8.5	-8.5
05/27/96	0:00:00	-0.3	-9.7	-8.3	-8.5	-8.5
05/27/96	12:00:00	0.9	-9.8	-8.4	-8.5	-8.5
05/28/96	0:00:00	0.4	-9.8	-8.4	-8.5	-8.5
05/28/96	12:00:00	2.8	-9.8	-8.4	-8.6	-8.5
05/29/96	0:00:00	0.2	-9.9	-8.5	-8.5	-8.5
05/29/96	12:00:00	0.1	-9.9	-8.5	-8.6	-8.5
05/30/96	0:00:00	-0.5	-9.9	- 8.5	-8.6	-8.5
05/30/96	12:00:00	0.2	-10.0	-8.5	-8.6	-8.6
05/31/96	0:00:00	-0.2	-10.0	-8.6	-8.6	-8.5
05/31/96	12:00:00	0.9	-10.0	-8.6	-8.5	-8.5
6/1/96	0:00:00	0.0	-10.1	-8.6	-8.6	-8.5
6/1/96	12:00:00	2.1	-10.1	-8.6	-8.6	-8.5
6/2/96	0:00:00	0.3	-10.1	-8.7	-8.6	-8.6
6/2/96	12:00:00	1.1	-10.2	-8.7	-8.6	-8.5
6/3/96	0:00:00	0.5	-10.1	-8.7	-8.6	-8.5
6/3/96	12:00:00	4.6	-10.2	-8.7	-8.6	-8.6
6/4/96	0:00:00	0.7	-10.2	-8.7	-8.6	-8.6
6/4/96	12:00:00	0.9	-10.2	-8.8	-8.6	-8.6
6/5/96	0:00:00	-0.5	-10.2	-8.8	-8.6	-8.6
6/5/96	12:00:00	0.2	-10.2	-8.8	-8.6	-8.6
6/6/96	0:00:00	-0.9	-10.2	-8.8	-8.6	-8.6
6/6/96	12:00:00	0.0	-10.2	-8.8	-8.6	-8.5
6/7/96	0:00:00	-0.2	-10.2	-8.8	-8.6	-8.6
6/7/96	12:00:00	2.5	-10.2	-8.8	-8.6	-8.6

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-03

Thermistor No: String #1049

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) 0 °C	Depth (m) -4.5 °C	Depth (m) -7 °C	Depth (m) -9.5 °C	Depth (m) -12 °C
6/8/96	0:00:00	2.0	-10.2	-8.9	-8.6	-8.6
6/8/96	12:00:00	5.0	-10.3	-8.9	-8.7	-8.6
6/9/96	0:00:00	1.9	-10.3	-8.9	-8.6	-8.6
6/9/96	12:00:00	5.9	-10.3	-8.9	-8.7	-8.6
6/10/96	0:00:00	1.8	-10.3	-8.9	-8.7	-8.6
6/10/96	12:00:00	4.3	-10.3	-8.9	-8.7	-8.6
6/11/96	0:00:00	1.8	-10.3	-8.9	-8.7	-8.6
6/11/96	12:00:00	1.7	-10.3	-9.0	-8.7	-8.6
6/12/96	0:00:00	0.5	-10.3	-9.0	-8.7	-8.6
6/12/96	12:00:00	1.5	-10.3	-9.0	-8.7	-8.6
06/13/96	0:00:00	0.0	-10.3	-9.0	-8.7	-8.6
06/13/96	12:00:00	1.7	-10.3	-9.0	-8.7	-8.6
06/14/96	0:00:00	-0.4	-10.3	-9.0	-8.7	-8.6
06/14/96	12:00:00	3.3	-10.3	-9.0	-8.7	-8.6
06/15/96	0:00:00	0.6	-10.3	-9.0	-8.7	-8.6
06/15/96	12:00:00	4.9	-10.3	-9.0	-8.7	-8.6
06/16/96	0:00:00	2.3	-10.3	-9.0	-8.7	-8.6
06/16/96	12:00:00	5.6	-10.3	-9.0	-8.7	-8.6
06/17/96	0:00:00	2.9	-10.2	-9.0	-8.7	-8.6
06/17/96	12:00:00	7.4	-10.3	-9.1	-8.8	-8.6
06/18/96	0:00:00	4.5	-10.3	-9.1	-8.7	-8.6
06/18/96	12:00:00	8.4	-10.3	-9.1	-8.8	-8.6
06/19/96	0:00:00	6.2	-10.2	-9.1	-8.8	-8.6
06/19/96	12:00:00	6.4	-10.2	-9.1	-8.7	-8.6
06/20/96	0:00:00	4.3	-10.2	-9.1	-8.8	-8.6
06/20/96	12:00:00	4.8	-10.2	-9.1	-8.7	-8.6

