Mercury concentration in fish from the Inukjuak River watershed and nearby lakes collected in the summer of 2019

A technical report on laboratory determination of total mercury in fish and statistical analysis

Michael K. H. Kwan, Ph.D.

Department of Environment, Wildlife and Research

October 2019

Table of Contents

Acknowledgements	1
Summary	2
Purpose of the investigation	3
Fish samples	4
Acid digestion of fish samples	4
Cold vapour atomic absorption spectrometric mercury analysis	6
Calculation of mercury concentration in the fish samples	9
Quality assurance	9
Total mercury concentration in fish	16
Fish growth and mercury concentration	32
Linear regression models	40
References	56
Appendix A. SOP 004M CVAAS operation parameters	57
Appendix B. Fish Bio – data	62

Acknowledgements

The author thanks Pituvik Landholding Corporation of Inukjuak, Innergex Renewable Energy Inc., Pesca Environnement and local helpers from the community of Inukjuak for providing the fish samples and for recording bio-data for this study. Special thanks are also bestowed to Mr. Peter May of Nunavik Research Centre for his efforts and expertise in age determination of the fish samples. Funding for this study was kindly provided by Innavik Hydro SEC.

Summary

A standard operating protocol (SOP 004M) based on the cold vapour atomic absorption spectrometry (CVAAS) technique developed and optimized at Nunavik Research Centre was used in total mercury determination of 518 muscle samples from 259 fish collected in the summer of 2019 from 11 locations at the Inukjuak River watershed and nearby lakes: 88 brook trout, 101 lake whitefish, 69 lake trout and 1 landlocked Atlantic salmon.

In the standard operating protocol, muscle samples of fish were digested using a two – stage mixed – acids procedure to render organically bound mercury to be converted to mercuric (II) ions which were then chemically reduced to ground state mercury atoms using a acidic solution of tin (II) chloride as a strong reductant in a closed reaction system. Argon gas carried the free mercury atoms into a quartz cell situated in a spectrometer for atomic absorption quantification of the total mercury concentration present in the digested fish tissues.

A stringent quality assurance and quality control protocol was applied to all sessions of analysis to ensure analytical precision and analytical accuracy were always within predetermined acceptable limits. For each batch of fish samples prepared for analysis: (1) at least two certified reference materials (CRMs) of matrices similar to the samples were included to check for analytical accuracy; (2) reagent blanks and sample blanks were included to check for contamination; and (3) each sample was prepared in duplicate for analysis and each of the two replicates was analyzed in duplication to check for analytical precision.

Seven lake trout and one brook trout out of the 259 fish analyzed were found to have total mercury concentrations exceeded the Health Canada's mercury safety guideline (0.5 μ g/g w.w.) for fish destined for commercial consumption (Health Canada 2007). However, 73 fish were found to have mercury concentration above 0.2 μ g/g w.w., a guideline recommended for applying to frequent fish consumption on a subsistent basis.

Fish age of the 259 fish samples were determined by examination of fish scales and/or otolithes. The relationships between fish growth parameters (age, length and weight) and total mercury concentration of each fish species were investigated. Strong positive correlations between mercury concentration and the three fish growth parameters were found for lake trout, brook trout and lake whitefish. Linear regression models of fish mercury concentration on fish age were examined and the predictive power of fish age on mercury concentration for different fish species and different aquatic ecosystems was evaluated.

Purpose of the Investigation

This investigation has generated a very comprehensive data set of mercury concentration of fish from the Inukjuak River watershed prior to the construction phase of the Innavik hydro-power project. The data represent the background baseline mercury concentrations of the three indigenous fish species inhabiting the watershed: brook trout, lake trout and lake whitefish. A comparison of such data set with that would be obtained in the future well after the hydro-power plant has been installed and operational might provide useful information to address the question of possible influence of the construction and operation of the hydro-power plant on the mercury status of fish in the Inukjuak River watershed.

