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“Statistics is the grammar of science.” 
 

                Karl Pearson (1857 – 1936) 

              founder of the discipline of mathematical statistics 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pearson, K. (1892) “The Grammar of Science.” Adam & Charles Black, London. 552 pp. 



A little bit of history:   When regression began in statistics. 

 

 

The Victorian era statistician Sir Francis Galton first coined the word “regression” in the 

discipline of statistics and invented the use of regression lines in describing correlation relationships in 

the 1880s at King’s College University of London, my own alma mater. Galton observed that adult 

children's heights tended to deviate less from the mean height than their parents and suggested the 

concept of “regression towards the mean”, giving regression its name (Galton 1886). This diagram from 

his famous paper illustrated the "locus of horizontal tangential points" passing through the leftmost and 

rightmost points on the ellipse (which is a level curve of the bivariate normal distribution estimated 

from the data) is ordinary least squares estimate of the regression of parents' heights on children's 

heights, while the "locus of vertical tangential points" is the ordinary least squares estimate of the 

regression of children's heights on parent's heights. The major axis of the ellipse is the total least 

squares estimate. 

Galton, F. (1886). “Regression towards mediocrity in hereditary stature.” The Journal of the 

Anthropological Institute of Great Britain and Ireland. 15: 246–263. 1886 
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Summary 

 

• The structure and properties of the data sets were thoroughly examined in Chapter 1. This 

has important bearings on the choice of modeling approaches since almost all regression 

modeling methods have some sorts of pre-requisite assumptions concerning the data 

structure that needed to be met in order to validate their application. First and foremost, 

influential outliers were identified and removed using a batch of standard diagnostics such 

as Cook’s distance, Hi – leverage, Studentized residuals and DFFITS. Then a thorough 

residual analysis was carried out to reveal the nature of the data set:  (1) Homoscedasticity 

(Goldfeld – Quandt Test and various residual plots); (2) Randomness of residuals (Wald – 

Wolfwitz Runs Test); (3) Independence of residuals (Durbin – Watson test statistic on first – 

order autocorrelation, auto - correlograms) and (4) Frequency distribution (Normality plots 

and Anderson – Darling test statistic). The issues of known and unknown confounding 

(lurking) variables as well as measurement errors in predictor variables (weak exogeneity) 

were discussed. 

 

• The problem of multicollinearity and its restriction on model choice as well as possible 

remedies were discussed in details in Chapter 2 since the predictor variables in the present 

case were by nature, collinear. The use of eigenvalues of centered correlations, variance 

inflation factors, variance proportion and conditional indices in gauging the extent of 

collinearity followed by the use of auxiliary regression to identify the culprits amongst 

predictors were demonstrated. The weakness and inability of the ordinary least squares 

(OLS) model that relies on an unbiased estimator in dealing with multicollinearity was 

discussed.  

 

• The use of shrinkage regularization methods to tackle multicollinearity was demonstrated: 

Chapter 3 discussed the use of Tikhonov regularization (or ridge regression) by using a 

biased estimator to carefully control the variance of the model; Chapter 4 utilized the partial 

least square (PLS) approach relying on decomposition of variables and projection of these 

variables into latent structures in new hyperplanes so as to nullify the collinear effect. 

 

• The difference between the classical frequentist inference statistics and the Bayesian belief 

revision subjective probability approach using randomized resampling and Markov - chain 

Monte - Carlo simulation was discussed in Chapter 5. The advantages of the Bayesian 

approach were highlighted. Bayesian linear regression was applied to model the fish data. 
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• In Chapter 6, hierarchical multiple linear regression (HMLR) was used to investigate the 

 

• Robust regression modeling using maximum likelihood estimation based on the approach of 

iteratively reweighting least squares was used in Chapter 7 to generate predictive models of 

fish mercury level based on the three predictor variables. Unlike conventional approaches 

that all outliers must be removed before modeling, full data sets were used in robust 

regression modeling since the method is designed to minimize or even nullify the influence 

of outliers. The very robust Tukey’s bi-square M -estimator was used as the influence 

function to counter the effect of the presence of outliers.  

 

• In the final Chapter, the classical hierarchical multiple linear regression in conjunction with 

the modern iterative bootstrapping resampling - with - replacement method was used to 

investigate fish age as the confounding variable on the regression model.  

 

• Ultimately all these models generated needed to be put to test and validated using newly 

collected fish samples from the same watersheds from which the fish data used in 

constructing the models came from. The three growth parameters (fork length, weight and 

age) of these new fish samples will be measured and the data fed into these models to 

calculate the “predicted” fish mercury levels. These predicted fish mercury levels will then 

be compared with the “actual” mercury levels determined by laboratory analysis of the fish 

samples to assess the performance of each model (see Epilogue). 
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quadratic term of the curvilinear data of the lake whitefish to ascertain the impact of 

quadratic transformation on the overall model of this species. Subsequently, HMLR was 

used to fit the lake white fish data into a quadratic polynomial function. 



Summary of Regression Models: 

Ridge Regression: 

Brook trout: loge mercury = (-5.4914) + (0.4053) * loge fork length + (0.0276) * loge weight + (0.1857) * age 

Lake trout: mercury = (-0.0268) + (5.168 * 10-4) * fork length + (1.43 * 10-4) * weight + (3.915 * 10-3) * age 

 

Partial Least Squares Regression: 

Brook trout: mercury = (0.01982) + (1.2 * 10-4) * fork length + (4.4 * 10-5) * weight + (8.13 * 10-3) * age 

Lake trout: mercury = (- 0.05469) + (4.47 * 10-4) * fork length + (10-4) * weight + (0.0148) * age 

Lake whitefish: mercury = (0.03064) + (8.6 * 10-5) * fork length + (2.2 * 10-5) * weight + (3.06 * 10-3) * age 

 

Bayesian Linear Regression: 

Brook trout: loge mercury = (-2.169) + (1.716) * loge fork length + (-1.484) * loge weight + (0.248) * age 

Lake trout: mercury = (0.285) + (4.54 * 10-4) * fork length + (1.47 * 10-4) * weight + (0.002) * age 

 

Quadratic Polynomial Models for Lake Whitefish by Hierarchical Multiple Linear Regression: 

loge mercury = (-1.11801) + (-0.01221) * fork length + (2.46 * 10-4) * fork length2 

loge mercury = (-2.64852) + (-6.19 * 10-6)) * weight + (8.04 * 10-7) * weight2 

loge mercury = (-2.50823) + (-0.08413) * age + (0.01408) * age2 

 

Robust Regression by Maximum Likelihood Estimation: 

Brook trout: loge mercury = (-2.6380) + (0.00829) * fork length + (-0.5151) * loge weight + (0.1916) * age 

Lake trout: mercury = (-0.01944) + (5.16 * 10-4) * fork length + (1.42 * 10-4) * weight + (4.27 * 10-3) * age 

Lake whitefish: loge mercury = (-3.1193) + (2.16 * 10-6) * fork length2 + (5.16 * 10-3) * weight + (0.0409) * age 

 

Hierarchical Multiple Linear Regression with Age as Confounding Variable: 

Brook trout: loge mercury = (-22.340) + (4.866) * loge fork length + (-1.531) * loge weight + (0.256) * age 

Lake trout: mercury = (-0.19) + (0.037) * age 
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Chapter 1. Data Structures - Homoscedasticity, Normality, Independence, 

Randomness, Weak Exogeneity and Confounding Variables. 

 

1.1     The Data (see Appendix) 

 

1.2 Outliers 

There is no rigid mathematical definition of what constitute an outlier; determining whether or 

not an observation is an outlier is ultimately a subjective exercise (Zimek and Filzmoser 2018). Outliers 

(or influential points) can loosely be defined as observations that do not follow the pattern of other 

observations in the data set. They often exhibit numerically large residuals. Influential outliers cause 

dependent variables as well as the residuals of the predictor variables deviate from normal frequency 

distribution resulting the data violating the pre-requisite assumption of the ordinary least squares (OLS) 

regression model. See Chapter 7 for more on the issues of outliers. 
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The data set used in this monograph originated from fish samples collected from the Inukjuak River

 watershed (brook trout and lake whitefish) and Lake Tasialuk (lake trout) in northern Quebec in the 

summer of 2019 as part of the environmental baseline study of the Innavik Hydroelectric Project. The 

fish collected and growth parameters measured by technicians from Groupe WSP Global Inc. The 

mercury concentrations in the fish samples were determined using a standard operating protocol based

 on cold vapour atomic absorption spectrometry and fish age was determined using otolithes (lake trout

 and brook trout) and scale (lake whitefish) at Nunavik Research Centre (Kwan 2019). 

Before proceeding to analysis of residuals and assessing multicollinearity problems, outliers of 

both the dependent variable and the predictor variables were identified and removed. In the Appendix 

of data sets, outliers were highlighted in red and they were identified by examining their Studentized 

deleted residuals, Hi - leverages, Cook’s distance and DFFITS. Each of these four diagnostic measures 

illuminate different aspects of the data, so they do not necessary identify the same observations. 

Potential outliers were carefully checked and the decision of their removal depended on the outcome of

 these diagnostic tests. Remember, “Garbage in, Garbage out. Outliers needed to be weeded out!”. 

Outliers of the dependent variable were identified using Studentized deleted residuals. 

However, in the case when there was more than one predictor variable, Bonferroni – corrected t – 

statistic was used to identify outliers in order to control the possible inflation of Type I Error. In this, 

100{1 – α/2n} percentile of Student’s t with (n – p’ – 1) degrees of freedom (df) was calculated. Where α

 



is the significant level (usually α = 0.05), n is the number of cases, p’ is the total number of predictors in 

the multiple regression (k) plus 1 (p’ = k + 1). If the Studentized deleted t residual is greater than the 

Bonferroni – corrected t – statistic, the corresponding observation is probably an outlier.  

Outliers of the predictor variables were identified using Hi - leverage (hii), Cook’s distance and 

DFFITS. Each individual value of a predictor has a leverage. Hi - leverages measure the joint influence of 

the predictors by a standardized distance of the i th observation to the other n – 1. A rough indication of 

an unusual observation is a leverage exceeding 3p’/n. One disadvantage of leverages is that they do not 

distinguish between high leverage points that are influential in the calculation of partial regression 

coefficients and those that are not. A measure that is more sensitive to such influential points is the 

Cook’s distance (D). It compares the estimates of the regression coefficients from the full dataset with 

the estimates of the regression coefficients when the i th

(1 - hii)-1 ti
2 p’ (Belsley et. al. 2013). The observation is 

probably an outlier when its Cook’s distance exceeds the F statistic with p’ and (n – p’) degrees of 

freedom at 0.5 level of significance (i.e. the F – value at the 50th percentile).  DFFITS is very similar to 

Cook’s distance. In fact, DFFITS is the square root of p’ times Cook’s D with the sign of the Studentized 

deleted t residual attached. Observations with DFFITS values greater than 2√(p’/n) are considered large 

and are probably outliers. 

Outliers have a tendency to “nest”. This means removing one set of outliers identified alters the 

regression line; and the new line often uncovers other outliers. Often it needed to go through several 

cycles of finding and removing and re-running the regression until all outliers are removed from the 

dataset. 
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 observation is omitted; hence, a large value

 indicates an influential point. The beauty of Cook’s distance is that it combines both the Studentized

 deleted residuals and the leverages: D = hii 

1.3 Studentized deleted residuals for multiple predictor variables 

 Since there are multiple predictor variables in the datasets, Studentized deleted residuals of 

each predictor variable were used instead of raw residuals in diagnoses because Studentized deleted 

residuals are most sensitive in checking for outliers in recognizing the fact that an extreme outlier may 

influence the estimates of the partial regression coefficients as well as the variance of the residuals. The

 Studentized deleted residual of an observation is calculated by dividing an observation's deleted 



residual by an estimate of its standard deviation. A deleted residual di is the difference between yi

1.4 Normality 
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Normal probability plots and Anderson – Darling test statistic (AD) were used to assess the 

probability distributions of the dependent variable and the Studentized deleted residuals of each 

predictor variable. Anderson – Darling test compares the empirical cumulative distribution function 

(ECDF) of the sample data with the distribution expected if the data were normal. If this observed 

difference is sufficiently large (p < 0.05), the test will reject the null hypothesis of population normality.

 

 and 

its fitted value in a model that omits the ith observation from its calculations. The observation is omitted

 to see how the model behaves without this potential outlier. Studentizing residuals is useful because 

raw residuals can be poor indicators of outliers due to their non-constant variance: residuals with 

corresponding x-values that are far from mean of x have greater variance than residuals with 

corresponding x-values closer to mean of x. Studentizing controls for this non-constant variance, and all

 studentized t deleted residuals have the same standard deviation. Each Studentized deleted residual 

follows the t distribution with (n – 1 – p) degrees of freedom, where p equals the number of predictor 

variables in the regression model. 



Log e transformation was needed to render the mercury data of brook trout normally 

distributed. The Studentized deleted residuals of both fork length and weight of brook trout also needed 

log e transformation to become normal. No transformation for brook trout age was needed: 
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No transformation was needed for the lake trout data: 
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For the mercury data of lake whitefish, transformations (loge, square, square root) failed to 

render the probability distribution normal. loge transformation somewhat improved the distribution (AD 

= 3.367) in comparison with untransformed mercury data (AD = 8.580) even though it was still not 

significant (p < 0.005). For the loge
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 transformed mercury data, Studentized deleted residuals of all 

three predictor variables exhibited normal probability distributions:  
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1.5 Relationships between the dependent variable and predictors 

Locally-weighted scatterplot smoother (LOWESS) is a common technique for determining a 

smoothing line that is fitted to the data in order to explore the potential relationships between two 

variables, without fitting a specified model, such as a regression line or a theoretical 

distribution.  LOWESS is a nonparametric method that combines multiple regression models in a k – 

nearest – neighbour – based meta model. For each data point, LOWESS performs a “weighted” linear 

regression, giving points closest to each x-value the greatest weight in the smoothing and limiting the 

influence of outliers. It is a relatively computationally intensive process by fitting simple models to 

localized subsets of the data to build up a function that describes the deterministic part of the variation 

in the data, point by point. The beauty of this method is that it is not required to specify a global 

function of any form to fit a model to the data, only to fit segments of the data. LOWESS was used here 

as a “guidance” to suggest which type of classical models (linear, quadratic, etc.) the data are most likely 

to be described by.  

For the brook trout, the relationships between loge mercury and loge fork length, loge weight 

and age were linear: 
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For lake trout, the relationships between mercury and fork length, weight and age were linear: 
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In the case of lake whitefish, the LOWESS smoothing suggested that a quadratic model fitted 

better than a linear model to describe the relationships between the loge mercury and the three 

(untransformed) predictor variables. Square root transformation of predictor variables still yielded a 

curvilinear relationship. However, a square transformation greatly rendered both weight and age to 

approach linearity in their relationship with loge mercury, although the relationship between loge 

mercury and fork length square remained curvilinear despite the square transformation: 

  

Page 15 of 156



 

 

Page 16 of 156



 

 

Page 17 of 156



 

 

1.6 Homoscedasticity 
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Goldfeld – Quandt test was used to check for homoscedasticity of the Studentized deleted 

residuals of each predictor variable. The hypothesis to be tested was that the variances of the residuals

 of the regression model were not constant, but instead were monotonically related to a pre-identified 

independent variable (Goldfeld and Quandt 1965). The test involved sorting the Studentized deleted 

residuals from the lowest to the highest values and then divided them into two equal subsets. The two 

subsets were then subjected to the test for equal variances. The test statistic used was the ratio of the 

mean square residual errors for the regressions on the two subsets. This test statistic corresponded to 

an F-test of equality of variances. The test offered a simple and intuitive diagnostic for heteroscedastic 

errors in a univariate or multivariate regression model. Table 1.1 shows the Levene test statistics and 

the associated p – values of the Goldfeld – Quandt test. Studentized deleted t residuals versus fitted y 

values plots as well as Studentized deleted residuals versus predictor plots were showed to visually 

determine suitability of a linear model, the presence of lurking (confounding) variables and 

heteroskedastic errors. 