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-03

Thermistor No:

String #1049

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) 0 °C	Depth (m) -4.5 °C	Depth (m) -7 °C	Depth (m) -9.5 °C	Depth (m) -12 °C
06/21/96	0:00:00	2.5	-10.2	-9.1	-8.8	-8.6
06/21/96	12:00:00	7.3	-10.2	-9.1	-8.8	-8.7
06/22/96	0:00:00	4.7	-10.2	-9.1	-8.8	- 8.7
06/22/96	12:00:00	9.8	-10.2	-9.2	-8.8	-8.7
06/23/96	0:00:00	6.1	-10.2	-9.1	-8.8	-8.6
06/23/96	12:00:00	11.8	-10.2	-9.2	-8.8	-8.7
06/24/96	0:00:00	8.2	-10.2	-9.2	-8.8	-8.7
06/24/96	12:00:00	13.8	-10.2	-9.2	-8.8	-8.7
06/25/96	0:00:00	9.4	-10.2	-9.2	-8.8	-8.7
06/25/96	12:00:00	14.6	-10.2	-9.2	-8.8	-8.7

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-05

Thermistor No: String #1050

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) 0	Depth (m) -0.5	Depth (m) -1	Depth (m) -2	Depth (m) -3	Depth (m) -5	Depth (m) -7.5	Depth (m) -10	Depth (m) -12.5	Depth (m) -15
		°C	°C	°C	°C	°C	°C	°C	°C	°C	°C
05/22/96	0:00:00	0.0	-4.4	-8.2	-11.6	-12.4	-12.4	-11.2	-10.2	-9.6	-9.2
05/22/96	12:00:00	-0.1	-4.8	-8.3	-11.7	-12.5	-12.5	-11.3	-10.3	-9.6	-9.2
05/23/96	0:00:00	0.3	-5.0	-8.4	-11.8	-12.5	-12.6	-11.4	-10.4	-9.7	-9.3
05/23/96	12:00:00	1.8	-5.0	-8.4	-11.8	-12.6	-12.6	-11.5	-10.4	-9.7	-9.3
05/24/96	0:00:00	0.7	-5.1	-8.4	-11.7	-12.6	-12.6	-11.5	-10.5	-9.7	-9.3
05/24/96	12:00:00	1.0	-5.1	-8.3	-11.7	-12.5	-12.6	-11.5	-10.5	-9.7	-9.3
05/25/96	0:00:00	0.1	-5.0	-8.2	-11.6	-12.5	-12.7	-11.6	-10.5	-9.8	-9.3
05/25/96	12:00:00	0.9	-5.0	-8.2	-11.6	-12.5	-12.7	-11.6	-10.6	-9.8	-9.4
05/26/96	0:00:00	0.5	-5.0	-8.1	-11.5	-12.4	-12.6	-11.6	-10.6	-9.8	-9.4
05/26/96	12:00:00	1.5	-5.0	-8.0	-11.4	-12.4	-12.7	-11.7	-10.6	-9.8	-9.4
05/27/96	0:00:00	1.3	-4.9	-7.9	-11.4	-12.3	-12.6	-11.7	-10.6	-9.8	-9.4
05/27/96	12:00:00	1.4	-4.9	-7.9	-11.3	-12.3	-12.7	-11.7	-10.6	-9.8	-9.4
05/28/96	0:00:00	2.9	-4.8	-7.8	-11.2	-12.2	-12.6	-11.7	-10.6	-9.9	-9.4
05/28/96	12:00:00	3.7	-4.8	-7.7	-11.1	-12.2	-12.7	-11.8	-10.7	-9.9	-9.4
05/29/96	0:00:00	2.4	-4.7	-7.5	-11.1	-12.1	-12.6	-11.7	-10.7	-9.9	-9.4
05/29/96	12:00:00	0.4	-4.6	-7.5	-11.0	-12.0	-12.6	-11.7	-10.7	-9.9	-9.4
05/30/96	0:00:00	-0.1	-4.5	-7.4	-10.9	-12.0	-12.6	-11.8	-10.7	-9.9	-9.4
05/30/96	12:00:00	-0.1	-4.5	-7.3	-10.8	-11.9	-12.5	-11.8	-10.8	-9.9	-9.4
05/31/96	0:00:00	0.6	-4.4	-7.2	-10.7	-11.9	-12.6	-11.8	-10.7	-9.9	-9.5
05/31/96	12:00:00	0.9	-4.3	-7.1	-10.6	-11.8	-12.5	-11.8	-10.8	-9.9	-9.5
6/1/96	0:00:00	1.1	-4.2	-7.0	-10.5	-11.7	-12.5	-11.7	-10.8	-9.9	-9.4
6/1/96	12:00:00	2.4	-4.2	-6.9	-10.5	-11.7	-12.4	-11.8	-10.8	-10.0	-9.4
6/2/96	0:00:00	2.0	-4.1	-6.8	-10.4	-11.6	-12.4	-11.7	-10.8	-10.0	-9.5
6/2/96	12:00:00	0.9	-4.0	-6.8	-10.3	-11.6	-12.4	-11.7	-10.7	-10.0	-9.5
6/3/96	0:00:00	2.8	-4.0	-6.7	-10.2	-11.5	-12.4	-11.8	-10.8	-10.0	-9.5
6/3/96	12:00:00	4.9	-4.0	-6.7	-10.2	-11.4	-12.3	-11.8	-10.8	-10.0	-9.5