It is well known that large-scale flooding and long-term submersion of vegetated lands might increase bioavailability of naturally occurring mercury to aquatic food chains through an increase in the microbial – mediated methylation of inorganic mercury present in the submerged soils and vegetation. Human activities such as reservoir and dam construction often result in flooding and submersion of vegetated lands. The effect on methylation and the opposing process of demethylation depends on a whole myriad of physicochemical variables specific to the affected ecosystem, these include concentrations of various inorganic chemical ligands especially sulfide and sulfate as well as organic ligands such as humic and fulvic acids; the natural amount of mercury present in the bedrock; the amount of dissolved organic carbons, dissolved oxygen, temperature, acidity, redox potential of the benthic substrate, etc. These variables are often interacting in complex manners in influencing the rate of methylation, the rate of demethylation and the steady state equilibrium of these two processes. However, the outcome of an effect on methylation and demethylation is often manifested as changes in the mercury status of fish living in the aquatic ecosystem affected because the changes of bioavailability of mercury resulting from a change in methylation and demethylation which in turn affect the dietary intake of mercury by fish at the upper end of aquatic food chains. Changes in mercury status of these fish have important public health implications to the community of Inukjuak that relying on them for subsistent harvest.

Fish Samples

Fish samples were collected by a field technician from Global WSP Inc. with the help of members of the community of Inukjuak from eleven locations (see map on page 16) in the watershed of the Inukjuak River and nearby lakes in the summer months of 2019 using gill nets. Bio – data such as length (total and fork lengths), weight, sex and maturity were recorded for each fish (see Appendix B). Otolithes and scales were collected for age determination. Muscle samples, otolithes and scales of 259 fish (88 brook trout, 101 lake whitefish, 69 lake trout and 1 landlocked Atlantic salmon) were shipped to Nunavik Research Centre in Kuujjuaq for total mercury analysis and fish age determination in August 2019.

Acid Digestion of Fish Samples

A two-stage acid digestion procedure was used to prepare the fish samples for total mercury analysis: The first stage used nitric acid to solubilize the fish muscle samples and the second stage used a strongly oxidizing mixture of hydrogen peroxide, nitric acid, sulfuric acid and hydrochloric acid to convert organically bound mercury in the solubilized samples quantitatively and completely into mercuric (II) ions.

First stage (primary) digestion: Between 2 and 2.6 grams (weighed to 0.001g accuracy) of each sample was weighed into a 2.5 x 15cm borosilicate glass test tube (Tissue Culture Grade). Six mL of 70% w/v nitric acid (Trace Metal Grade) was added to each tube and a glass bulb condenser was used to cover each tube (see photo 1). The samples were left at room temperature in a fume hood overnight pre-digesting in the nitric acid. The test tubes were then transferred to a 78 \pm 2°C aluminum heating block unit for 6 hours. After this primary digestion

stage which solubilized all solid, the samples were allowed to cool to room temperature. The contents of each test tube were then transferred to a 15 - mL capacity graduated polypropylene centrifuge tube using a long (22cm) polyethylene transfer (Pasteur) pipette. Ultrapure water (\geq 18.2 M Ω -cm, Type I) from a wash bottle was used to rinse off the test tubes three times and the rinsing was transferred with the pipette into the 15 - mL centrifuge tube until a 13 - mL volume was reached. The centrifuge tubes were capped and the primary digests were stored at room temperature. At this stage the primary digests were stable and could be archived for later use (photo 2).

Second stage (secondary) digestion: Although the solid fish muscle tissues were solubilized after the primary digestion with nitric acid, much of the mercury present in the primary digests were still organically bound and would not respond to the tin (II) chloride reduction reaction used in the CVAAS technique unless they were first completely broken down and converted to mercuric (II) ions which could then be reduced by tin (II) chloride into ground – state mercury atoms for the CVAAS technique to quantify. The relatively low melting and boiling points of mercury restricted the maximum digestion temperature that was suitable for use without risking loss of mercury from the samples via evaporation. A strongly oxidizing mixture of concentrated nitric, sulfuric and hydrochloric acids together with hydrogen peroxide was found to be able to completely convert all organic mercurial to mercuric (II) ions at a relatively low temperature of $78 \pm 2^{\circ}$ C without losing mercury from the sample.