 

Table 1.1.  Goldfeld – Quandt test results. 

Fish species Predictor (n) Levene test statistic p - value 

 

Brook trout1 

loge fork length (44) 

loge weight (48) 

age (44) 

0.12 

0.06 

1.16 

0.728 

0.809 

0.287 

 

Lake trout2 

fork length (33) 

weight (33) 

age (31) 

0.09 

1.19 

0.47 

0.77 

0.285 

0.499 

 

Lake whitefish1 

fork length (81) 

weight (81) 

age (81) 

1.24 

0.18 

0.11 

0.268 

0.673 

0.737 

1  loge mercury vs. predictor 

2 mercury vs. predictor 
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One weakness of the Goldfeld – Quandt test is that it is not very robust to model specification 

errors (Thursby 1982). In the present case, no model specification error was evident for brook trout and 

lake trout from examining their scatterplots and their Studentized deleted residuals vs. fits plots. For 

both species, the relationships between the dependent variable and all three predictors can be 

described by a linear model; hence, the results of the Goldfeld – Quandt test were valid. However, this is

 not the case for lake whitefish, both scatterplots of dependent variable versus predictors and the 

residuals versus fits plots indicated that a simple linear model was inadequate to satisfactorily describe 

the relationship between the dependent variable and the predictors. Under such circumstance, Goldfeld

 – Quandt test cannot distinguish between heteroskedastic error structure and an underlying model 

specification problem such as an incorrect functional form or an omitted (lurking) independent variable. 

The Goldfeld – Quandt test results of the lake whitefish have to be treated with cautions and might not 

be interpreted correctly.  
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1.7 Independence and randomness of residuals 

Table 1.2.  Results of Wald – Wolfowitz runs test and Durbin – Watson test. 

Fish species Predictor (n)  Wald - Wolfowitz Runs test 

for randomness, p-value 

Durbin – Watson test statistic 

(DW) for independence 

 

Brook trout1 

loge fork length (44) 

loge weight (48) 

age (44) 

0.285 

0.285 

0.661 

1.995 

1.853 

2.068 

 

Lake trout2 

fork length (33) 

weight (33) 

age (31) 

0.217 

0.864 

0.680 

2.323 

2.369 

2.751 

 

Lake whitefish1 

fork length (81) 

weight (81) 

age (81) 

0.001 

0.019 

0.001 

1.504 

1.401 

1.472 

1  loge mercury vs. predictor 

2 mercury vs. predictor 
 

Independence of residuals is an important assumption to validate the linear regression based on 

the ordinary least squares (OLS) model which assumes that residuals are not correlated with one 

another. If for example, there are positive correlations between residuals, this tends to inflated the t – 

values for regression coefficient, rendering the predictor variables appear significant when they may not 

be (i.e. inflating Type I Error), a phenomenon called “autocorrelation”, which means that adjacent 

observations are dependent on one another, hence they are not random. To test for the independence 
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Wald – Wolfowitz runs test was used to test for the randomness of the Studentized deleted t 

residuals. It tested the hypothesis that the elements of a two-valued data sequence were mutually 

independent (Magel and Wibowo 1997). For both brook trout and lake trout, the runs test yielded a high 

p-values (p > 0.05) for the residuals of all three growth parameters which means that the null hypothesis 

that the residuals increase or decrease in value randomly at the 0.05 level of significance was accepted 

(Table 1.2). However, the very low p – values (p < 0.05) for the residuals of the three predictors of lake 

whitefish indicated that the data sequence of the sorted residuals was not mutually independent, 

hence, not random.  



of residuals we tested the sorted Studentized deleted residuals with an autocorrelation plot as well as 

with the Durbin – Watson test statistic on first- order autocorrelation. 

For brook trout and lake trout, autocorrelation plots clearly showed that all the autocorrelations 

were within the two standard error confidence bound. Hence the null hypothesis that there was no 

autocorrelation at and beyond a given lag was accepted at the 0.05 level of significance. In other words, 

the autocorrelation plot confirmed that the mercury data were random and independent of one 

another. This was supported by the high value of Durbin – Watson test statistic for which the null 

hypothesis that there was no first-order autocorrelation (autocorrelation at lag 1) in the residuals was 

accepted at the 0.05 level of significance. The residuals for lake whitefish failed both the Durbin – 

Watson test and autocorrelation plot which indicated that residuals were correlated with one another. 
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Considering the curvilinear relationships between the dependent variable and the predictors as 

well as the V – shaped patterns of the residual plots, the failure of randomness and independence of the 

residuals for lake whitefish might have been related to one or more possibilities: (1) model specification 

inadequacy; (2) the presence of lurking (confounding) variable(s) that have significant effects on the 

dependent variable that were absent in the model; (3) data problems such as that the samples (hence 

data) were not collected in a random manner or in the same time period. Since the fish were supposed 

to have been collected in one summer from a number of stations in the Inukjuak River watershed,  the 

data should not have a temporal (time series) nature, autoregressive modeling techniques which often 

used in analyzing time series data cannot be applied in the present situation with the lake whitefish 

data. However, instead of utilizing the conventional OLS – based regression analysis which bounded by 

many pre-requisite assumptions on the data; it is possible to model the lake whitefish data using the 

partial least squares (PLS) approach which focuses on the data structures of predictors by decomposing 

the original variables and projecting them into latent structures in new planes before further analyzing 

them with linear regression. PLS does not restricted by those assumptions that are pre-requisite for OLS 

- based models as long as dependent variables and predictors are positively correlated in an 

approximately linear manner. PLS can be used to shed some light on the relationship between mercury 

and the fish growth parameters for the lake whitefish data set and provide a plausible predictive model. 

An entirely different approach to deal with the lake whitefish data set is to establish a quadratic 

polynomial model to describe the relationship between mercury and the three predictors. The final 
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polynomial regression equation is useful in prediction of mercury in the fish; however, any attempt to 

interpret the regression coefficients amongst predictors is no longer possible.  

 

1.8 Weak Exogeneity 

This essentially means that the predictor variables can be treated as fixed values, rather than 

random variables. This means, for example that the predictor variables are assumed to be error – free 

(i.e. not contaminated with measurement errors.). Although this assumption is not realistic in many 

settings, dropping it leads to the significantly more difficult errors – in – variables models such as 

Deming regression model (Model II). For linear regressions, if the predictor variables are not error – free, 

this will lead to underestimation of the regression coefficients known as attenuation bias. In the case of 

nonlinear regressions, the direction of the bias can be very complicated. In the present context, we have 

to assume that fork length, weight and age were measured without error in order to proceed with the 

regression modeling approaches we used in this monograph. Indeed, the determination of the fork 

length and weight involved simple straightforward measurement which yielded definitive answers. 

Whereas the determination of fish age using scales or otoliths carried out by a highly experienced 

technician yielded unambiguous results as well. By and large we can safely assume that the 

determination of these three predictors were error – free.  

 

1.9 Confounding or lurking variables, the “unknown” in observational 

situations. 

Reality is complex, there are myriad of variables interacting and influencing each other directly 

and indirectly, some of these variables are relatively obvious and are known to us, but many might be 

lurking in the background unbeknown to us. In “experimental” situations, we can meticulously plan and 

design our experiments hoping to control “all” variables known to influence our experimental outcome. 

The influence of lurking or confounding variables might well be kept in check to good extents under 

these well – controlled experimental situations. In the “observational” situations such as collecting 

samples from the real world for analyses of parameters of some sort, the researcher can never be sure 

that there are not other predictor variables relating and influencing the outcome of the dependent 

variable in the population sampled. These variables may be unknown to the researcher, difficult to 

measure, or thought to be irrelevant.  
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Statistician and creator of SYSTAT™, Leland Wilkinson commented on the problem of lurking 

variables and residuals very nicely:  

“Residuals are not really errors in prediction, rather, they are the location of other structure which has 

not yet been accounted for the model…….. Fitting a model and looking at the statistical output can only 

show us what we more or less anticipated was there. We do not learn enough until we remove the 

effects of everything that we know influences the data and then plot what remains, the residuals. Here 

we may find the utterly unanticipated.” (Wilkinson, et. al. 1996). 

 In the present case, our previous knowledge regarding bioaccumulation of mercury in fish has 

given us sound theoretical grounds to the notion that mercury level in fish increases as the fish grows, 

(i.e. increase in age and size). Length, weight and age are the obvious candidates as predictors in our 

model for fish mercury level. Whether there are other unknown lurking variables out in the environment 

that also affecting mercury level in fish, we cannot say; hence they are not in our model. If such a lurking 

variable exists and exerts significant influence on mercury level in fish, this might well jeopardize the 

predictive capability of our model and even leads to model specification problems. One interesting fact 

in our model is that fish age is our “known” confounding variable because the other two predictors (fork 

length and weight) as well as the dependent variable (fish mercury level) are all affected by fish age: 
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Known and suspected confounding variables can often be controlled and accounted for using 

various statistical techniques such as analysis of covariance, partial correlation, hierarchical multiple 

regression, stratified sampling and analysis using methods such as Mantel – Haenszel estimation, etc. 

Observational situations are much more susceptible to unknown or lurking variables that are 

confounding. The presence of these confounding variables from the model can often wreak havoc to 

models rendering estimated coefficients and standard errors unreliable and uninterpretable or worse,

 lead to model specification problems in cases of regression modeling.   



Chapter 2.     The Multicollinearity Problem: Variance Inflation. 

 

In regression modeling an underfitted model can lead to severely biased estimation and 

prediction. In contrast, an overfitted model can seriously degrade the efficiency of the resulting 

parameter estimates and predictions. It is often easily fall into a trap when we want to add as many 

predictors into a regression model in order to improve the predictability of the model for the dependent 

variable when (1) lacking good and sound theoretical reasons to do so and/or (2) overlooking 

interactions between predictors. One of the most common problems encountered in multiple regression 

modeling involving a large number of predictors is multicollinearity amongst predictors due to their 

linear correlative relationships. Since the ordinary least squares (OLS) model on which linear regression 

is conventionally based assumes an unbiased estimation of regression coefficients (i.e. OLS doesn’t 

consider which predictor is more important than others); highly significant correlative relationships 

amongst predictors can create inaccurate estimation of the regression coefficients, inflate the standard 

errors of the regression coefficients, deflate the partial t – tests for the regression coefficients and can 

give false p – values. All in all, multicollinearity degrade the predictability of the model as a whole. The 

problem with OLS model is its “inflexibility” in the sense that it tries to find the only set of regression 

coefficients that “best” fit the data in order to achieve the lowest residual sum of squares. Though OLS 

gives unbiased estimates and enjoy the minimum variance of all linear unbiased estimators, there is no 

upper bound on the variance of the estimator and the presence of multicollinearity often produces large 

variances; hence, a huge price is paid for the unbiasedness property that one achieves by using OLS. In 

doing so, highly linear correlated predictors will lead to inflation of the standard errors of the regression 

coefficients.  Multicollinearity is a special characteristic of the data matrix, not the underlying statistic 

model; i.e. it is a data problem and not a statistical problem. Mathematically, the OLS model requires 

(and assumes) a perfect inversion of the correlation matrix of predictors XTX (a moment matrix); the 

presence of highly linearly correlated predictors causes the matrix to have less than full rank and 

renders a perfect inversion not possible. Instead, the inversion is approximate or “ill – conditioned”, and 

often result in an inaccurately computed inverse matrix. 

where 

11 1

1

k

N kN

X X

X

X X

 
 

=  
 
 

 , a N x (k +1) matrix, where N is the number of observations and k is the 

number of predictors with N required to be greater than or equal to k + 1. In a multicollinear situation, 
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the rank of X (and hence the XTX) is less than k + 1, thus the matrix XTX is not perfectly invertible. 

Because of this, the OLS estimator OLS  =  (XTX)-1XTy is not possible.  

A simple visual way to gain a preliminary idea if multicollinearity is likely a problem is by 

examining the Spearman correlation matrix of the predictors. Predictors that show significant 

correlations are likely to have collinear problem. 

Spearman correlation matrices clearly show that fork length, weight and age have highly 

significant positive correlations with one another for brook trout, lake trout and lake whitefish (Figures 

2.1, 2.2 and 2.3). 

Figure 2.1  Spearman correlation matrix of fork length, weight, age and mercury in brook trout. 
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Figure 2.2  Spearman correlation matrix of fork length, weight, age and mercury in lake trout. 

 

Figure 2.3  Spearman correlation matrix of fork length, weight, age and mercury in lake whitefish. 
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Another commonly used method of detecting the presence of multicollinearity is to look at the 

variance inflation factor (VIF) associated with each predictor. 

The variance of an estimated partial regression coefficient j jjVar( ) = MSE c , where MSE is 

the mean squared error and cjj is the jth diagonal element of the inverted matrix (XTX)-1. In the 

multicollinearity situation, the large variances of the coefficients are associated with the large values of 

the cjj since the mean squared error is not affected. It can be shown that jj
2 2

j

1
c  = 

(1 - R ) (  -  )jjx x
 , 

where 2

jR  is the coefficient of determination of the regression of jx on all other predictors in the 

model. In fact, the 2(  -  )jjx x is the denominator of the formula for the variance of the regression 

coefficient in a simple linear regression. If there is no multicollinearity, 2

jR  = 0; then the variance as 

well as the estimated coefficient is the same for the total and partial regression coefficients. However, 

correlations amongst predictors cause 2

jR to increase, effectively increasing the magnitude of cjj and 

consequently increasing the variance of the estimated coefficient. In other words, the variance of the 

estimated partial regression coefficient jVar( ) is inflated by 
2

j

1

(1 - R )
. This is the variance inflation 

factor (VIF) of the jth coefficient.  VIF measures how much the variance of an estimated regression 

coefficient increases if our predictors are correlated. VIF indicates the degree to which the standard 

errors are inflated due to the level of multicollinearity. As the R – square in the denominator gets closer 

and closer to one, the variance (and thus VIF) will get larger and larger. VIF = 1 indicates no relationships 

amongst predictors; VIF > 1 indicates that the predictors have some degrees of correlation. If VIF is close 

to 10 or even above 10 (hence, an R – square value between one predictor and the rest is 0.90 or 

greater), the multicollinearity is becoming problematic, i.e. the regression coefficients are poorly 

estimated and no long accurate (O’Brien 2007). However, it must be pointed out that using VIF = 10 as a 

“cut-off” point is more to do with a matter of convenience and there is little theoretical basis for that. In 

fact, the “cut-off” point of VIF that indicates a multicollinearity problem varies from case to case, for 

example, many authors actually suggested VIF of higher than 4 or 5 as the limit. Montgomery and Peck 

(1992) suggested that if the VIF is between 5 and 10, the partial regression coefficients are poorly 

estimated. The choice of the cut-off VIF values should also be evaluated relative to the overall fit of the 

model under study (i.e. the R-square of the model). If the R – square is very high (e.g. above 0.9), then 
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the VIF of 10 will not be large enough to seriously affect the estimate of the regression coefficients. On 

the other hand, if the R – square is low, say below 0.3, then even a relatively low VIF value (e.g. 6) may 

cause poor estimations of regression coefficients.  

A preliminary run of linear regressions based on the OLS model reveal that the VIF values 

associated with fork length, weight and age for brook trout, lake trout and lake whitefish were above 10 

(Tables 2.1, 2.2 and 2.3) with the exception of age for brook trout (VIF = 3.518) 

Table 2.1  Linear regression of mercury on fork length, weight and age of brook trout. 

 

 

Table 2.2  Linear regression of mercury on fork length, weight and age of lake trout. 
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Table 2.3  Linear regression of mercury on fork length, weight and age of lake whitefish. 

 

Another commonly observed effect when multicollinearity occurs is that the signs (directions) 

associated with the estimated regression coefficients do not make sense when comparing with the 

direction of the correlation between the predictor and the dependent variable: for examples, the 

negative regression coefficients associated with weight for brook trout as well as the negative regression 

coefficient associated with fork length for lake trout and lake whitefish. 