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-05

Thermistor No: String #1050

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) 0 °C	Depth (m) -0.5 °C	Depth (m) -1 °C	Depth (m) -2 °C	Depth (m) -3 °C	Depth (m) -5 °C	Depth (m) -7.5 °C	Depth (m) -10 °C	Depth (m) -12.5 °C	Depth (m) -15 °C
**************************************				<u></u>							
6/4/96	0:00:00	3.4	-3.8	-6.6	-10.1	-11.4	-12.3	-11.7	-10.8	-10.0	-9.5
6/4/96	12:00:00	0.9	-3.8	-6.5	-10.0	-11.3	-12.2	-11.7	-10.8	-10.0	-9.5
6/5/96	0:00:00	1.4	-3.7	-6.4	-9.9	-11.3	-12.2	-11.7	-10.8	-10.0	-9.5
6/5/96	12:00:00	0.6	-3.7	-6.3	-9.8	-11.2	-12.2	-11.7	-10.8	-10.0	-9.5
6/6/96	0:00:00	0.1	-3.6	-6.3	-9.8	-11.1	-12.2	-11.7	-10.8	-10.0	-9.5
6/6/96	12:00:00	-0.1	-3.6	-6.2	-9.7	-11.1	-12.1	-11.7	-10.8	-10.0	-9.5
6/7/96	0:00:00	1.3	-3.5	-6.1	-9.6	-11.0	-12.0	-11.7	-10.8	-10.0	-9.5
6/7/96	12:00:00	2.2	-3.5	-6.1	-9.6	-10.9	-12.0	-11.7	-10.9	-10.0	-9.5
6/8/96	0:00:00	4.2	-3.4	-6.0	-9.5	-10.9	-12.0	-11.7	-10.8	-10.1	- 9.5
6/8/96	12:00:00	4.6	-3.4	-5.9	-9.4	-10.8	-12.0	-11.7	-10.9	-10.1	-9.6
6/9/96	0:00:00	3.9	-3.3	-5.9	-9.3	-10.8	-11.9	-11.7	-10.8	-10.0	-9.5
6/9/96	12:00:00	5.9	-3.2	-5.8	-9.3	-10.7	-11.9	-11.6	-10.9	-10.0	-9. 5
6/10/96	0:00:00	4.1	-3.2	-5.8	-9.2	-10.6	-11.9	-11.7	-10.9	-10.1	-9.5
6/10/96	12:00:00	3.9	-3.2	-5.7	-9.2	-10.6	-11.9	-11.7	-10.9	-10.1	-9.5
6/11/96	0:00:00	3.0	-3.1	-5.6	-9.1	-10.5	-11.8	-11.6	-10.9	-10.1	-9.5
6/11/96	12:00:00	2.1	-3.0	-5.6	-9.0	-10.4	-11.7	-11.7	-10.9	-10.1	-9.6
6/12/96	0:00:00	1.5	-3.0	-5.5	-9.0	-10.4	-11.7	-11.7	-10.9	-10.1	-9.6
6/12/96	12:00:00	1.3	-2.9	-5.4	-8.9	-10.3	-11.7	-11.6	-10.9	-10.1	-9.6
06/13/96	0:00:00	1.2	-2.9	-5.4	-8.9	-10.3	-11.7	-11.7	-10.9	-10.1	-9.6
06/13/96	12:00:00	1.5	-2.8	-5.3	-8.8	-10.2	-11.6	-11.6	-10.9	-10.1	-9.6
06/14/96	0:00:00	1.4	-2.7	-5.2	-8.7	-10.2	-11.6	-11.6	-10.8	-10.1	-9.6
06/14/96	12:00:00	3.8	-2.7	-5.2	-8.7	-10.1	-11.5	-11.6	-10.9	-10.1	-9.6
06/15/96	0:00:00	3.2	-2.7	-5.1	-8.6	-10.1	-11.5	-11.6	-10.9	-10.1	-9.6
06/15/96	12:00:00	5.1	-2.6	-5.1	-8.5	-10.0	-11.5	-11.6	-10.9	-10.1	-9.6
06/16/96	0:00:00	4.6	-2.6	-5.0	-8.5	-9.9	-11.4	-11.5	-10.9	-10.1	-9.6
06/16/96	12:00:00	5.5	-2.6	-5.0	-8.4	-9.9	-11.4	-11.5	-10.9	-10.1	-9.6

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-05

String #1050 Thermistor No:

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) 0 °C	Depth (m) -0.5 °C	Depth (m) -1 °C	Depth (m) -2 °C	Depth (m) -3 °C	Depth (m) -5 °C	Depth (m) -7.5 °C	Depth (m) -10 °C	Depth (m) -12.5 °C	Depth (m) -15 °C
00/17/00	0.00.00	5.0	-2.5	-4.9	-8.4	-9.8	-11.4	-11.5	-10.9	-10.2	-9.6
06/17/96	0:00:00										
06/17/96	12:00:00	6.7	-2.5	-4.9	-8.3	-9.8	-11.3	-11.5	-10.9	-10.2	-9.6
06/18/96	0:00:00	8.0	-2.4	-4.8	-8.2	-9.7	-11.3	-11.5	-10.8	-10.1	-9.6
06/18/96	12:00:00	8.2	-2.4	-4.8	-8.2	-9.7	-11.3	-11.5	-10.9	-10.2	-9.6
06/19/96	0:00:00	8.0	-2.3	-4.7	-8.1	-9.6	-11.2	-11.5	-10.9	-10.2	-9.6
06/19/96	12:00:00	6.4	-2.2	-4.7	-8.1	-9.6	-11.2	-11.5	-10.9	-10.2	-9.7
06/20/96	0:00:00	6.1	-2.1	-4.6	-8.0	-9.5	-11.1	-11.4	-10.8	-10.2	-9.6
06/20/96	12:00:00	4.3	-2.1	-4.5	-8.0	-9.5	-11.1	-11.4	-10.9	-10.1	-9.6
06/21/96	0:00:00	4.8	-2.0	-4.4	-7.9	-9.4	-11.1	-11.4	-10.9	-10.2	-9.7
06/21/96	12:00:00	6.7	-2.0	-4.4	-7.9	-9.4	-11.0	-11.4	-10.9	-10.2	-9.7
06/22/96	0:00:00	7.5	-1.9	-4.3	-7.8	-9.3	-11.0	-11.4	-10.9	-10.2	-9.7
06/22/96	12:00:00	8.3	-1.8	-4.2	-7.8	-9.3	-10.9	-11.4	-10.8	-10.2	-9.7
06/23/96	0:00:00	9.3	-1.7	-4.2	-7.7	-9.2	-10.9	-11.3	-10.8	-10.2	-9.7
06/23/96	12:00:00	10.2	-1.7	-4.1	-7.6	-9.2	-10.9	-11.3	-10.9	-10.2	-9.7
06/24/96	0:00:00	10.7	-1.6	-4.0	-7.6	-9.1	-10.9	-11.3	-10.8	-10.2	-9.7
06/24/96	12:00:00	11.9	-1.5	-3.9	-7.5	-9.0	-10.8	-11.3	-10.9	-10.2	-9.7
06/25/96	0:00:00	12.0	-1.4	-3.8	-7.5	-9.0	-10.8	-11.3	-10.9	-10.2	-9.7

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:	11259-06
Thermistor No:	String #1051