A one -mL aliquot of each primary digest was further subjected to a more vigorous mixed – acid oxidation prior to total mercury determination: 0.4 mL of 70% w/v nitric acid and 0.2 mL of 30% w/v hydrogen peroxide solution (Certified ASC Plus, Fisher Scientific) were added to a 1 – mL aliquot of primary digested sample in a 1.3 x 10cm borosilicate glass test tube (Tissue Culture Grade). The test tubes were placed in an aluminum heating block at 78 ± 2°C for two hours (photo 3). They were then allowed to cool to room temperature and 0.4 mL concentrated sulfuric acid (95.0 – 98.0%, Certified ASC Plus, Fisher Scientific) and 0.2 mL concentrated hydrochloric acid (36.5 – 38.0%, Certified ASC Plus, Fisher Scientific) were added to each tube. The samples were swirled to mix and were returned to heating at 78 ± 2°C for further 3 hours. After cooling, 3 mL of 2mM potassium dichromate in 10% v/v hydrochloric acid solution was added and the content of each tube was thoroughly mixed with a vortex mixer. The secondary digests were analyzed for total mercury by the CVAAS technique on the same day. If the secondary digests were not to be analyzed immediately, they could be stored in refrigeration for no longer than 24 hours before being analyzed.

Analyte recovery of this two – stage acid digestion procedure was tested using a standard spike recovery test by digesting one mL of 80 μ g/L mercury as methylmercury chloride in 10% v/v nitric acid standard solution with the primary through secondary acid digestion procedure which theoretically should give a final concentration of 1.28 μ g/L mercury in the final secondary digest assuming a 100% recovery. The digestion procedure consistently resulted in no lower than 96% recovery of the spiked analyte which was sufficient to validate the digestion procedure.

Cold Vapour Atomic Absorption Spectrometric Mercury Analysis

CVAAS techniques have been used as the standard/ reference technique for mercury analysis of environmental samples for the last several decades by many national laboratories: For example: U.S. EPA Method 245 (U.S. EPA 1994), AOAC Official Method 971.21 (AOAC 1999), CFIA Manual of Chemical Methods (CFIA 1999). A standard operating protocol (SOP 004M) based on the cold vapour atomic absorption spectrometry (CVAAS) technique developed and optimized in 1998 at Nunavik Research Centre has been routinely used in total mercury determinations of a wide range of biological sample matrices. SOP 004M was used in total mercury determination of these fish samples.

A model PinAAcle 900Z[™] atomic absorption spectrometer (Perkin Elmer Inc.) equipped with an electrodeless discharge (EDL) mercury lamp and a model FIAS – 100[™] flow injection system (Perkin Elmer Inc.) were used for total mercury determination of the acid digested fish samples (photos 4 & 5). Automation was achieved by using a model AS – 90 autosampler [™] (Perkin Elmer Inc.) and interfacing the system with a personal computer running the AAWinLab

™ version 2.3 software (Perkin Elmer Inc.) (photo 6). The entire automated CVAAS process facilitated a high sample throughput. A 10% w/v tin (II) chloride (A.C.S. Grade) in 30% v/v hydrochloric acid (Trace Metal Grade) was used as the reductant reagent (6 mL / minute flowrate) and a 10% v/v hydrochloric acid as the carrier (10 mL / minute flowrate). The reductant reagent was freshly prepared for each session of analysis. The use of a relatively high concentration of reductant reagent further ensured a complete atomization of mercury in the digests. Normal calibration method using a standard linear plot was used in quantitation of the absorbance signals. Mercury standard solutions used in the calibrations were prepared freshly for each session of analysis using a 1000 – mg/L commercially available mercury standard solution (Fisher Scientific Ltd.) diluted with a mixed – acid matrix in match with the matrix of the digested samples. A typical range of mercury standard solutions used in normal linear calibration was 0.5 to 20.0 μ g / L within this range where Beer's Law hold. Appendix A listed out various parameters used in the CVAAS method which has been developed, optimized and routinely used at the analytical lab. of the Nunavik Research Centre for mercury analysis of various wildlife tissue samples. Optimization of various parameters was achieved with the aim of maximizing analytical sensitivity without sacrificing analytical precision to an unacceptable extent (i.e. less than 10% relative standard deviation of variations of signals). With a 500 μ L sample injection loop (IL, photo 7), characteristic mass achieved was consistently between 180 and 210 picograms / 0.0044 absorbance – second. Analytical detection limit was around 0.42 μ g/L. For a standardized 2.000 grams w.w. fish muscle sample, the sample detection limit was $0.003 \mu g / g$ wet weight (w.w.).