Two shortcomings of VIF are (1) there is no meaningful boundary which can be used to 

distinguish VIF values which are too high from those which are acceptable; (2) VIF is unable to 

distinguish between several different sets of collinearities amongst predictors, i.e. it can’t tell us what is 

collinear with what. Belsley, Kuh and Welsch (2013) proposed a better procedure using eigenvalues, 

condition indices together with variance proportions to confirm the presence and the extent of 

collinearity, then followed by using auxiliary regressions to identify the culprits amongst predictors. 

The eigenvalues of the centered correlation tell us how independent each variable is. If all 

eigenvalues were 1.000, all predictors would be completely independent of each other. When one or 

more eigenvalues are greater than 1.000, some predictors are correlated and collinearity is a potential 

problem. For the mercury in brook trout data, fork length (column 1) has the largest eigenvalue (3.962). 

Condition indices are the most useful indicators of collinearity. It is the square root of the ratio of the 

largest eigenvalue divided by the eigenvalues of each of the four columns. Belsley et. al. (2013) 

proposed explicit diagnostic boundaries above which collinearity is harming the regression and below 

which collinearity is not harmful. Belsley et.al. suggested that condition indices over 15 suggest a 

potential problem and if over 30 indicate a serious problem. MERCURY (column 4, with a condition 

index of 470.475) confirms that we have a serious problem (Table 2.4): 
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Table 2.4. Inukjuak watershed brook trout. Regression output of the model loge mercury = constant + 

fork length + loge weight + age. (Column 1 = fork length; column 2 = weight; column 3 = age and column 
4 = mercury.) 

 

The variance proportions tell us which regression coefficients have been damaged due to 

collinearity. The variance proportions in the columns measure the independence of each predictor. If 

each predictor were completely independent, then each column would contain a single 1.000 and a set 

of 0.000s. If several predictors are collinear, most of the variance will show up in a single column. Thus, 

one column may contain several large variance proportions. To identify collinear predictors, we looked 

at the column corresponded to the condition index showing collinearity damage (i.e. column 4, with a 

condition index of 470.475 in Table 2.4 for brook trout). Here loge fork length and loge weight 

respectively have 1.000 and 0.945 of their variance which mean that the regression coefficients 

associated with both fork length and weight were seriously degraded by collinearity. Then we carried 

out an auxiliary regression of the model:   AGE = CONSTANT + LENGTH + WEIGHT to look at the rest of 

the predictors, since age has the largest condition index (35.133) amongst the three predictors. Auxiliary 

regression was used here to confirm with predictors were involved. In this auxiliary regression, our 
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primary concern was to identify the predictors that were significant in predicting AGE. The p – value 

confirmed that fork length and age were predictors involved in the collinearity Table 2.5).  

Table 2.5.  Inukjuak watershed brook trout. Auxiliary regression output of the model age = constant + 
fork length + weight.  

 

Table 2.6. Lake Tiasialuk lake trout. Regression output of the model mercury = constant + fork length + 
weight + age. (Column 1 = fork length; column 2 = weight; column 3 = age and column 4 = mercury.) 
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For the mercury in lake trout data (Table 2.6), fork length (column 1) has the largest eigenvalue 

(3.865). MERCURY (column 4, with a condition index of 46.6) confirmed that we have a problem. Column 

4 of the variance proportions showed that fork length and weight respectively have 0.992 and 0.853 of 

their variance which mean that the regression coefficients associated with both fork length and weight 

were seriously degraded by collinearity. Again, age has the largest condition index (15.371) amongst the 

three predictors, the auxiliary regression model: AGE = CONSTANT + FORK LENGTH + WEIGHT (Table 2.7) 

showed that fork length and age were possibly involved in collinearity (p = 0.042). 

Table 2.7.  Lake Tasialuk lake trout. Auxiliary regression output of the model age = constant + fork length 
+ weight.  

 

For the mercury in lake whitefish data (Table 2.8), fork length (column 1) has the largest 

eigenvalue (3.816). Column 3 (AGE) has a condition index of 21.738 which suggested a potential 

collinearity problem. Column 4 (MERCURY) has a condition index of 45.891 which confirmed that we 

have a problem. In column 4 (MERCURY) of the variance proportions fork length has 0.964 of its variance 

mean that the regression coefficient associated with fork length was seriously degraded by collinearity. 

Again, age has the largest condition index amongst the three predictors, the auxiliary regression model: 

AGE = CONSTANT + FORK LENGTH + WEIGHT (Table 2.9) shows that weight and age were involved in 

collinearity (p = 0.000).  
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Table 2.8. Inukjuak watershed lake whitefish. Regression output of the model mercury = constant + fork 
length + weight + age. (Column 1 = fork length; column 2 = weight; column 3 = age and column 4 = 
mercury.) 

 

Table 2.9.  Inukjuak watershed lake whitefish. Auxiliary regression output of the model age = constant + 
fork length + weight.  
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An important issue of multicollinearity is that the estimated regression coefficients may change 

erratically and significantly in response to small changes in the model or the input data (Belsley 1991). 

Although multicollinearity does not reduce the predictive power of the model “as a whole” (at least 

within the range of the data set), it impacts calculations regarding “individual” predictors hence gives 

erratic results about the relative importance of individual predictors or about which predictors are 

statistically redundant with respect to others. The estimate of one predictor’s impact on the dependent 

variable while controlling for the other predictors is no longer accurate. One feature of multicollinearity 

is that the standard errors of the affected coefficients tend to be large. In that case, the test of the 

hypothesis that the coefficient is equal to zero may lead to a failure to reject a false null hypothesis of 

no effect of the predictor, i.e. a Type II Error. 

In the present context, there are two approaches to remedy the problem of multicollinearity, 

each has their pros and cons as well as limitations: 

(1) By using models other than the classical ordinary least squares (OLS) model such as partial least 

squares (PLS) regression and robust regression based of maximum likelihood estimators or by a 

modification of the OLS model using some forms of penalized estimation of the regression 

coefficients such as regularization techniques (for example ridge regression, Lasso regression 

and Elastic net) to allow for multicollinearity. It is also possible to reject the classical frequentist 

inference entirely and adopt the Bayesian approach to carry out the regression modeling, such 

an approach has rapidly grown in popularity in recent years which based on repeated simulation 

to determine the posterior probability distribution of the model’s parameters based on an 

assumed form of a prior probability distribution and the estimation of a likelihood function. 

(2) By removal of one or more redundant predictors. Computer algorithms such as stepwise 

regression, best – subset regression and the more recent LASSO regression and Elastic Net can 

be used to identify redundant predictors for possible exclusion from the regression model. 

However, it is most important that the final decision on the exclusion of a predictor from the 

model is based on sounded theoretical reasons instead of solely (and blindly) rely on the 

outcome of the computer algorithms. The remaining predictors can then be modeled using 

multiple linear regression. 

It is also needed to mention here that another approach that can theoretically remedy the 

problem of multicollinearity especially when there are large number of predictors is to “redefining” 

the predictor variables by somehow combining them into principal components using techniques 
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such as principal component analysis, factor analysis and principal component regression. Hopefully 

this can reduce the dimensions of the model by combining predictors that are highly correlated. In 

reality, often the principal components resulted are difficult to interpret to be practically useful in 

the final model. Such an approach is not particularly useful in the present context of building a 

model on fish mercury levels based on only three predictors. 
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Chapter 3.    Ridge Regression - Shrinkage Regularization with a Biased  

    Estimator. 

 
Ridge regression, originally known as Tikhonov regularization is often useful in mitigating the 

problem of multicollinearity in linear regression by carefully conducting a so - called “bias – variance 

trade – off”. The technique is especially useful when there are a large number of predictors and in 

particular, when the number of observations is small, hence model over – fitting becoming a potential 

problem. The problem of the unbiased estimates of the OLS model in the face of highly linearly 

correlated predictors has been discussed in Chapter 2. In ridge regression, a small amount of bias 

(shrinkage parameter, k) is deliberately, gradually and carefully introduced to penalize the estimation of 

the regression coefficient in order to reduce the variability of the regression coefficient estimates and 

mitigate the multicollinearity problem.  

The ridge regression equation written in the vector norm format where   

made up of two components:    is actually the OLS term and the second component   

  is the penalty term that is what makes the ridge regression works: 

 

In the matrix format, the ridge regression equation is 

  

which is exactly the matrix equation of the OLS model with the penalty term k and its identity matrix I 

added to it. 

The introduction of the shrinkage parameter k increases the residual sum of squares. In ridge 

regression, we “tune” the value of k to change the model coefficients until the mean squared error is 

minimized. This “tuning” the value of k has led to some controversy amongst statisticians regarding the 

subjectivity in the selection of the proper amount of penalty (i.e. bias) being added into the model. With 

the advancement of computer algorithms, more precise and objective selection of the k value becomes 

possible in recent years. 

Ridge regression can be regarded as a special case of Bayesian linear regression in that the 

regression coefficients are assumed to be random variables with a specified prior distribution which can 

bias the solutions for the regression coefficients. 
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 The assumptions of ridge regression are the same as least square regressions (i.e. linear 

relationships between dependent variable and predictors, homoscedasticity, independence and 

randomness of residuals) except normality is not to be assumed. In chapter 1, we saw that the brook 

trout and lake trout data met the assumptions of least square regressions and the three predictors 

exhibited various degrees of collinearity. The brook trout and lake trout data were analyzed using the 

ridge regression algorithm of NCSS™ to assess multicollinearity amongst predictors and to correct the 

problem if necessary. 

 

 

3.1 Ridge regression analysis of brook trout data: 

 

Pearson correlation coefficients showed that the predictors were significantly correlated with 

the dependent variable and with each other. 

 

VIF is the reciprocal of 1 – Rx
2 , where Rx

2  is the R2 obtained when this variable is regressed on 

the remaining predictors. A VIF of 10 or more for large data sets indicates a multicollinearity problem 

since the Rx
2  with the remaining X’s is 90%. For small data sets, even VIF’s of 5 can signify 

multicollinearity. Loge fork length and loge weight have VIF greater than 10 and this indicated a 

multicollinearity problem. The high R-Squared vs Other X’s indicated a lot of overlap in explaining the 

variation among the remaining predictors.  
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The eigenvalues of correlations table give an eigenvalue analysis of the predictors after they 

have been centered and scaled. The sum of eigenvalues is equal to the number of predictors (i.e. 3). 

Eigenvalues as well as the incremental percent near zero such as the third eigenvalue here indicated a 

multicollinearity problem in the data. When collinearity is completely absent, all the three eigenvalues 

would have equal incremental percent. The condition number is the largest eigenvalue divided by each 

corresponding eigenvalue. Since the eigenvalues are really variances, the condition number is a ratio of 

variance. Condition numbers greater than 1000 indicate a severe multicollinearity problem while 

condition number between 100 and 1000 indicate a moderate multicollinearity problem such as the one 

here associated with the third eigenvalue. 

 

One of the main obstacles and indeed scepticism by many statisticians in the use of ridge 

regression is in choosing an appropriate value of k. The formulas for calculating the value of k that 

minimizes the total mean squared error of the set of regression coefficients are functions of the 

unknown values of the population coefficients. Using the least square coefficients in these formulas 
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would render their estimation unreliable when multicollinearity is present. Hoerl and Kennard (1970), 

the inventors of ridge regression, suggested a graphical way to estimate the value of k which they called 

the ridge trace.  The ridge regression coefficients are calculated for a set of values of k. The regression 

coefficients are standardized and plotted against the values of k. The standardized regression 

coefficients often vary widely for smaller values of k; and as k continues to increase, the standardized 

regression coefficients ultimately “settle down” or stabilized and gradually drift towards zero. Without 

the help of computer algorithm, the value of k that the regression coefficients begin to stabilize has to 

be picked manually, often quite subjectively. The difficulty stemmed from the fact that the smallest 

value of k should be selected in order to introduce the smallest amount of bias needed after which the 

regression coefficients have seem to stabilize as we do not want to introduce an unnecessary amount of 

bias in the estimation of the regression coefficients. The ridge trace and more importantly the variance 

inflation factor plot computed by software algorithms such as the NCSS™ greatly helps the selection of 

the k value. The algorithm has suggested an optimal k value of 0.293 in the present case.  
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The variance inflation factor plot showed the impact of k on the variance inflation factors. At 

around k = 0.293, the variance inflation factors have dropped way below 5 (for small data sets) or 10 (for 

large data sets) and the impact due to multicollinearity was removed. However, 0.293 was definitely not 

the lowest k value when VIF dropped below 5 or 10. Further examination of the variance inflation factor 

section and the k – analysis section computed by the NCSS™ algorithm suggested that k values as low as 

0.02 and 0.03 were sufficient to lower the VIF and removed multicollinearity. The optimal k value of 

0.293 computed by the algorithm was unnecessary high. 
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The K – analysis section provides a summary of various statistics that went into the choice of k. 

Since the least squares solution maximizes R – squared (R2), the largest value of R – squared 

occurs when k is zero (i.e. an unbiased OLS model). The k value selected should not stray too far from 

the value of R2 when k is zero. Same applied to the square root of the mean squared error (Sigma) that 

least squares minimize this value.). The k value selected should not stray too far from the value of Sigma 

when k is zero. Seemingly, the lower k values (0.02 or 0.03) worked better than the optimal k computed 

(k = 0.293) in these respects. 
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Ridge regression assumes that the value of the sum of the squared standardized regression 

coefficients (B’B) is too large and so the method tries to reduce B’B. The k value selected should 

correspond to where the value of B’B becoming stabilized. It seems that following the initial big drop, 

B’B became stabilized at k = 0.02 or 0.03.  

Ave VIF and Max VIF are the average of variance inflation factors and the maximum variance 

inflation factor respectively. The k value selected should correspond to where Max VIF is below 10 for 

large data sets or below 5 for small data sets. In this case, k = 0.02 and k = 0.03 could have accomplished 

that as well.  

  All in all, the k value of 0.293 seems unnecessarily high since we prefer to select the smallest k 

value (hence smallest bias introduced to the estimation) that can mitigate the multicollinearity problem. 

The reason for the computer algorithm to optimize the k value as 0.293 was that this is the lowest k 

value to maintain the regular partial ridge regression coefficient associated with loge weight to remain 

positive (0.02758). As we knew that there was a positive correlation between loge mercury and loge 

weight, a negative regular partial ridge regression coefficient associated with loge weight indicated 

multicollinearity was still affecting the model. k = 0.02 and k = 0.03 yielded negative regular partial ridge 

regression coefficients associated with loge weight of -0.4664 and -0.3416 respectively; hence cannot be 

used. 
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The regular (unstandardized) ridge partial regression coefficients ( Regular Ridge Coeff’s, when 

k = 0.293) and the least square partial regression coefficients (Regular L.S. Coeff’s, when k = 0) 

associated with the three predictors indicated how much change in the dependent variable (loge 

mercury) occurs for a one-unit change in a particular predictor when the other two predictors were held 

constant. Note that the Regular L.S. Coeff’s associated with loge weight was negative (-1.530959) as a 

result of multicollinearity. By applying a k value of 0.293, the Regular Ridge Coeff’s associated with loge 

weight became positive (0.02757564), which make sense since loge mercury and loge weight were 

positively correlated albeit not a very strong one (Pearson coefficient = 0.647).  

The standardized ridge coefficients (Stand’zed Ridge Coeff’s) are calculated as 

 where ys and jxs are the standard deviations for the dependent variable and the 

corresponding j th predictor. Stand’zed Ridge Coeff’s can be used to gauge the relative importance of 

each predictor in influencing the dependent variable. In the present case, fish age followed by fork 

length were important predictors for mercury, whereas weight was a relatively unimportant predictor.  

One objective of ridge regression is to reduce the standard error of the regression coefficient, 

hence making their estimates more precise. In the present case, ridge regression reduced the standard 

errors of the regression coefficients associated with loge length and loge weight almost ten times; 

whereas ridge regression has relatively small effect on reducing the standard error of the regression 

coefficient associated with fish age. As it was noted that age was not affected by multicollinearity, the 

VIF for age was very low.  