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) -0.1 °C	Depth (m) -0.6 °C	Depth (m) -1.6 °C	Depth (m) -2.6 °C	Depth (m) -4.6 °C	Depth (m) -7.1 °C	Depth (m) -9.6 °C	Depth (m) -12.1 °C	Depth (m) -14.6 °C
05/26/96	0:00:00	4.3	0.2	-4.2	-8.2	-8.0	-5.2	-6.1	-5.5	-7.4
05/26/96	12:00:00	3.6	0.4	-4.6	-8.6	-8.5	-6.0	-6.6	-6.1	-7.5
05/27/96	0:00:00	6.3		-4.8	-8.8	-8.9	-6.5	-6.9	-6.5	-7.5
05/27/96	12:00:00	5.2		-4.9	-8.9	-9.3	-7.0	-7.1	-6.7	-7.6
05/28/96	0:00:00	8.8	0.8	-5.0	-9.0	-9.5	-7.3	-7.3	-6.9	-7.6
05/28/96	12:00:00	7.9	1.1	-5.0	-9.0	-9.7	-7.6	-7.4	-7.1	-7.7
05/29/96	0:00:00	9.6	1.3	-5.0	-9.0	-9.8	-7.8	-7.5	-7.2	-7.7
05/29/96	12:00:00	5.8	1.6	-5.0	-9.0	-9.9	-8.0	-7.6	-7.3	-7.8
05/30/96	0:00:00	4.0	1.4	-5.0	-9.0	-10.0	-8.2	-7.7	-7.4	-7.8
05/30/96	12:00:00	2.8	1.0	-5.0	-8.9	-10.1	-8.3	-7.8	-7.5	-7.8
05/31/96	0:00:00	4.4	0.7	-5.0	-8.9	-10.2	-8.4	-7.9	-7.5	-7.8
05/31/96	12:00:00	3.6	0.8	-5.1	-8.8	-10.2	-8.5	-7.9	-7.5	-7.8
6/1/96	0:00:00	5.4	0.7	-5.0	-8.8	-10.2	-8.6	-8.0	-7.6	-7.8
6/1/96	12:00:00	5.4	0.9	-5.0	-8.7	-10.3	-8.7	-8.0	-7.7	-7.8
6/2/96	0:00:00	7.8	0.9	-5.0	-8.7	-10.3	-8.7	-8.1	-7.7	-7.8
6/2/96	12:00:00	5.1	1.1	-5.0	-8.6	-10.3	-8.8	-8.1	-7.7	-7.9
6/3/96	0:00:00	8.7	1.0	-5.0	-8.5	-10.3	-8.9	-8.1	-7.8	-7.9
6/3/96	12:00:00	8.4	1.2	-5.0	-8.5	-10.4	-8.9	-8.2	-7.8	-7.9
6/4/96	0:00:00	10.9	1.2	-4.9	-8.4	-10.3	-8.9	-8.2	-7.8	-7.9
6/4/96	12:00:00	5.8	1.4	-4.9	-8.3	-10.4	-9.0	-8.2	-7.9	-7.9
6/5/96	0:00:00	7.4	1.1	-4.8	-8.3	-10.4	-9.0	-8.2	-7.9	-7.9
6/5/96	12:00:00	4.7	1.0	-4.8	-8.3	-10.4	-9.1	-8.3	-7.9	-7.9
6/6/96	0:00:00	4.6	0.8	-4.8	-8.2	-10.4	-9.1	-8.4	-7.9	-7.9
6/6/96	12:00:00	2.9	0.7	-4.7	-8.1	-10.4	-9.1	-8.4	-8.0	-8.0
6/7/96	0:00:00	5.6	0.5	-4.7	-8.1	-10.3	-9.2	-8.4	-8.0	-7.9
6/7/96	12:00:00	5.0	0.6	-4.6	-8.0	-10.4	-9.2	-8.4	-8.0	-8.0