The ground – state mercury atoms generated inside the Chemifold [™] mixing block (CMB, photo 7) of the FIAS – 100 where the digested sample came in contact with the tin (II) chloride reductant reagent which transferred into the gas / liquid separator (GLS) via the stripping coil (SC) was carried by a constant stream of argon gas (99.999% purity) at a flowrate of 50 mL / minute through the sample transfer capillary tubing (ST) into the quartz cell (QC, photo 8) for spectrometric quantification of mercury. A "Read Delay" of 4 seconds and a BOC (baseline offset correction) of 3 seconds were used to capture the entire signal peak with optimal analytical sensitivity. The argon gas flowrate was minimized to 50 mL / minute in order to

maximize the residence time of the mercury atom cloud in the quartz cell so as to maximize analytical sensitivity since residence time is inversely proportional to the influx or efflux rate of the mercury atom cloud. The relatively low argon flowrate ensured a sharp narrow signal peak. The density of mercury atoms present in the quartz cell is inversely proportional to the intensity of the radiation of resonant wavelength (λ = 253.7nm) that passes through the monochromator and reaching the detector diode from the EDL lamp; hence it is proportional to the mercury concentration in the sample. Further reduction of argon flowrate was found to have a negative effect on analytical precision. The stripping coil was lengthened from the default 10 cm to 25 cm to optimize sensitivity. The reaction coil/loop (RC, photo 7) in which the digested sample and the tin (II) chloride reductant reagent mixed was lengthen from its default 10cm to 21cm to prolong contact time and ensured a more thorough mixing. This also help to ensure a complete atomization of mercury in the digested sample. The waste outlet (W photo 7) from the gas / liquid separator (GLS) was set at a flowrate that was just enough to prevent liquid started appearing in the sample transfer capillary tube leaving the gas / liquid separator. Too high a waste outlet flowrate would cause a loss of sample vapour which contains mercury atoms to waste instead of going to the quartz cell.

Since the kinetics of atomization in the CVAAS technique was not affected by chemical or matrix interference during the detection phase of the process taking place in the quartz cell so long as a complete quantitative conversion of organically bound mercury to mercuric (II) ions was ensured in the sample digestion stage and the tin (II) chloride reduction stage, peak height measurement of the absorption signal was used instead of peak area for quantifying mercury concentration present in the digested samples (photo 6). Peak height of an absorption signal was far less prone to slight fluctuation of the baseline than peak area, hence a better analytical precision and a lower analytical detection limit were ensured. In the present analytical protocol, a peak height smoothing value of 19 points was used to achieve an optimum signal magnitude and analytical precision, as too low a smoothing value could reduce analytical precision and too high a smoothing value could lead to a decrease in signal magnitude.

Calculation of mercury concentration in the fish samples

 $M = \{(m \div 1000 \text{ x } fv_2 \text{ x } D) \div p\} \div w$

where:

M = mercury concentration in the fish sample, $\mu g / g$ fresh weight

m = mercury concentration in the sample digest measured by the CVAAS analysis, μ g /L.

fv₂ = total volume of the secondary acid digest, mL.