The coefficient of determination (R – Squared) for the ridge regression model was quite low 

(0.5589), which indicated that only about 56% of the variation in the fish mercury was explained by the 

three predictors in the ridge regression model after suppressing the effect of multicollinearity. If we 

have decided to include all the three predictors in the regression model, ridge regression analysis 

yielded the following predictive model: 

loge mercury = (-5.4914) + (0.4053) * loge fork length + (0.0276) * loge weight + (0.1857) * age 

However, one might incline to drop weight from the model because (1) the standardized ridge 

regression coefficient for weight suggested that it was a relatively unimportant predictor for mercury; 
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(2) the positive correlations between loge mercury and loge fork length as well as between loge mercury 

and age were stronger than that between loge mercury and loge weight; (3) the inflation of the k value 

in order to render the ridge regression coefficient of loge weight positive and (4) weight account for a 

substantial amount of multicollinearity problem (VIF = 54.3). Once having weight removed from the 

model, ridge regression analysis showed that multicollinearity was no longer a problem: VIF for both 

loge fork length and age were below 10 and the condition number turned out to be only 11.5. Ridge 

regression was no longer needed to model the regression of loge mercury on loge fork length and age; a 

multiple linear regression based on the OLS model can be used, perhaps with stepwise or best – subset 

regressions to screen the predictors beforehand.  

 

 

3.2   Ridge regression analysis of lake trout data: 

 

 

Pearson correlation coefficients showed that the predictors were significantly correlated with the 

dependent variable and with each other. 

 

Fork length and weight have VIF just over 10 and this indicated the presence of multicollinearity. 

The high R-Squared vs Other X’s indicated a lot of overlap in explaining the variation among the 

remaining predictors.  
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The third eigenvalue near zero indicated the presence of multicollinearity in the data. When 

collinearity is completely absent, all the three eigenvalues would have equal incremental percent which 

was not the case here. However, the condition numbers associated with all three eigenvalues were 

below 100 which indicated that the extent of multicollinearity was not a serious problem. 

In the present case, the ridge trace showed that the standardized ridge regression coefficients 

remained fairly stable as the k value increased from zero to about 0.01. Based on the ridge trace alone it 

seems not possible to selected a k value for the model. However, the variance inflation factor plot, the 

variance inflation factor section table and the k – analysis section table suggested a k value of 0.04 was 

sufficient to render the VIF values associated with all three predictors below 5 (VIF cut-off for small data 

sets as it was in the present case).  
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It is rather surprising the standardized ridge coefficients (Stand’zed Ridge Coeff’s) suggested 

that fork length and weight were more important predictors for mercury than fish age in the case of  
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lake trout. Ridge regression did not result in substantial reduction in standard errors of the regression 

coefficients associated with any of the three predictors. Hence, applying ridge regression in the present 

case did not improve the estimation of the regression coefficients. This is also confirmed by the 

similarity between the ridge coefficients and the least square coefficients for all three predictors. The 

ridge regression model and the least square regression model also have very similar coefficients of 

determination (R-Squared) and the square roots of the mean square error (Sigma). 

 

Nonetheless, application of the ridge regression model with a k value of 0.04 did reduce the VIF 

for fork length from 15.7924 to 3.8174; the VIF for weight from 13.5857 to 3.5338 and the VIF for age 

from 3.0012 to 2.1732.  

The ridge regression model with a k value of 0.04 is 

mercury = (-0.0268) + (5.168 * 10-4) * fork length + (1.43 * 10-4) * weight + (3.915 * 10-3) * age 

All in all, it seems that in the case of lake trout, the extent of collinearity amongst the three 

predictors was relatively small and did not constitute a problem; the application of ridge regression did 

not contribute much to improve the precision in the estimation of the regression coefficients. 
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Chapter 4. Partial Least Squares Regression – Projection to Latent 

Structures in New Planes. 

 

Partial least squares (PLS) fits linear models based on linear combinations called components (or 

factors) of the predictor variables. These components are obtained in a sequential way that attempts to 

maximize the covariance between the predictor variables (Xs) and the dependent variables (Ys). In this 

way, PLS exploits the correlation between predictor variables and dependent variables to reveal 

underlying latent structures. The components address the combined goals of explaining variation of the 

dependent variables and the variation of the predictor variables. PLS regression combined the features 

of multiple linear regression and principal component analysis (PCA). First, PLS regression applies PCA to 

both Xs and Ys and finds the fundamental relations between two matrices (Xs and Ys) by projecting the 

observable and predicted variables to a new hyperplane as latent structures. The decomposition of Xs 

and Ys matrices are made so as to maximize the covariance between the projection of the Xs matrix and 

the projection of the Ys matrix. This is followed by a linear regression step to predict the values of the 

dependent variables using the decomposition of the predictors’ matrices.  

The model of PLS is linear – iX are thek predictors and  jY are the p  dependent variables;  for 

each sample n  , the value of njy is: 

 

The model different from multiple linear regression in the way i are found. The results of the 

PLS regression is the model equation Y X = +  showing the  coefficient that gives the 

relationship between X  and Y  variables.  

The matrix of the regression coefficient of Y on X  with h factors (components) generated by 

the PLS algorithm is given by the equation: 

 
1( )h h hWh P W C − =  

 where Y is the matrix of the dependent variables; 

           X is the matrix of the predictors; 

           W , hW , hC , hP are orthogonal loading matrices generated by the PLS algorithm. 
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 PLS regression is particularly useful when predictors are highly collinear or in situations when 

there are more predictors than observations; hence, OLS regression either fails or produces erratic 

coefficients with high standard errors. The technique is extensively used in chemometrics and spectral 

analysis. The most commonly used PLS algorithm is the nonlinear iterative partial least square (NIPALS) 

algorithm developed by Herman Wold (1975) who invented PLS regression. The algorithm reduces the 

number of predictors using PCA to extract a set of uncorrelated components that describe maximum 

correlation among the predictors and the dependent variables. Leave – one – out cross validation 

method was used by the algorithm here to identify the smallest set of components that provide the 

maximum predictive ability. It then performs least square regression on these components. In the 

present study, the fish mercury and growth data were analyzed using the NIPALS algorithm from the 

JMP™ and Minitab™ statistics software.  

4.1 PLS regression analysis of brook trout data: 

Untransformed full data set of the brook trout mercury and fish growth data (see Appendix) was 

examined for the presence of outliers using residuals versus leverages plots provided by the algorithms. 

Residuals were used to detect outliers in the dependent variable, while leverages were used to detect 

outliers in the predictor variables. Since outliers have a tendency to “nest”, residuals vs. leverages plots 

were ran a few times to ensure outliers were identified and subsequently removed from the data set. 

Before running the PLS regression analysis, 11 outliers were removed from the brook trout data set 

either because they were outside the ± 2.00 standardized residuals bound or they have extreme 

leverage values. After weeding out the 11 outliers the residuals vs. leverages plot and the distance plot 

were as follow. Note that points in the distance plot were randomly scattered and no obvious clustering 

was evident: 
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Four Diagnostic plots: 
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Using leave – one – out cross validation method, NIPALS algorithm selected the one – 

component model as the optimal model which has the highest R – Sq (pred) of 0.407884. For two – or 

three – component models, the R – Sq (pred) decrease measurably and might run the risk of overfitting, 

less robust model and poor predictivity.  The ANOVA table showed that the model was significant (p = 

0.000). The X Variance indicated the amount of variance in the predictors that was explained by the 

model. In this case, the one – component model explained 94.5% of the variance in the predictors. 
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The root mean PRESS (predicted residual sum of squares) was minimum (0.769491) for the one 

– component model. However, the van der Voet’s T2 statistic suggested that both two – and three – 

component models (p – values of 0.036 and 0.064 respectively) were not different significantly (at 0.1 

level of significance) from the one – component model with the minimum PRESS value. For the one – 

component optimal model, 94.5% of the variation in X (R2X) and 45.5% of the variation in Y (R2Y) were 

explained by the model. The Number of VIP > 0.8 (the number of model effects with variable importance 

for projection values greater than the 0.8 threshold) showed that all three predictors (fork length, 

weight and age) were important in the one – component model. Q2 which is a measure of the predictive 

ability of a model was higher for the one – component model than both the two – and three – 

component models.  

The variable importance plot graphed the VIP (variable importance in the projection) for each of 

the predictors. The variable importance table showed the VIP scores. Based only on VIP scores, fork 

length, weight and age were pretty much equally important in modeling the mercury in brook trout. The 

VIP scores for all three predictors were above the 0.8 threshold.  This was also illustrated by their 

relatively similar standardized regression coefficients: fork length (0.240969), weight (0.231967) and age 

(0.220774). All three predictors have positive correlations with mercury in brook trout.  
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Based on the results of the leave – one – out cross validation method and the van der Voet’s T2 

statistic, the model selection plot indicated the optimal model has one component. The R – Sq for the 

cross – validated mercury data dropped significantly for the two – and three – component models: 
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The response plot indicated that the model fitted the data adequately. Although there were 

differences between the fitted and cross – validated fitted response, none were severe enough to 

indicate an extreme leverage point.  

 

Cross – validation is very important procedure in PLS regression. The objective of cross – 

validation is to test the model’s ability to predict new data that were not used in estimating the model, 

in order to flag problems such as overfitting and to give an insight on how well the model will generalize 

to an unknown data set (Cawley and Talbot 2010). Cross – validated fitted values indicate how well the 

model predicts data. The process consists of multiple rounds of repeated calculations which can be 

computationally intensive depending on the size of the data set: the data set is partitioned into two 

approximately equal – size subsets; analysis is performed on one subset (training set) and validation of 

the analysis is carried out on the other subset (testing set). Many rounds of analysis and validation are 

performed to reduce variability and the results are averaged to give an estimate of the model’s 

predictive performance (Kohavi 1995). In PLS, the cross – validated fitted value is the predicted response 

for each observation in the data set, calculated individually so that the observation can be excluded 

from the model used to calculate the predicted response for that observation. The cross – validated 

fitted values are calculated during cross – validation and vary based on how many observations are 

omitted each time the model is recalculated. 
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In PLS regression, the emphasis is on developing predictive model. Unlike other regression 

techniques such as stepwise regression, best-subset regression, and LASSO regression; PLS is not usually 

used to screen out predictors that are not useful in explaining the depending variables. Fork length, 

weight and age were all included in the PLS model for mercury in brook trout: 

mercury = (0.01982) + (1.2 * 10-4) * fork length + (4.4 * 10-5) * weight + (8.13 * 10-3) * age 

 

 

 

 

4.2 PLS regression analysis of lake trout data: 

Four outliers were identified and removed from the lake trout data set using the residuals vs. 

leverages plot provided by the PLS algorithm and after which the final residuals vs. leverages plot and 

the distance plot are as follow: 
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Four diagnostic plots: 
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The three models cross – validated yielded very similar R -Sq (pred) values. Nonetheless, NIPALS 

algorithm selected the one – component model as the optimal model which has a higher R – Sq (pred) of 

0.558565 slightly higher than that of the two – and three component models. The ANOVA table showed 

that the model was significant (p = 0.000). The X Variance indicated the amount of variance in the 

predictors that was explained by the model. In this case, the one – component model explained 92.2% 

of the variance in the predictors. Also, the root mean PRESS of the one – component model was only 

slightly lower than that of the two – component model. However, the van der Voet’s T2 statistic 

suggested that the two – component model (p – values of 0.4000) was different significantly (at 0.1 level 

of significance) from the one – component model with the minimum PRESS value. The three – 

component model (p = 0.088) might also be different from the one – component model. The van der 

Voet’s  T2 statistic supported the notion that the one – component model was optimal.  For the one – 
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component optimal model, 92.2% of the variation in X (R2X) and 60.5% of the variation in Y (R2Y) were 

explained by the model.  

 

 

The Number of VIP > 0.8 (the number of model effects with variable importance for projection 

values greater than the 0.8 threshold) showed that all three predictors (fork length, weight and age) 

were important in the one – component model. Q2 which is a measure of the predictive ability of a 

model was slightly higher for the one – component model than both the two – and three – component 

models.  
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Based on VIP scores, fork length, weight and age were pretty much equally important in 

modeling the mercury in lake trout. The VIP scores for all three predictors were above the 0.8 threshold.  

This was also illustrated by their relatively similar standardized regression coefficients: fork length 

(0.281683), weight (0.277974) and age (0.249368). All three predictors have positive correlations with 

mercury in lake trout. 

Based on the results of the leave – one – out cross validation method and the van der Voet’s T2 

statistic, the model selection plot indicated the optimal model has one component. The R – Sq for the 

cross – validated mercury data dropped for the two – and three – component models: 
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The response plot indicated that the model fitted the data adequately. Although there were 

differences between the fitted and cross – validated fitted response, none were severe enough to 

indicate an extreme leverage point.  

 

Fork length, weight and age were all included in the PLS model for mercury in lake trout: 

mercury = (-0.05469) + (4.47 * 10-4) * fork length + (10-4) * weight + (0.0148) * age 
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4.3 PLS regression analysis of lake whitefish data: 

Untransformed full data set of the lake whitefish mercury and fish growth data  was examined 

for the presence of outliers using residuals versus leverages plots. In total, 19 outliers were identified 

and removed after several rounds of running the residuals vs. leverage plots. After weeding out the 

outliers the final residuals vs. leverages plot and the distance plot were as follow:
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Four diagnostic plots: 
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Similar to the lake trout data set, the three models cross – validated yielded very similar R -Sq 

(pred) values. Nonetheless, NIPALS algorithm selected the one – component model as the optimal 

model which has a higher R – Sq (pred) of 0.483520 slightly higher than that of the two – and three 

component models. The ANOVA table showed that the model was significant (p = 0.000). The X Variance 

indicates the amount of variance in the predictors that is explained by the model. In this case, the one – 

component model explained 96.0% of the variance in the predictors. Also, the root mean PRESS of the 

one – component model was only slightly lower than that of the two – component model. However, the 

van der Voet’s T2 statistic suggested that the three – component model (p – values of 0.2080) was 

different significantly (at 0.1 level of significance) from the one – component model with the minimum 

PRESS value. The two – component model (p = 0.0690) was not significantly different from the one – 

component model. The similarity of R – Sq (pred) and the root mean PRESS between the one component 
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model and the two – component model and the van der Voet’s  T2 statistic results suggested that a two 

– component model was also a possibility and was unlikely leading to overfitting. Nonetheless, a one – 

component model was selected. For the one – component optimal model, 96.0% of the variation in X 

(R2X) and 51.7% of the variation in Y (R2Y) were explained by the model.  

 

 

The Number of VIP > 0.8 shows that all three predictors (fork length, weight and age) were 

important in the one – component model. Q2 which is a measure of the predictive ability of a model was 

only slightly higher for the one – component model than both the two – and three – component models.  
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Based on VIP scores, fork length, weight and age were pretty much equally important in 

modeling the mercury in lake whitefish. The VIP scores for all three predictors were above the 0.8 

threshold.  This was also illustrated by their relatively similar standardized regression coefficients: fork 

length (0.243796), weight (0.250950) and age (0.239013). All three predictors have positive correlations 

with mercury in lake whitefish. 

Based on the results of the leave – one – out cross validation method and the van der Voet’s T2 

statistic, the model selection plot indicated the optimal model has one component. The R – Sq for the 

cross – validated mercury data dropped for the two – and three – component models: 
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The response plot indicated that the model fitted the data very well. Only very few differences 

between the fitted and cross – validated fitted responses were found:  

 

Fork length, weight and age were all included in the PLS model for mercury in lake whitefish: 

mercury = (0.03064) + (8.6 * 10-5) * fork length + (2.2 * 10-5) * weight + (3.06 * 10-3) * age 
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Chapter 5. Bayesian Approach to Regression Modeling:  No more levels of 

significance and p – values, no more testing of the null 

hypothesis. 