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-06

Thermistor No: String #1051

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) -0.1 °C	Depth (m) -0.6 °C	Depth (m) -1.6 °C	Depth (m) -2.6 °C	Depth (m) -4.6 °C	Depth (m) -7.1 °C	Depth (m) -9.6 °C	Depth (m) -12.1 °C	Depth (m) -14.6 °C
0.10.10.0	0.00.00	0.0	0.7	4.0	- ^	400				
6/8/96	0:00:00	9.3	0.7	-4.6	-7.9	-10.3	-9.2	-8.4	-8.0	-7.9
6/8/96	12:00:00	8.7	0.9	-4.5	-7.9	-10.3	-9.2	-8.4	-8.0	-8.0
6/9/96	0:00:00	9.9	1.0	-4.5	-7.8	-10.3	-9.3	-8.4	-8.0	-8.0
6/9/96	12:00:00	9.1	1.0	-4.5	-7.8	-10.3	-9.3	-8.5	-8.1	-8.0
6/10/96	0:00:00	11.0	1.1	-4.4	-7.7	-10.3	-9.3	-8.5	-8.0	-8.0
6/10/96	12:00:00	8.1	1.2	-4.3	-7.6	-10.3	-9.3	-8.5	-8.1	-8.0
6/11/96	0:00:00	8.8	1.1	-4.3	-7.6	-10.2	-9.4	-8.5	-8.1	-8.0
6/11/96	12:00:00	6.0	1.1	-4.2	-7.5	-10.2	-9.4	-8.5	-8.1	-8.0
6/12/96	0:00:00	5.6	0.9	-4.2	-7.5	-10.2	-9.4	-8.5	-8.1	-8.0
6/12/96	12:00:00	4.1	0.7	-4.1	-7.4	-10.1	-9.4	-8.5	-8.1	-8.0
06/13/96	0:00:00	5.7	0.6	-4.1	-7.3	-10.1	-9.4	-8.5	-8.1	-8.0
06/13/96	12:00:00	4.0	0.6	-4.0	-7.3	-10.1	-9.4	-8.5	-8.1	-8.0
06/14/96	0:00:00	5.7	0.5	-4.0	-7.2	-10.1	-9.4	-8.6	-8.1	-8.0
06/14/96	12:00:00	5.3	0.5	-4.0	-7.2	-10.1	-9.4	-8.6	-8.2	-8.1
06/15/96	0:00:00	8.5	0.6	-3.9	-7.1	-10.0	-9.4	-8.6	-8.2	-8.0
06/15/96	12:00:00	7.4	0.7	-3.9	-7.0	-10.0	-9.4	-8.6	-8.2	-8.0
06/16/96	0:00:00	11.3	0.8	-3.8	-6.9	-10.0	-9.4	-8.6	-8.2	-8.0
06/16/96	12:00:00	8.9	1.0	-3.8	-6.9	-10.0	-9.5	-8.7	-8.2	-8.1