D = dilution factor of the secondary acid digest prior to CVAAS analysis.

p = portion of the primary acid digest used in secondary digestion, which is 1/ fv₁, since one mL aliquot of the primary digest was used for the secondary digestion.

 fv_1 = total volume of the primary acid digestion, which is 13 mL in this case.

w = fresh weight of fish sample used in the primary digestion, grams.

Quality Assurance

A stringent quality assurance and quality control protocol was applied to every session of analysis to ensure analytical precision and analytical accuracy were always within predetermined acceptable limits; hence to assure the results have a high probability of being of acceptable quality:

Analytical Accuracy (AA): For each session of analysis, at least two certified reference materials (CRMs) with matrices similar to the samples were processed and analyzed in an identical manner as that applied to the samples to check for analytical accuracy (Table 1, figure 1). The CRMs were analyzed in the beginning and at the end of each session of analysis. A recovery of the analyte to within 10% of its certified value was used as a criterion for the validation of the session of analysis (as recommended by the U. S. EPA). Using this well tested and optimized SOP 004M standard protocol, all CRMs were found to have achieved a recovery of the analyte to within 10% of their certified values in all sessions of analysis. In CVAAS

technique, the use of CRMs is particularly useful to check if organically bound mercury has been completely converted to mercuric (II) ions during the acid digestion stage.

Certified	Source, year	Certified total mercury	Material composition
Reference		concentration, μg / g	
Material		dry weight	
DORM 2	National Research Council	4.64 ± 0.26	Freeze - dried and
	Canada, 2002		powdered dogfish
			muscles
DOLT 2	National Research Council	2.14 ± 0.28	Freeze – dried and
	Canada, 2002		powdered dogfish
			liver
DORM 4	National Research Council	0.412 ± 0.036	Freeze – dried and
	Canada, 2016		powdered fish protein
CRM 422	Community Bureau of	0.559 ± 0.016	Freeze – dried and
	Reference, Brussels, 1992		powdered cod fish
			muscles

Table 1. Certified reference materials used in CVAAS mercury analysis.

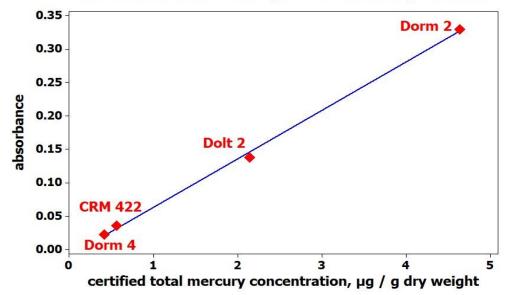


Figure 1. Certified reference material plots.

(2) Analytical Precision (AP) and replication of sample digestion and analysis: Each fish sample was prepared and digested in duplication. Each of the two replicates from one fish was analyzed in duplication. The mean value of the two measurements

performed for each digested sample (instrumental AP) was accepted only when the relative standard deviation (RSD, %) of the two measurements was less than 10%. Then, the RSD of the mean values of the two replicated digested samples from the same fish sample was calculated. The RSD of the two replicates of each fish was under 10% for all the 259 fish analyzed (Table 3); hence the mean values of the two replicates of all fish analyzed were accepted as valid.

(3) **Contamination check:** For each session of analysis, digestion blanks in duplicate were processed and analyzed in an identical manner as that applied to the samples to monitor contamination during acid digestion and subsequent preparation of the digested samples for analysis. The analysis session was deemed invalid if signals of any one of the two digestion blanks that were higher than the absorbance corresponding to the analytical detection limit of the analyte. No contamination was found in all sessions of analysis.

Photo 1. First stage (primary) acid digestion of fish samples.

Photo 2. Primary acid digests of all 259 fish samples in duplicates.

Photo 3. Second stage (secondary) acid digestion.

Photo 4. Perkin Elmer PinAAcle 900z[™] atomic absorption spectrometer with quartz cell and heating mantle set up with Perkin Elmer FIAS – 100[™] flow injection unit for CVAAS mercury analysis.