 

In this chapter I rejected the classical frequentist approach to statistical inference which has 

dominated the field of applied statistics since the beginning and instead adopted the Bayesian rational 

belief revision approach based on subjective probability in modeling the regression on the fish data. No 

more setting the “rigid” uncompromising levels of significance and making decisions based on the 

“tricky” p – value concept which often lands unsuspected researchers and indeed, fellow statisticians 

into fallacious traps and drawing wrong conclusions due to ballooning of Type I Error without even 

realizing it. One big practical advantage of the Bayesian approach relative to the frequentist approach is 

that it actually put a number to quantify the probability or the odds that null hypothesis is true. As for 

the frequentists, they have to make a clear-cut choice of accepting or rejecting the null hypothesis at a 

predetermined level of significance. Bayesian approach to probability is nothing new. Bayes’ theorem as 

an axiom of the probability theory has been around for over two hundred years (Bayes 1763). It was not 

until the recent three decades or so Bayesian approach in solving practical statistical problems becoming 

popularized mainly due to the popularization of high-speed personal computers which greatly benefit 

the execution of simulation algorithms such as various forms of Markov - chain Monte Carlo (MCMC) 

simulation which is essential in generating numerical approximations of model’s parameters and 

integrals from the posterior distribution established when solving complex multilevel modeling 

problems using the Bayesian approach.  

 

5.1 The Bayesian Way: 

The key ingredients to a Bayesian analysis are: (1) the prior distribution, which quantifies what is 

known based on theoretical reasonings of the researcher about the model’s parameters and the 

uncertainty in the values of the unknown model parameters before observing the data, and (2) observe 

the data to formulate the likelihood function, which reflects information about the model’s parameters 

contained in the data. The prior distribution and likelihood function can then be used to estimate (3) the 

posterior distribution, which represents total knowledge about the model’s parameters after the data 

have been observed. The posterior distribution quantifies the uncertainty in the values of the unknown 
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model’s parameters. Summaries of the posterior distribution can then be used to calculate quantities of 

interest and ultimately to draw inferential conclusions about the model such as point estimates, interval 

estimates and posterior probabilities of competing hypotheses. In practice, getting anything meaningful 

out of the posterior distribution is often computationally intensive and time consuming except for very 

simple models. This indeed was the main obstacle to the popularization of the Bayesian approach until 

the advancement of high-speed computer – based algorithms in the last three decades or so such as 

various samplers based on the original MCMC stochastic simulation method. These algorithms construct 

Markov chains and perform random walks (or draws) simulating samplings from complex posterior 

distributions to provide numerical approximations to model’s parameters and integrals estimated from 

the probability distribution especially in complex multidimensional hierarchical problems when 

analytical solutions become intractable or too time consuming to achieve. In the present case, our 

previous knowledge regarding bioaccumulation of mercury in fish has given us sound theoretical 

grounds to the notion that mercury level in fish increases as the fish grows, (i.e. increase in age and size) 

is our prior in the Bayesian sense. The likelihood function is then established and the posterior 

distribution estimated. Our belief in our prior will be revised upon the outcome from the posterior 

distribution.  

 

5.2 Bayesian Linear Regression: 

In Bayesian regression, the regression coefficients are assumed to be random variables with a 

specified prior distribution. The prior distribution can “bias” the solutions for the regression coefficients. 

The Bayesian estimation process produces not a single point estimate for the “best” values of the 

regression coefficients but an entire posterior distribution, completely describing the uncertainty 

surrounding the predictors. Bayesian regression is used as a kind of regularization technique to bias the 

model towards assuming uncorrelated residuals.  

Predictive inference is a straightforward computation once the posterior distribution has been 

obtained. Say, we like to make a prediction on a future observation y  based on the observed data we 

already have y = ( 1, ......... ny y ). From the analysis of the data, we have obtained the posterior distribution 

. We want to make probabilistic statements about a not – yet observed y , so that we want to 

compute the posterior predictive distribution of y  which is  . Note that we are not interested 
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in conditioning on model parameter values, but that we only want to condition on what we have 

observed: i.e. previous data. The posterior predictive distribution can be computed using the equation: 

     

which make the appropriate assumption that future data are independent of past data conditional on 

the model parameters. Therefore, integrating the product of the data model distribution with the 

posterior distribution with respect to the model parameters produces the posterior predictive 

distribution, which can then be summarized for predictive inference: i.e. we have our Bayesian linear 

regression model. The classical frequentist approach to linear regression makes the assumption that 

there are enough observations to say something meaningful about regression coefficients. Whereas in 

the Bayesian approach, the data are supplemented with additional information in the form of a prior 

probability distribution. The prior belief about the model’s parameters is combined with the data’s 

likelihood function according to Bayes theorem to yield the posterior belief about the model’s 

parameters (regression coefficients and the population standard deviation). Like the frequentist’s OLS 

models, there are assumptions that the data need to meet in order for Bayesian linear regression to be 

valid: (1) the dependent variable has to be continuous; (2) The dependent variable is by and large 

linearly related to all predictors and the effects of the predictors are additive; (3) the residuals (errors) 

for each predictor are uncorrelated with each other; (4) the error variance of each predictor is constant 

across all values of that predictor (i.e. homoscedasticity) and (5) the residuals (errors) of predictors are 

normally distributed with mean zero.  

 

5.3 Regression Modeling of Fish Data using the Bayesian Approach: 

 The BAS algorithms package (Bayesian Variable Selection and Model Averaging using Bayesian 

Adaptive Sampling) written in R by Professor Merlise Clyde of Duke University (Clyde et. al. 2010) was 

used to model the brook trout and lake trout data sets both of which satisfied the assumptions needed 

to apply Bayesian linear regression.  
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5.3.1 Bayesian linear regression of brook trout data set: 

 

Each row in the table above represent one model. The Null model only contain the intercept. 

The column P(M) shows the prior probability of the respective models. The P(MǀData) and BFM provide 

the posterior model probability and the Bayes factor for model M, respectively. The posterior model 

probabilities express the probability of a model after seeing the data. The Bayes factor quantifies the 

strength of evidence produced by the data and hence it is a measure of the data – induced changes from 

prior model odds to posterior model odds. In a way, the Bayes factor serves a similar role as the p – 

value in the frequentists’ hypothesis testing. The BF01 column indicates the Bayes factors of the models 

in each row compared to the model in the first row. Therefore, the first row always has BF01 = 1 because 

the model is compared against itself. Also, the model in the first row is the best model determined by 

the BAS algorithm that predict the data best. R2 is the coefficient of determination of the particular 

model. For the brook trout data, the algorithm suggested that the best model to predict loge mercury 

was one that contains all three predictors: loge fork length,  loge weight and age which clearly out 

performs all other models: it explained 77.4% of the variance (highest R2 amongst all models), as the 

data were over 36 times more likely to occur under this model than under the second – best model that 

only included age as the predictor (BF01 = 36.004 associated with the second model).  
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With the coefficient estimates (mean) from the table above, the algorithm suggested the following 

model: 

loge mercury = (-2.169) + (1.716) * loge fork length + (– 1.484) * loge weight + (0.248) * age 

 

It is noteworthy that the estimated coefficient associated with loge weight was negative, which 

seemingly an anomaly since we have shown in the scatterplot of loge mercury versus loge weight that 

there was a positive correlation between the two (see Chapter 1) albeit the points were rather scattered 

(R2 only 37.6%). It was found that a Bayesian regression model of loge weight as the sole predictor 

yielded a positive estimated coefficient of 0.368 for loge weight: 

 

As soon as loge fork length and/or age were added to the model, the estimated coefficient of 

loge weight became negative: 
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When we examined the changes in the Bayes factor (BF01), data were over 6.7 times more likely 

to occur in a model with age as the only predictor than in a model with age and loge weight as 

predictors. Data were over 60,000 times more likely to occur in a model with age as the sole predictor 

than in a model with loge weight as the sole predictor: 

 

For a model with loge weight and loge fork length as predictors, data were over 5.4 times more 

likely to occur in a model with both loge weight and loge fork length as predictors than in a model with 

loge fork length as the only predictor.  Data were over 84 times more likely to occur in a model with loge 

weight and loge fork length as predictors than in a model with loge weight as the sole predictor: 

 

The error bars in the coefficient plot for the three - predictor model below indicated the 95% 

credible intervals. These were calculated by dropping 5% of the draws from each tail of the marginal 

distribution of each model’s parameter: 
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The plot of residuals of the model averaged predictions (BMA) versus the residuals for the three 

- predictor model looked random without a definitive pattern which suggested the absence of model 

specification problem or confounding variables: 

 

The inclusion probability histogram showed that all three predictors were equally importance in the best 

model: 
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The Q – Q plot of model averaged residuals showed quite nice fits of the best model (the residuals were 

approximately normally distributed): 

 

The averaged posterior distribution plots below showed the t – approximations of the posterior 

distributions averaged over all models. Each peak was defined by the upper and lower 95% credible 

limits. Notice the density for all the three peaks were very similar: 
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To assess the performance of the Gibb sampler used in doing the MCMC random walks, we used 

the diagnostics function of the BaySE© econometric software which produced the following table that 

contained estimates of the MCMC standard errors, 2 /G  for  G  number of draws (all very low) as 

well as the inefficiency factors or autocorrelation time (all very close to one) for all parameters: 

 

Four diagnostic plots were provided for visually assessing the performance of the Gibb sampler. 

The two subplots at the top presented a history and a correlogram of the draws for the precision 

parameter tau  (where     1 /  2) and indicated that these were not autocorrelated. Two Markov 

chains were used in the draws (red and blue in the first subplot. The two remaining subplots at the 

bottom presented a histogram and an estimate of the kernel density of the draws. Both of them were 

smooth, suggesting that the sampler did not get trapped for any considerable amount of draws in 

specific regions of the sample space.  
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5.3.2 Bayesian linear regression of lake trout data set: 

 

In the case of lake trout, it is interesting to see that the BAS algorithm suggested that the best 

model only consisted of one predictor: either weight (BF01 = 1.000) or fork length (BF01 = 1.250). It is 

surprising to see that the data were 300 times more likely to occur under either these two models than 

under a model with age as the only predictor (BF01 = 378.450). Respectively, the data were 17 and 13 

times more likely to occur under the weight alone model and the fork length alone model than the 

model with all three predictors (BF01 = 17.220). However, the coefficients of determination (R2) of the 

first six models were very similar hence they all explained well over 60% of variance. The model with age 

alone as the predictor only explained 44.4% of the variance. The relatively inferiority of age being a 

predictor in the model in comparison with fork length and weight was largely because of the high 

degree of variations of age versus mercury as seen in the scatterplot in Chapter 1; which is also evident 

from the wide error bar of the posterior coefficient associated with age indicating the 95% credible 

interval depicted below.  For the lake trout data, four possible models were presented here:  

(1) best model with weight alone as predictor: 

 

mercury = (0.285) + (2.68 * 10-4) * weight 
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(2) second best model with for length alone as predictor: 

 

mercury = (0.296) + (0.001) * fork length 

 

(3) a model with weight and fork length as predictors: 

 

mercury = (0.296) + (3.5 * 10-4) * fork length + (2.11 * 10-4) * weight  

 

(4) complete model with fork length, weight and age as predictors: 

 

mercury = (0.285) + (4.54 * 10-4) * fork length + (1.47 * 10-4) * weight + (0.002) * age 
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The inclusion probability histogram showed that both weight and fork length were more 

important than age in the model: 
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The plot of residuals of the model averaged predictions (BMA) versus the residuals looked 

random without a definitive pattern which suggested the absence of model specification problem or 

confounding variables: 

 

The Q – Q plot of model averaged residuals showed quite nice fits of the model (the residuals 

were approximately normally distributed): 

 

The averaged posterior distribution plots below showed the t – approximations of the posterior 

distributions averaged over all models. Each peak was defined by the upper and lower 95% credible 

limits. Notice the density associated with the averaged posterior distribution of the age as a predictor 

was much smaller than that of both fork length and weight: 
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The performance of the Gibb sampler was confirmed by the extremely small MCMC standard 

errors and the fact that the inefficiency factors were all close to unity: 
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The four diagnostic plots also confirmed the performance of the random walk of the MCMC samplers; 
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Chapter 6. Using Hierarchical Multiple Linear Regression to Investigate the 

Quadratic Term of the Curvilinear Data of Lake Whitefish – a 

Quadratic Polynomial Model. 

 

Scatterplots in Chapter 1 have clearly shown that loge mercury versus all three fish growth 

parameters of lake whitefish were better described by a curvilinear function. Square transformation of 

fish age and weight but not fork length rendered the relationships pretty linear. The curvilinear function 

observed seemed best described by a quadratic polynomial model: 

 

 The curved (V – shaped) patterns of the residuals versus fitted dependent variable plots and the 

residuals versus predictors plots (see Chapter 1) as well the significant Durbin – Watson statistic also 

suggested that a linear relationship between the dependent variable and the predictors was not 

appropriate. However, the bottom line concerning the decision to support (or not to dismiss) that a 

nonlinear polynomial function was the best model rested ultimately on the theoretical basis of a 

plausible explanation of such a fit. Polynomial regression can be seen as a special case of multiple linear 

regression in that the multiple predictor variables are now X, X2 , X3, …… Xn . However, it is very unlikely 

in biological situations that polynomial regression higher than X3 (cubic function) is plausible. In this 

chapter I used hierarchical multiple linear regression to investigate the impact of the quadratic term on 

the model fits of the lake whitefish data. 

In hierarchical multiple linear regression (also known as sequential multiple linear regression), 

independent variables (including the predictors we want to test) are added into the model in the order 

specified by the researcher based upon certain theoretical or preferential grounds. Independent 

variables or sets of independent variables are entered in steps known as “blocks” into the statistics 

algorithm. With each independent variable being assessed in terms of what it adds to the prediction of 

the outcome of the dependent variable after the previous independent variables entered into model are 

controlled for. So, this in a way is to control the effects of independent variables that might be 

potentially confounding or they are covariate – type of variables so that they can be accounted for; 

hence, to develop a better prediction model for the outcome of the dependent variable.  
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We enter the potentially confounding variables (i.e. independent variables that we want to 

control for) into the first block and then those actual predictor variables that we want to use to predict 

the dependent variable into the second block. Once all the sets of variables are entered, the overall 

model is assessed in terms of its ability to predict the outcome of the new measures of the dependent 

variable. The contribution of each block of variables is also assessed so that we can determine very 

precisely how much influence a particular independent variable may be having.  

In the present context, hierarchical multiple linear regression was useful in assessing the 

influence of the quadratic term (X2) on the overall model. The linear term of X was entered into the first 

block and the quadratic term (X2) was entered into the second block.  Hence, two regression models 

were established: one with the linear term alone and the other with both the linear and the quadratic 

terms. IBM™ SPSS™ Statistics software is particularly useful for this because the algorithm displaces the 

“change” in the R2 of the overall model with and without the quadratic term being added to the model. 

The NCSS™ statistics software was used here for the curve fitting since it allowed us to use the 

randomized resampling technique of bootstrapping to compute robust estimates of coefficients, 

standard errors and confidence intervals.  In order to keep things simple, here we established three 

models, one for each of the three predictors. I have also decided not to include interaction terms in the 

models to account for effects of particular combinations of predictors. The “complete second order 

model” can sometime be used to include linear and quadratic terms for two quantitative predictor 

variables along with interaction terms: 

 

More than two predictors can be incorporated into such complex models. But I have decided 

that at the present stage it is somewhat beyond the scope of this monograph to explore complex 

models like these. 

In the general sense, all the pre – requisite assumptions of OLS regression applied to hierarchical 

multiple linear regression. However, in the present context, since the quadratic term (X2) we want to 

assess was derived from X; hence, they were naturally highly collinear. Also, the linearity assumption did 

not apply here since we were assessing a curvilinear model. Normality and homoscedasticity of the 

residuals have been confirmed and outliers have been identified and weeded out (see Chapter 1).  
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6.1 Fork length: 

Model 1 consisted of only the linear term fork length. Model 2 consisted of both the linear term 

fork length and the quadratic term, (i.e. square fork length). 