06/17/96	0:00:00	11.0	1.0	-3.7	-6.9	-9.9	-9.4	-8.6	-8.2	-8.1
06/17/96	12:00:00	10.0	1.1	-3.6	-6.8	-9.9	-9.4	-8.6	-8.2	-8.1
06/18/96	0:00:00	13.8	1.2	-3.6	-6.8	-9.9	-9.5	-8.7	-8.2	-8.1
06/18/96	12:00:00	12.0	1.4	-3.6	-6.7	-9.8	-9.4	-8.7	-8.2	-8.1
06/19/96	0:00:00	15.2	1.5	-3.5	-6.6	-9.8	-9.5	-8.7	-8.2	-8.1
06/19/96	12:00:00	11.4	1.7	-3.5	-6.6	-9.8	-9.5	-8.7	-8.3	-8.1
06/20/96	0:00:00	12.6	1.7	-3.4	-6.5	-9.8	-9.5	-8.7	-8.3	-8.1
06/20/96	12:00:00	9.2	1.7	-3.4	-6.4	-9.7	-9.5	-8.7	-8.3	-8.1

Project:

Boston Gold Project

BHP Minerals Canada Ltd.

EBA File No:

0101-96-12259

Borehole No:

11259-06

Thermistor No:

String #1051

DATE MM/DD/YY	TIME HH:MM:SS	Depth (m) -0.1 °C	Depth (m) -0.6 °C	Depth (m) -1.6 °C	Depth (m) -2.6 °C	Depth (m) -4.6 °C	Depth (m) -7.1 °C	Depth (m) -9.6 °C	Depth (m) -12.1 °C	Depth (m) -14.6 °C
06/21/96	0:00:00	10.5	1.6	-3.3	-6.4	-9.7	-9.5	-8.7	-8.3	-8.1
06/21/96	12:00:00	9.1	1.6	-3.3	-6.3	-9.7	-9.5	-8.7	-8.3	-8.1
06/22/96	0:00:00	13.1	1.5	-3.3	-6.3	-9.7	-9.5	-8.8	-8.3	-8.1
06/22/96	12:00:00	11.0	1.7	-3.3	-6.2	-9.7	-9.5	-8.8	-8.3	-8.1
06/23/96	0:00:00	15.3	1.9	-3.2	-6.2	-9.6	-9.5	-8.8	-8.3	-8.1
06/23/96	12:00:00	13.2	2.2	-3.2	-6.2	-9.6	-9.5	-8.8	-8.3	-8.1
06/24/96	0:00:00	17.2	2.4	-3.1	-6.1	-9.5	-9.5	-8.8	-8.3	-8.1
06/24/96	12:00:00	15.3	2.8	-3.1	-6.1	-9.5	-9.5	-8.8	-8.3	-8.1
06/25/96	0:00:00	17.9	3.0	-3.0	-6.0	-9.5	-9.5	-8.8	-8.3	-8.1