 

For model 1 which only contained the linear term, 69.2% (R Square = 0.692) of the variance in 

the dependent variable (loge mercury) was attributed to the linear term (fork length) of the predictor 

variable. As much as 83% of the variance in the dependent variable was attributed to Model 2 which 

was a combination of both the linear term (fork length) and the quadratic term (square fork length). 

Both models were significant (p = 0.000). More importantly, an addition of 13.9% of the variability of 

loge mercury was accounted for by including the quadratic term into the model (R Square Change = 

0.139), which is a lot. The F value of 177.283 under the column F Change was in fact the F value 

associated with just the linear term (Model 1) only. The F Change of 63.641 on the other hand, 

represented only the effect of the quadratic term into the model alone (i.e. not including the F value 

from the model with the linear term only). The F value of 190.747 associated with Model 2 in the 

ANOVA table below in fact represented the F value of the model with both the linear term and the 

quadratic term; and the R Square value associated with this F value was 83%. The ANOVA table also 

showed that both models were highly significant (p = 0.000). Hence, the slopes of the two models were 
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significantly different from zero.  In the present case, all the p – values were significant and were easy 

and straightforward to interpret. In fact, the p - value associated with Model 2 in the Model Summary 

table above was the most important in the present context, which was the “p – value of the increase of 

R – Square”; i.e. it was the probability of getting the observed increase in R – Square between the 

equation of Model 2 and the one of a lower power (Model 1) by chance, if the relationship between the 

predictor and the dependent variable were really of the form described by the equation of a lower 

power. This p – value actually tested the null hypothesis of the increase of R – Square was only as large 

as would expect by chance. Since p < 0.05, we have to reject this null hypothesis; hence, the increase in 

R -Square resulted from adding the quadratic term into the model was significant. It is also important to 

note that before we looked into this p – value associated with the Model 2, the p – value that associated 

with Model 1 has to be significant first. This Model 1 p – value tested the null hypothesis of there was no 

relationship between the predictor and the dependent variable. Since this Model 1 p – value was less 

than the critical level of 0.05, we have to reject this null hypothesis as well and there was a relationship 

between the predictor and the dependent variable. The R -Square Change and the F Change together 

with the p – values associated with the two models clearly demonstrated the incremental predictive 

capacity of the model brought about by including the quadratic term was significant.  
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Unlike linear regression, in polynomial regression when the predictors are raised to higher 

orders, regression coefficients are largely uninterpretable both in terms of their direction and size. In the 

present case, it was obvious from the scatterplot that there was a strong positive correlation between 

loge mercury and fork length, yet the coefficient associated with the linear term of fork length was 

negative. But the “overall” model in describing the relationship between the dependent variable and the 

predictor was perfectly valid.  

 

In “normal” multiple linear regression with two or more predictors, a Tolerance lower than 0.1 

might indicate collinearity problems amongst predictors. But in the present context, a very low 

Tolerance was expected (0.015 in this case) since of course, square fork length is fork length multiplies 

itself! Collinearity Statistics did not apply here in polynomial models. 

 The final model and the curve fitting depicted below by using NCSS™ statistics software which 

also carried out bootstrapping resampling processes to compute the confidence interval (grey band 

around the best – fitted line) of the model: 
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Bootstrapping is a modern computer – intensive iterative resampling – with – replacement 

simulation method that has become available in recent years as extensive computer power has become 

popularized. It computes standard errors and confidence intervals for regression coefficients and 

predicted values in situations when standard regression assumptions are on shaky grounds or simply not 

valid. The bootstrapping method can be applied to many of the statistics that are computed in 

regression analysis. The only assumption made when using bootstrapping is that the sample 

approximate the population fairly well. Hence, bootstrapping only works well for relatively large sample 

size. In the present bootstrapping run, 3000 draws of bootstrap samples were used; hence, provided 

3000 estimates of the coefficients and the confidence limits! We drawn 3000 bootstrap samples of size 

n from the original samples with replacement; hence each observation was selected more than once. 

For each of the 3000 bootstrap samples, the regression results were computed, stored and used in the 

final computation of various regression statistics. The reflection method was used to calculate the 

bootstrap confidence intervals in which confidence limits were formed by reflecting the percentiles of 

the bootstrap values. In the Bootstrap Section table above, the Original Value is the parameter estimate 

obtained from the complete original data set without bootstrapping. The Bootstrap Mean is the average 

of the parameter estimates of the 3000 bootstrap samples. The Bias (BM – OV) is the estimate of the 

bias in the original estimate. It is computed by subtracting the Original Value from the Bootstrap Mean. 

The Bias Corrected is an estimate of the parameter that has been corrected for its bias. The correction is 

made by subtracting the estimated bias from the original parameter estimate. The Standard Error term 

is the bootstrap method’s estimate of the standard error of the parameter estimate. It is simply the 
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standard deviation of the parameter estimate computed from the bootstrap estimate. Note that the 

Parameters A, B and C in the bootstrap table (i.e. the constant and the two regression coefficients 

associated with the linear and quadratic terms) all have the same signs as their corresponding upper and 

lower confidence limits calculated by bootstrapping and these three parameters were all within their 

corresponding upper and lower confidence limits.  

The equation of the final quadratic polynomial model for fork length is: 

loge mercury = (-1.1180) + (-0.01221) * fork length + (2.46 * 10-4) * fork length2 

One important thing regarding the use of any regression model, particularly nonlinear models is 

that the model is only valid for new data that are within the range of the original data that used in 

estimating the model. Extrapolation beyond such a range (in either direction) can be problematic. Weir 

things might happen that do not make theoretical sense, especially in the case of nonlinear models of 

higher orders. 

 

6.2 Weight 

 

For Model 1, as much as 76.6% of the variance in the dependent variable was attributed to the 

linear term of fish weight. The F value associated with Model 1 was 258.445 and there was a significant 
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relationship between loge mercury and weight (p = 0.000). Model 2 (a combination of weight and square 

weight) accounted for 82.2% of the variance of loge mercury. Although by including the quadratic term 

of weight seemingly only increased the R – Square by 5.6%, nonetheless such an increase was 

statistically significant (p = 0.000). The F value associated with the quadratic term only was 24.303.  The 

ANOVA table below shows that both models were significant (p = 0.000). The F value associated with 

Model 2 containing both weight and square weight was 179.491.  

 

 

Again, as in the case with fork length, the estimated coefficient associated with the linear term 

of weight was negative despite the positive correlation between loge mercury and weight. No 

interpretation of coefficients associated with predictors for a polynomial model was made.  

 

The low Tolerance here as expected since weight and square weight were highly positively correlated.  
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The final model and the curve fitting depicted below by using NCSS™ statistics software which 

also carried out bootstrapping resampling processes to compute the confidence interval (grey band 

around the best – fitted line) of the model: 

 

 

 

In the present bootstrapping run, 3000 draws of bootstrap samples were used; hence, provided 

3000 robust estimates of the coefficients and the confidence limits using the reflection method: 
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The equation of the final quadratic polynomial model for weight is: 

loge mercury = (-2.64852) + (-6.19 x 10-6) * weight + (8.04 x 10-7) * weight2 

 

6.3 Age 

For Model 1, 74.8% of the variance in the dependent variable was attributed to the linear term of fish 

age. The F value associated with Model 1 is 233.931 and there was a significant relationship between 

Page 104 of 156



loge mercury and age (p = 0.000). Model 2 (a combination of age and square age) accounted for 79.9% 

of the variance of loge mercury. Although by including the quadratic term of age seemingly only 

increased the R – Square by 5.1%; nonetheless such an increase was statistically significant (p = 0.000). 

The F value associated with the quadratic term alone was 19.978.  The ANOVA table below shows that 

both models were significant (p = 0.000), i.e. the slopes of their regression lines were significantly 

different from zero.  The F value associated with Model 2 containing both weight and square weight was 

155.053.  

 

 

Again, as in the case with fork length and weight, the estimated coefficient associated with the 

linear term of age was negative despite the positive correlation between loge mercury and age. No 

interpretation of coefficients associated with predictors for a polynomial model was made.  
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The very low Tolerance 

here as expected since age and square age were highly positively correlated.  

 

The curve fitting depicted above by using NCSS™ which also carried out bootstrapping 

resampling to compute the confidence interval (grey band around the best – fitted line) of the model. 
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3000 draws of bootstrap samples were used in the bootstrapping runs; hence, provided 3000 

robust estimates of the coefficients and the confidence limits using the reflection method. The 

Parameters A, B and C in the bootstrap table (i.e. the constant and the two regression coefficients 

associated with the linear and quadratic terms) all have the same signs as their corresponding upper and 

lower confidence limits calculated by bootstrapping and these three parameters were all within their 

corresponding upper and lower confidence limits.  

The equation of the final quadratic polynomial model for age is: 

loge mercury = (-2.50823) + (-0.08413) * age + (0.01408) * age2 

  

Applying hierarchical multiple linear regression to investigate the impact of quadratic terms of 

the predictors on the overall polynomial model clearly showed that inclusion of the quadratic term of 

fork length resulted in greater improvement of the predictive capability of the regression model than in 

the case of weight and age. 
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Chapter 7. Robust Linear Regression using M – Estimators to Suppress the 

Effects of the Presence of Outliers on Inflating Residuals. 

 

When we are fitting a regression model, while most of the observations fit the model and meet 

the Gauss – Markov conditions of linear model at least approximately, some observations do not. This 

situation might occur if (1) there is something wrong with those few anomalous observations (e.g. error 

in sampling and/or measurement, or mistake in entering data) or (2) the fitted model is not appropriate 

(i.e. a model specification problem). Because of these two very different reasons for the existence of 

observations that apparently do not belong to the model, we have two very different purposes trying to 

identify them: (1) to protect the model from any observation that does not belong to the model (i.e. 

outliers) and thus adversely affecting the model; and (2) to find the shortcomings of the model itself 

that we have fitted.  

Assuming our model is correct and it follows a linear function. In general there are two very 

different approaches in dealing with outliers: (1) Run a regression to get the residuals and apply a whole 

bunch of diagnostic tests to the residuals to identify the outliers and then to throw them out and re-run 

the regression model as mentioned in Chapter 1; or (2)  subject the entire data set to a robust 

regression procedure using robust estimators that are more resistant to the inflation of residuals due to 

the presence of outliers; hence minimizing their impact on the coefficient estimates.  The first approach 

can run into problems when a large number of possible outliers are found relative to the size of the data 

set. Removing them reduces the degrees of freedom, but more importantly it runs the risk of model 

specification problems, i.e. the function that describe the model changes after the outliers have been 

removed. This problem is exacerbated by the fact that there is no generally agreed criteria as to how 

many outliers are too many for this first approach to handle safely.  

 OLS estimator is not robust because it is highly susceptible to the inflation of residuals due to 

the presence of outliers since OLS estimator weight all residuals equally when calculating the regression 

line by minimizing the sum – of - squares of residuals. Sum – of – squares of residuals of outliers are 

huge and hence influential enough to throw off the regression model. Outliers violate the assumption of 

normally distributed residuals in OLS regression. They tend to distort the least square coefficients by 

having more influence than they should. In OLS regression, the weight attached to each observation 

would be about 1/N in a data set of N observations. Outlying observations may receive substantially 

higher weight than 1/N and seriously distort the estimated coefficients. When the model has only one or 
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two predictor variables, outliers can often be spotted visually on a scatterplot. However, in complex 

models with many predictors, outliers can often be hidden from view.  

 Robust regression use estimators that “down – weight” the influence of outliers. Outliers are 

given less weight hence are less important and have less contribution in the estimation process of the 

model. Some robust estimators actually remove extreme outliers altogether from the modeling process. 

Robust Regression is an iterative procedure, it conducts its own residual analysis that seeks to identify 

outliers by the amount of weight assigned to each observation so as to minimize their impact on the 

estimation of the regression coefficients. Robust regression algorithms use influence functions (e.g. 

Huber M – estimator and Tukey’s Bisquare M – estimator) to determine the amount of weight assigned 

to each observation. The algorithmic iterative process is often computationally intensive for complex 

models with large number of observations. It often takes a number of iterations for the coefficients to 

stabilize and the absolute values of the residuals to converge. This is one main reason why robust 

regression only starting to become more popular when high – speed computers becoming more 

available. 

 

 

7.1 Maximum Likelihood Estimation (M – Estimation) 

 M – estimation is the most commonly used robust regression technique. It replaces the square 

of residuals ( εi
2 )  used in OLS by another function of residuals H(εi). In the case of OLS, H(εi) = εi

2.  In M 

– estimation we need a H(εi) to have the following properties: (1) non – negative, H(εi) > 0; (2) the 

function of zero is actually zero, H(0) = 0, i.e. if the residual is zero, it will not contribute to the sum; (3) 

the function should be symmetrical, H( - εi) = H(εi); the function should be monotonic ǀ εi ǀ > ǀ εj ǀ then  

H(εi) >  H(εj) , hence if the residual is bigger then the function should be bigger; hence large residuals got 

panelized more than small residuals and (4) most importantly the function H(εi) needed to be 

continuous derivative with respect to the coefficients so enable us to be more effective (numerical 

stability) in finding the minima of the sum of squares.  

 In M – estimation, we take the derivative of H with respect to the residual 
i

H






 multiply by the 

derivative with respect to the coefficient which is simply the value of the predicted variable kix . Sum all 
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the data points and set it equal to zero and find the value of the parameter that minimize the 

summation of the function to obtain the estimate of the regression coefficients: 

1

0 0
n

ki

k ii

S H
x

 =

 
= → =

 
  

So, this is done for all the parameters and we can solve the simultaneous equations.  

Now we can define the weight iw  as 
1

i

i i

H
w

 


=


, hence, i i

i

H
w




=
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Now we have 
1

0 0
n

i i ki

k i

S
w x

 =


= → =


  

which is in fact a weighted linear regression. This in fact forms the scheme with which we can use to 

carry out iterative process of M – estimation: first set the weight iw  as 1 to start with. Carry out a linear 

regression and obtain a set of residuals. This is in fact an OLS regression (iteration 0). Then use these 

residuals to calculate another iw using the formula above. Then we plug the weight in and do another 

weighted linear regression which give us another set of residuals and we have iteration 1. The process is 

repeated for a number of iterations by the computer algorithm until the coefficients stabilize and the 

absolute values of the residuals converge. This approach is known as iteratively reweighted least 

squares (IRLS). The repeated running of iterations actually overcome the masking nature of outliers 

when many predictor variables are present in the model.  

Now we have a scheme to carry out M – estimation. Next, we have to find a good function for 

H(ε) that we can use. This is called the influence function and there are a few of them developed for use 

in maximum likelihood estimation different in their efficiency and robustness. Influence functions are 

special curves relating the weight to be assigned to each observation to the residuals measured in their 

standard deviation units. The most commonly used functions are the Huber M – estimator and the 

Tukey’s Bisquare M – estimator. Huber M – estimator tends to have better convergence properties than 

Tukey’s Bisquare M – estimator, but Tukey’s is more robust than Huber.  These are the two influence 

functions used in the NCSS™ algorithm that we are going to use to model our fish data.   

With the Huber M – estimator, what we do is to make our penalty function for having residuals 

H(ε) to go with the residual squares (just like the OLS estimator) but only out to a certain value (k) of the 

residual ǀεǀ < k. Once the residual is above that then we will do an absolute value of the residual and 
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weighted linearly passes the value k,  i.e. ( k ǀεǀ - k2 / 2  for ǀεǀ > k). Hence, the Huber M – estimator is 

represented by the following: 

 

The most commonly used value k that Peter Huber selected when developing the M – estimator (Huber 

1981) is k = 1.345 multiply the standard deviation of the residuals (σ). The Huber M – estimator weight 

all the data point to be 1.0 until their residuals is 1.345σ away from the zero mean, then it starts 

weighting them lower and lower. k is known as the truncation constant (or tuning constant) which is the 

cut – off point on the influence function designating when an observation’s weight should be reduced: 

 

This k value renders the M – estimation as much as 95% as efficient as the OLS estimator, i.e. 

only a mere 5% loss in asymptotic efficiency! All in all, the Huber M – estimator weighting outliers much 

lower than the OLS estimator since once ǀεǀ is above 1.345σ, the absolute value of the deviation instead 

of the square of the deviation is used in the weighting. Once we got a set of residuals, we Studentized 

these residuals using the median absolute deviation (MAD) as our estimative scale which allow us to 

have a robust estimate of Studentized residuals as well. 
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The Tukey’s Bisquare (or Tukey’s Biweight) M – estimator is even more robust than the Huber M 

– estimator because after you get out some distance away from the zero mean of the residuals 

measured in standard deviation units, the weighting becomes a constant (i.e. levelled off). That distance 

k from the zero mean was defined by John Tukey as its truncation constant k = 4.685σ. The Bisquare 

weighting immediately starts to drop off as the residuals begin to deviate from the zero mean. When 

the residuals reach 4.685σ, the weighting becomes zero (i.e. the Bisquare M – estimator just ignores 

those data points with residuals higher than or lower than 0.4685σ). Hence even very extreme outliers 

would not affect the regression model at all: 

 

Apart from protecting the regression model from the influence of the presence of outliers, M – 

estimators can be used as a diagnostic tool to identify outliers by looking at the weight assigned to each 

data point. Data points associated with very low weight are probably outliers. In the case of Bisquare M -

estimator, the weighting might even reach zero for those extreme outliers and in such cases these data 

points are ignored.  

There are other even more robust estimators such as the least trimmed square (LTS) estimator 

and the least median square (LMS) estimator which are used in the area of regression modeling known 

as bounded influence regression which is often used in fully automated machine learning algorithms 
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free from any human intervention in the realm of artificial intelligence design. However, this area is 

beyond the scope of this chapter. 

7.2 Robust regression modeling of the fish data. 

Robust regression modeling using M -estimators assumes a linear relationship between the 

dependent variable and the predictor variables despite the presence of outliers. In the present case, 

scatterplots between the dependent variable and predictors of full data sets were examined and 

necessary transformations made in order to ensure largely linear relationships before applying the 

robust regression modeling. The following linear models were established from full data sets (i.e. 

without any attempt to remove outliers) of the three fish species and their regression coefficients were 

determined by robust regression modeling: 

Book trout:  loge mercury = β0 + β1 * fork length + β2 * loge weight + β3 * age 

Lake trout:  mercury = β0 + β1 * fork length + β2 * weight + β3 * age 

Lake whitefish:  loge mercury = β0 + β1 *(fork length)2 + β2 * weight + β3 * age 
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Because of the relatively extensive scattering of data points in each of these plots, it was 

decided that the more robust Tukey’s Bisquare M – estimator was used as the influence function in 

assigning weight to the observations. The truncation (or tuning) constant used is the default value of 

4.685. A maximum of 30 iterations was set to allow for the algorithm to find a solution (i.e. stabilization 

of coefficients and convergence of residuals). However, if the percentage change in each of the 

estimated regression coefficients was less than 0.001 (0.1%), the iteration process was terminated.  
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7.2.1 Brook trout 

 

A total of 18 iterations were required for the percentage change in the change of estimated 

regression coefficients to be stabilized to less than 0.1%. The sum of squares determined using median 

absolute deviation (MAD) was very similar to the sum of squares determined using mean squared error 

(MSE); hence, the impact of the outliers was manageable.  

 

The above table shows the largest percentage change in any of the four coefficients: b(0) is the 

constant (β0); b(1) is the estimated regression coefficient associated with fork length (β1); b(2) is the 

estimated regression coefficient associated with loge weight (β2); b(3) is the estimated regression 
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coefficient associated with age (β3). The 0th iteration shows the OLS estimates on the full data set. The 

coefficients were stabilized after 17 iterations, the percentage change in coefficients reached 0.001 at 

the 18th iteration.  

 

The above table shows that the absolute values of the residuals have converged at the 18th 

iteration.  

The absolute values of the residuals are sorted and the percentiles were calculated. The 

iteration process was terminated when there was little change in median of the absolute residuals. 

 

In the above table, the standardized regression coefficients show that fork length is the most 

important predictor of loge mercury. Age also has a positive relationship with loge mercury. However, 

the negative coefficient associated with loge weight seem anomalous.  
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The Lower and Upper 95% Conf. Limits of β(i) are the lower and upper values of a 100(1 – α)% interval 

estimate for βj based on a t – distribution with n – p – 1 degrees of freedom. This interval estimate 

assumes that the residuals for the regression model are normally distributed which might not be the 

case in the presence of outliers; hence, bootstrapping technique was used to calculated the confidence 

intervals. The formulas for these lower and upper confidence limits are:    bj ± t1 – α / 2, n – p – 1 sbj   

The T – Value is the value of t1 – α / 2, n – p – 1 used to construct the confidence limits.  

The estimated robust regression model for loge mercury on fork length, loge weight and age of 

brook trout is: 

loge mercury = (-2.6380) +( 0.00829) * fork length + (-0.5151) * loge weight + (0.1916) * age 

 

The iterative resampling – with – replacement method of bootstrapping was used here to 

compute the confidence intervals. 3000 draws of bootstrap samples were used; hence, provided 3000 

estimates of the coefficients and the confidence limits. The reflection method was used to calculate the 

bootstrap confidence intervals in which confidence limits were formed by reflecting the percentiles of 

the bootstrap limits. In the Bootstrap Section Table below, the Original Value is the parameter estimate 

obtained from the complete original data set without bootstrapping. The Bootstrap Mean is the average 

of the parameter estimates of the 3000 bootstrap samples. The Bias (BM – OV) is the estimate of the 

bias in the original estimate. It is computed by subtracting the Original Value from the Bootstrap Mean. 

The Bias Corrected is an estimate of the parameter that has been corrected for its bias. The correction is 

made by subtracting the estimated bias from the original parameter estimate. The Standard Error term 

is the bootstrap method’s estimate of the standard error of the parameter estimate. It is simply the 

standard deviation of the parameter estimate computed from the bootstrap estimate. Note that all four 
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Parameters (Intercept, coefficients for fork length, weight and age) have the same signs as their 

corresponding upper and lower confidence limits calculated by bootstrapping and these four 

parameters were all within their corresponding upper and lower confidence limits.  
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The Robust Residuals and Weights Table above listed out the residuals and the weights assigned 

by Tukey’s Bisquare M – estimator to each of the observations in the entire data set (n = 55). It is 

apparent that row numbers: 11, 22, 31, and 47 as well as to a lesser extent 28, 29, 38 and 53 were 
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outliers which received less weight than the residuals of the rest of the data points. These observations 

with lower weights made only minimum contributions to the determination of the regression 

coefficients.  The table also gives the predicted values of loge mercury based on the robust regression 

equation above from the final iteration for comparing side by side with the actual measured loge 

mercury values. Hence, the residuals were just the difference between the actual measured loge 

mercury and the predicted loge mercury.  The Absolute Percent Error = (Residual / Actual loge mercury) 

* 100.  

The residuals versus predictors plots highlight the presence of outliers in the data set: 
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7.2.2 Lake trout 

 

Only 8 iterations were sufficient for the percentage change in the change of estimated 

regression coefficients to be stabilized to less than 0.1%. The sum of squares determined using median 

absolute deviation (MAD) was very similar to the sum of squares determined using mean squared error 

(MSE); hence, the impact of the outliers was manageable.  

 

The above table shows the largest percentage change in any of the four coefficients: b(0) is the 

constant (β0); b(1) is the estimated regression coefficient associated with fork length (β1); b(2) is the 

estimated regression coefficient associated with  weight (β2); b(3) is the estimated regression coefficient 

associated with age (β3). The 0th iteration shows the OLS estimates on the full data set. The coefficients 

were stabilized after only 7 iterations. 
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The above table shows that the absolute values of the residuals have converged at the 8th 

iteration. The absolute values of the residuals were sorted and the percentiles were calculated. The 

median of the absolute residuals in fact began to converge between the 6th and the 7th iterations. 

 

In the above table, the standardized regression coefficients show that weight followed by fork 

length were the most important predictors of loge mercury, with age being the least important. All three 

predictors have a positive relationship with loge mercury.  

 

The Lower and Upper 95% Conf. Limits of β(i) were calculated based on the assumption that the 

residuals for the regression model are normally distributed which might not be the case in the presence 

of outliers; hence, bootstrapping technique was used to calculated the confidence intervals. 

 

Page 124 of 156



The estimated robust regression model for mercury on fork length, weight and age of lake trout 

is: 

 mercury = (-0.01944) +(5.16 * 10-4) * fork length + (1.42 * 10-4) * weight + (4.27 * 10-3) * age 

 

 

The following Bootstrap Report compared the original confident limits with those generated by 

3000 draws using the iterative resampling – with – replacement bootstrapping method: 
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The Robust Residuals and Weights Table above listed out the residuals and the weights assigned 

by Tukey’s Bisquare M – estimator to each of the observations in the entire data set (n = 37). Five 

possible outliers were identified: rows 3, 29 and to a lesser extent, possibly rows 6, 17 and 30 which 

received less weight than the residuals of the rest of the data points. These observations with lower 

weights made only minimum contributions to the determination of the regression coefficients.  The 

table also gives the predicted values of loge mercury based on the robust regression equation above 

from the final iteration for comparing side by side with the actual measured loge mercury values.  
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The residuals versus predictors plots highlight the presence of outliers in the data set: 
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7.2.3 Lake whitefish 

 

Eleven iterations were required for the percentage change in the change of estimated 

regression coefficients to be stabilized to less than 0.1%. The sum of squares determined using median 

absolute deviation (MAD) was not greatly different from the sum of squares determined using mean 

squared error (MSE); hence, the impact of the outliers was manageable.  

 

All the estimated regression coefficients stabilized after 11 iterations when the maximum 

percentage change become 0.1%. 
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The median of the absolute residuals converged between the 10th and the 11th iterations. 

 

The standardized regression coefficients show that weight was the most important predictors of 

loge mercury, whilst square of fork length and age have similar influence on loge mercury. All three 

predictors have a positive relationship with loge mercury.  

 

The estimated robust regression model for loge mercury on square fork length, weight and age 

of lake whitefish is: 

 loge mercury = (-.3.1193) + (2.16 * 10-6) * fork length2 + (5.16 * 10-4) * weight + (0.0409) * age 
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The following Bootstrap Report compared the original confident limits with those generated by 

3000 draws using the iterative resampling – with – replacement bootstrapping method: 
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The Robust Residuals and Weights Table above list out the residuals and the weights assigned by 

Tukey’s Bisquare M – estimator to each of the observations in the entire data set (n = 87). Four extreme 

outliers were identified: rows 44, 64, 75 and 83. Rows 47, 77 and 79 were also significant outliers. To a 

lesser extent were rows: 33, 54, 65, 67 and 69. These observations with lower weights made only 

minimum contributions to the determination of the regression coefficients.  The table also gives the 

predicted values of loge mercury based on the robust regression equation above from the final iteration 

for comparing side by side with the actual measured loge mercury values.  
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The residuals versus predictors plots highlight the presence of outliers in the data set. They also 

suggested a possible pattern of some kind might exist and the potential of a model specification 

problem should not be dismissed. Despite a possible linear relationship between the dependent variable 

and the three predictors as shown in the scatterplots, perhaps the relationships were better be 

described by a quadratic polynomial function (see Chapter 6) which provides a more correct and better 

fitted model for the lake whitefish data: 
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Chapter 8. Hierarchical Multiple Linear Regression Modeling with 

Bootstrapping using Fish Age as the Confounding Variable. 

 

It is important to realize that theoretical reasoning of the researcher based on sound scientific 

knowledge and experience has the most important place in data modeling which, in my opinion should 

always truncate what the computer algorithms and statistical tests tell us otherwise. Afterall, no matter 

how sophisticated and complex, they are just machines carrying out routines with absolutely no 

knowledge in the sciences upon which the basic ingredients of a model should be based. In the present 

case, our previous knowledge regarding bioaccumulation of mercury in fish has given us sound 

theoretical grounds to the notion that mercury level in fish is most likely increases as the fish grows, (i.e. 

increase in age and size). Length, weight and age are the obvious candidates as predictors in our model 

for fish mercury level. Fish age is our confounding variable because the other two predictors (fork length 

and weight) as well as the dependent variable (fish mercury level) are affected by fish age. Another way 

of looking at the role of fish age is that for example, in situations when we want to compare mercury 

level in fish from different locations; we need to include fish age as the covariate in an analysis of 

covariance (ANCOVA) exercise.  

 

In chapter 6, we used hierarchical multiple linear regression (HMLR) to investigate the quadratic 

terms of the three predictor variables and worked out the quadratic polynomial models for the lake 

whitefish data set. In this chapter we used HMLR to control for age as the confounding variable in our 

regression model but more importantly the process enabled us to assess the impact of fish age on the 

overall model. HMLR requires the same assumptions as standard multiple linear regression: linearity, 
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homoscedasticity, normality, independence and randomness of residuals. As seen in chapter 1, after 

identifying and removing of influential outliers, transformed brook trout data and untransformed lake 

trout data met these assumptions and were selected for HMLR modeling using fish age as the 

confounding variable. Collinearity problems might well be an issue here as fork length and weight were 

shown to have a significant positive correlation. The absence of serious collinearity problems is also an 

assumption for multiple linear regression and HMR to be valid. Despite the potential collinearity issue 

with our data sets, we used the IBM™ SPSS™ statistics software to run the HMLR and see what the 

outcomes suggested. The IBM™ SPSS™ statistics software emphasizes on highlighting the effect of the 

presence of confounding variables on the overall model was used in our HMLR modeling. The actual 

procedure of how the HMLR module in IBM™ SPSS™ works has already been touched on in chapter 6.  

The bootstrapping algorithm was also used in running HMLR by carrying out 1000 resamplings 

with replacement to accurately compute standard errors, regression coefficients and confidence 

intervals. Bootstrapping does not make any assumption on the distribution or homoscedasticity of the 

data so long as we can assume that the sample approximate the population. It is particularly useful and 

give more reliable and accurate computation of various regression statistics when regression 

assumptions are on shaky grounds. Bootstrapping can be used in validating the statistics calculated 

using conventional frequentist inference in that if the upper and lower confidence limits of the 95% 

confidence interval computed by bootstrapping both have the same sign as the frequentist inferred 

statistic, then the p – value associated with that statistic is reliable. On the other hand, if one or both the 

confident limits calculated by bootstrapping has a sign different from the inferred statistic, that means 

the inferred statistic is not statistically significant.  Bootstrap results are always more reliable than the 

statistical significance computed by conventional frequentist inference. This is particularly useful when 

we have non – normally distributed data. In the present case, we draw 1000 bootstrap samples of size n 

from the original samples with replacement; hence each observation may be selected more than once. 

For each of the 1000 bootstrap sample, the regression results are computed, stored and used in the final 

computation of various regression statistics. Bias – corrected and accelerated (BCa) approach was used 

here for estimating the 95% confidence intervals which is more accurate than the percentile method.  
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8.1 Brook trout 

 

The mean values of the four variables were all have the same signs as and within the upper and 

lower limits of the BCa 95% confidence intervals computed by bootstrapping which indicated that the 

normality and homoscedasticity assumptions hold true for the four variables.  

The Correlation Table below shows that he Pearson correlations for all the four variables in all 

combinations were of the same signs as the upper and lower limits of the bootstrap confidence intervals 

corresponded to that correlation. Linearity between the dependent variable and the three predictor 

variables was confirmed by the significant positive correlations between the dependent variable and 

each of the three predictor variables. Significant positive correlations amongst the three predictor 

variables suggested potential collinearity problems. 
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The Model Summary Table showed that 77.4% of the variance in the dependent variable was 

explained by Model 2 (loge fork length + loge weight + age). Age alone (Model 1) accounted for a huge 

66.7% of the variance in loge mercury. After the effect of age has been controlled (i.e. removed), only 
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10.7% of the variance in loge mercury was explained by loge fork length + loge weight; however, the 

change in R – Square was statistically significant (p = 0.000). Hence, adding loge fork length and loge 

weight to the age model increased the model’s predictive capacity at predicting loge mercury in a 

significant way (p = 0.000), it increased the percentage of variance accounted for by 10.7%. Both Models 

1 and 2 were statistically significant in predicting loge mercury (p = 0.000). 

 

The ANOVA Table showed that both models were significant (p = 0.000); hence, we rejected the 

null hypothesis that the slopes of the lines were zero. The F value of 45.631 associated with Model 2 

tested the hypothesis that the R – Square value (0.774) associated with Model 2 was statistically 

significant. 

 

The collinearity statistics in the Coefficients Table confirmed serious collinearity problems 

existed for loge fork length and loge weight (VIF > 10 and Tolerance < 0.1). An important issue of 

multicollinearity is that the estimated regression coefficient may change erratically and significantly in 

response to small changes in the model or the input data. Multicollinearity impacts calculations 
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regarding “individual” predictors hence gives erratic results about the relative importance of individual 

predictors or about which predictors are statistically redundant with respect to others. The estimate of 

one predictor’s impact on the dependent variable while controlling for other predictors is no longer 

accurate. Hence both the standardized and unstandardized regression coefficients as well as their t – 

values for both loge fork length and loge weight were uninterpretable. However, it is important to point 

out that multicollinearity does not reduce the predictive power of the model “as a whole”, it just that 

we should not and cannot make interpretation on individual predictors based on their estimated 

regression coefficients. The plot of actual loge mercury versus adjusted (PRESS) predicted loge mercury 

of Model 2 actually showed a nice positive linear relationship: 

 

One feature of multicollinearity is that the standard errors of the affected coefficients tend to be 

large. In the present case, the standard errors of the coefficients associated with loge fork length and 

loge weight were 1.126 and 0.355 respectively; whereas the standard error of the coefficient associated 

with age is only 0.056. 

The equation that HMLR computed for the overall model with all three predictor variables is: 

loge mercury = (-22.340) + (4.866) * loge fork length + (-1.531) * loge weight + (0.256) * age 
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All the estimated regression coefficients were of the same signs as their corresponding lower 

and upper limits of the BCa (bias – corrected and accelerated) 95% confidence intervals computed by 

bootstrapping. All the estimated regression coefficients were within their corresponding bootstrapped 

95% confidence intervals.  And they were all statistically significant (p = 0.001) estimated using 

bootstrapping. 

 

The Normal P – P plot confirmed the normal distribution of the dependent variable. The 

standardized residuals plot all the residuals were within ± 2 which confirmed homoscedasticity of 

residuals. 
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The Residual Statistics Table above showed that the mean of all the residual statistics were of 

the same signs as and within the lower and upper limits of the BCa (bias – corrected and accelerated) 

95% confidence intervals computed by bootstrapping. The maximum values of the Mahalanobis 

distance, the Cook’s distance and the centred leverage values all confirmed the absence of influential 

outliers in the data set.  

 

8.2 Lake trout 

 

The mean values of the four variables were all have the same signs as and within the upper and 

lower limits of the BCa 95% confidence intervals computed by bootstrapping which indicated that the 

normality and homoscedasticity assumptions hold true for the four variables. 

The Pearson correlations for all the four variables in all combinations were of the same signs as 

the upper and lower limits of the bootstrap confidence intervals corresponded to that correlation. 

Linearity between the dependent variable and the three predictor variables was confirmed by the 

significant positive correlations between the dependent variable and each of the three predictor 

variables. Significant positive correlations amongst the three predictor variables suggested potential 

collinearity problems. 
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The Model Summary Table showed that 65.5% of the variance in the dependent variable was 

attributed to Model 2 (fork length + weight + age). Age alone (Model 1) accounted for a huge 44.4% of 

the variance in the dependent variable. After the effect of age has been removed, there is still 21.1% of 

the variance in mercury was explained by fork length + weight; this change in R – Square was statistically 

significant (p = 0.002). Hence, adding fork length and weight to the age model significantly increased the 

model’s predictive capacity at predicting mercury (p = 0.002). Both Models 1 and 2 were statistically 

significant in predicting mercury (p < 0.005). The F change for Model 1 (F = 23.150) was exactly the same 

as the F value associated with Model 1 in the ANOVA Table below, since this F value only associated with 

a model with age as the sole predictor variable. The addition of age into the model caused a change of F 

value of 8.236 and the F value associated with the Model 2 which contains all three predictor variables 

was 17.059. The ANOVA Table showed that both models were significant (p = 0.000); hence, we rejected 

the null hypothesis that the slopes of the lines were zero. The F value of 17.059 associated with Model 2 

tested the hypothesis that the R – Square value (0.655) associated with Model 2 was statistically 

significant. 
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The Collinearity Statistics above showed that some degrees of collinearity problems were 

detected for fork length and weight (Tolerance < 0.1, VIF > 10), although it was not as severe as in the 

case for brook trout. It is very interesting to note that the unstandardized regression coefficients 

associated with fork length and weight were zero and that associated with age was very low (0.003) for 

Model 2 when all three predictors were present. The unstandardized regression coefficient for age on its 

own in Model 1 was much higher than that in Model 2 (0.037) and this was the only regression 

coefficient that was statistically significant (p = 0.000). The SPSS™ algorithm literally throwed out Model 

2 and suggested that a model with age alone as the only predictor was most appropriate (i.e. Model 1). 

For Model 1, the unstandardized regression coefficient indicated that as age increases by one year, fish 

mercury increases by 0.037 unit, in this case 0.037µg/g. The standard error of the unstandardized 

regression coefficient associated with age was very low (0.008).  

The equation that HMLR computed for the model with age as the sole predictor variable is: 

 

mercury = -0.19 + (0.037) * age 

 

 

The bootstrapping run of the coefficients led us to the same conclusion. The unstandardized 

regression coefficient associated with age in Model 1 (0.037) was of the same sign and within the upper 

and lower 95% confidence limits computed by bootstrapping; and it was the only coefficient that was 

statistically significant (p = 0.001).   It is interesting to note that despite SPSS throwed out Model 2, the 

plot of actual mercury versus adjusted (PRESS) predicted mercury of Model 2 actually showed a nicer 

(less scattered) positive linear relationship than the same plot with only age as the predictor (Model 1): 
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The Normal P – P plot confirmed the normal distribution of the dependent variable. The 

standardized residuals plot all the residuals were within ± 2 which confirmed homoscedasticity of 

residuals. 
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The Residual Statistics Table above showed that the mean of all the residual statistics were 

within the lower and upper limits of the BCa (bias – corrected and accelerated) 95% confidence intervals 

computed by bootstrapping. The maximum values of the Mahalanobis distance, the Cook’s distance and 

the centred leverage values all confirmed the absence of influential outliers in the data set.  
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Epilogue 

 

What do all these different models actually mean? Not much. At least not at this stage. 

Ultimately each of these models needed to be subjected to validation with more data before they mean 

anything. More fish are needed to be collected from the same watersheds from which the fish data used 

in constructing the models came from for used in testing these models. The three growth parameters 

(fork length, weight and age) of these new fish samples will be measured and the data fed into these 

models to calculate the predicted fish mercury levels. These predicted fish mercury levels will then be 

compared with the “actual” mercury levels determined by laboratory analysis of the fish samples to 

assess the performance of each model.  

 

Predictive modeling has important potentials. So long as we apply a validated model to the 

same fish species collected from the same watershed, in the same season and within the same ranges of 

measurements of these growth parameters of fish used in establishing the models (i.e. no 

extrapolation); we should be able to predict mercury level in newly collected fish samples with 

acceptable accuracy just by knowing these growth parameters. The predictive modeling approach can 

be transplanted to other fish species in other watersheds: First, collect a fair number of a chosen species 

of fish from that watershed for mercury determination and growth parameter measurement in order to 

obtain data for establishing the model(s). Then, more fish of that species are collected from the same 

watershed to validate the models for their reliability. The models developed are location – and species – 

specific until demonstrated otherwise. 

There are two amongst many quotations I particularly like when it comes to data science. One is 

by the American humorist Evan Esar: 

“Statistics: The only science that enables different experts using the same figures to draw 

different conclusions.” 

The other one is from the McGill University mathematical statistician Phillip I. Good: 

“In our research efforts, the only statements we can make with God – like certainty are of the 

form “our conclusions fit the data”. The true nature of the real world is unknowable. We can speculate, 

but never conclude.” 

 

************* 
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List of Software and Algorithms 

 

BayES Bayesian Econometric Software©, 2019, version 2.4 

 

IBM™ SPSS™ Statistical Software, version 20.0 

 

JASP open – source statistical project, version 0.11.1.0 and various modules in R 

 

MathType© version 5.0 

 

Minitab™, version 16.2.3 

 

NCSS™ Statistical Software, 2019 version 19.0.3 

 

SAS™ JMP™ 2019, version 15.0 

 

BAS algorithm (Bayesian Variable Selection and Model Averaging using Bayesian Adaptive 

Sampling) by Merlise Clyde, Duke University 

 

The Metropolis – Hastings algorithm for Markov – chain Monte Carlo simulation 
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Appendix (outliers are in red, see Chapter 1) 

Lake whitefish collected from the Inukjuak River watersheds in summer 2019 

# Fish ID fork length, mm weight, g mercury, µg/g w.w. age 
26 370 692 0.104 8 

27 475 1117 0.240 11 

28 405 889 0.123 7 

29 275 248 0.078 6 

30 290 280 0.077 5 

31 260 226 0.074 4 

32 340 497 0.081 6 

34 330 462 0.080 7 

35 390 738 0.134 9 

36 279 245 0.076 5 

74 386 783 0.113 7 

75 494 1663 0.334 11 

76 424 921 0.137 10 

77 444 1261 0.181 12 

78 381 643 0.108 7 

79  387 757 0.140 8 

80 299 377 0.079 5 

81 301 321 0.085 5 

82 305 353 0.073 6 

83 294 330 0.086 6 

84 299 343 0.086 6 

85 281 275 0.076 5 

86 312 402 0.081 6 

87 298 332 0.089 5 

88 255 212 0.080 4 

89 290 300 0.086 5 

90 240 162 0.072 4 

38 235 155 0.088 4 

39 532 1501 0.424 14 

40 370 666 0.102 8 

41 458 1256 0.280 11 

42 236 150 0.063 4 

44 298 312 0.106 4 

45 265 229 0.081 5 

118 282 262 0.082 5 

119 313 379 0.085 5 

120 341 479 0.089 6 

121 297 351 0.069 5 

122 279 278 0.081 5 

123 293 312 0.091 5 

124 213 387 0.081 6 

125 284 263 0.062 6 

126 304 362 0.078 6 

127 208 126 0.158 5 
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Lake whitefish collected from the Inukjuak River watersheds in summer 2019 

(continue…) 

# Fish ID fork length, mm weight, g mercury, µg/g w.w. age 
128 269 240 0.068 5 

129 369 667 0.094 8 

130 460 991 0.322 11 

238 237 181 0.060 4 

239 205 126 0.060 4 

240 395 801 0.103 9 

242 405 845 0.119 8 

244 280 286 0.063 5 

245 310 356 0.057 5 

246 345 494 0.066 7 

247 335 537 0.072 7 

248 430 914 0.163 10 

249 475 1357 0.239 12 

58 278 216 0.082 5 

59 304 338 0.101 5 

60 273 228 0.100 5 

61 336 442 0.096 7 

62 358 622 0.088 6 

63 377 683 0.093 7 

138 175 52 0.117 3 

139 188 67 0.082 3 

140 395 865 0.121 9 

141 388 782 0.087 8 

142 439 1060 0.185 12 

143 404 801 0.119 9 

144 345 527 0.065 6 

145 286 244 0.090 5 

146 291 271 0.089 6 

147 223 125 0.081 4 

168 216 114 0.080 4 

169 230 137 0.037 4 

170 250 167 0.078 5 

171 259 216 0.045 5 

172 296 385 0.063 5 

173 276 273 0.046 5 

174 331 446 0.071 7 

175 443 1093 0.217 12 

176 451 1193 0.244 12 

177 430 970 0.295 10 

178 419 867 0.144 12 

179 374 687 0.098 8 

180 222 122 0.058 4 

181 424 978 0.234 12 
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Brook trout collected from the Inukjuak River watersheds in summer 2019 

# Fish ID fork length, mm weight, g mercury, µg/g w.w. age 
2 390 628 0.239 7 

3 320 298 0.210 5 

4 248 159 0.077 4 

5 375 640 0.168 5 

6 380 542 0.141 5 

7 260 185 0.196   

8 390 643 0.137 6 

9 315 340 0.111 4 

10 360 528 0.242 7 

11 367 567 0.203 6 

12 430 565 0.098 6 

13 309 331 0.218 4 

14 300 293 0.087 4 

15 310 348 0.269 5 

16 365 606 0.116 5 

17 355 489 0.141 5 

18 370 524 0.131 5 

19 350 479 0.130 4 

20 350 472 0.108 4 

22 350 496 0.109 5 

23 305 331 0.111 5 

24 380 621 0.273 5 

25 320 374 0.159 5 

65 190 70 0.072 3 

66 200 82 0.063 3 

67 290 276 0.157 4 

68 340 422 0.107 5 

69 355 471 0.096 5 

70 360 415 0.326 6 

71 375 596 0.176 5 

72 378 654 0.080 5 

73 368 598 0.119 5 

92 130 24 0.058 2 

43 315 391 0.071 4 

132 438 1021 0.227 7 

133 319 389 0.098 5 

134 366 609 0.113 5 

135 354 622 0.170 4 

232 278 297 0.068 4 

233 130 27 0.044 2 

234 160 54 0.058 2 

235 355 559 0.108 5 

236 255 242 0.066 4 

237 280 285 0.067 4 
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Brook trout collected from the Inukjuak River watersheds in summer 2019 

(continue ….) 

# Fish ID fork length, mm weight, g mercury, µg/g w.w. age 
54 189 71 0.064 3 

55 316 318 0.141 4 

56 344 402 0.207 4 

57 396   0.577 7 

149 342 459 0.176 5 

153 210 101 0.064 3 

154 182 69 0.048 2 

155 212 108 0.065 3 

156 251 162 0.147 4 

157 331 384 0.143 4 

158 368 520 0.280 7 
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Lake trout collected from the Lake Tasialuk in summer 2019 

# Fish ID fork length, mm weight, g mercury, µg/g w.w. age 
187 380 595 0.322   

188 215 104 0.115 4 

189 290 246 0.421 7 

190 430 949 0.286 9 

191 520 1757 0.585 13 

201 400 758 0.450 7 

202 360 566 0.211 9 

203 345 457 0.180 7 

204 375 593 0.262 7 

205 330 416 0.242 7 

206 460 1215 0.457 9 

207 245 151 0.155 8 

208 295 288 0.192 6 

209 370 670 0.201 8 

210 430 943 0.461 9 

212 540 2377 0.755 12 

213 345 491 0.135 8 

214 350 490 0.243 11 

215 460 1176 0.598   

216 420 867 0.466 9 

217 445 985 0.315 9 

218 430 878 0.398 11 

219 395 655 0.344 9 

221 380 622 0.286 8 

223 425 900 0.352 10 

225 365 547 0.344 10 

226 315 336 0.292 7 

227 400 750 0.342 8 

228 365 538 0.436 8 

229 350 521 0.117 6 

230 340 527 0.249 7 

272 315 318 0.307 7 

273 445 1022 0.287 10 

274 210 105 0.088 4 

275 475 1316 0.526 11 

276 480 1285 0.411 13 

277 190 80 0.129 4 
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