Photo 5. Perkin Elmer FIAS – 100[™] flow injection unit with Perkin Elmer AS90[™] autosampler set up for automated CVAAS mercury analysis.

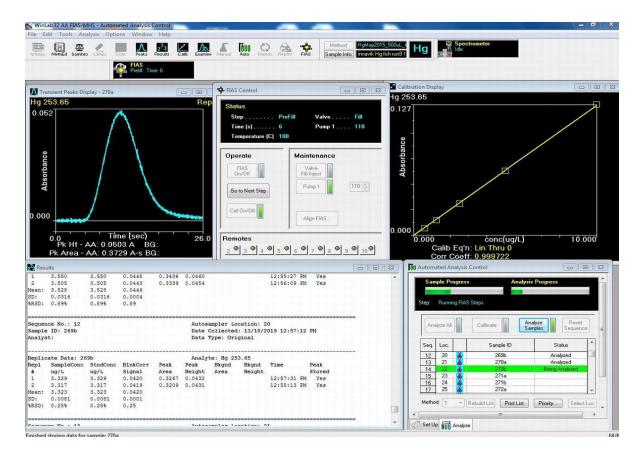


Photo 6. Perkin Elmer AAWinLab version 2.3[™] software used for CVAAS mercury analysis.

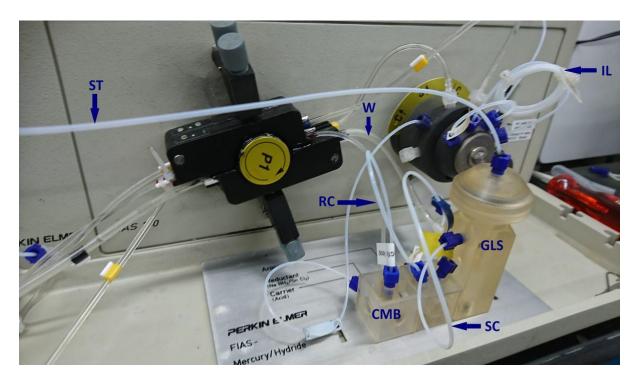


Photo 7. Details of the Perkin Elmer FIAS – 100[™] flow injection system.

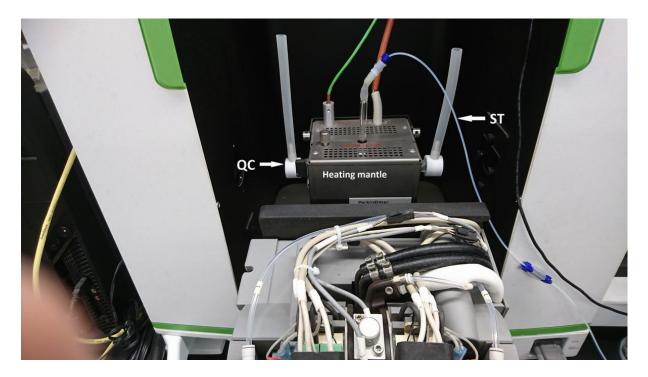
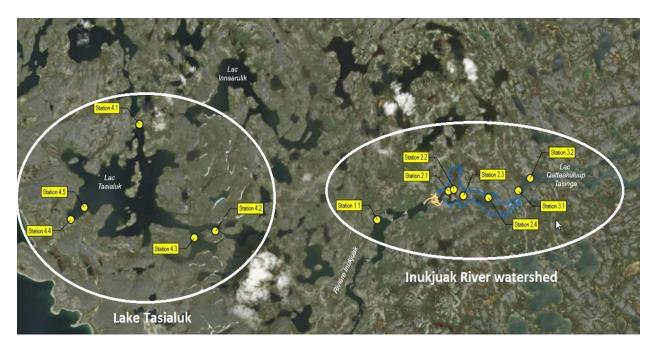


Photo 8. The sample transfer capillary tubing (ST) connecting the FIAS -100[™] flow injection system to the quartz cell (QC) situated in the PinAAcle 900z[™] atomic absorption spectrometer.


Total Mercury Concentration in Fish:

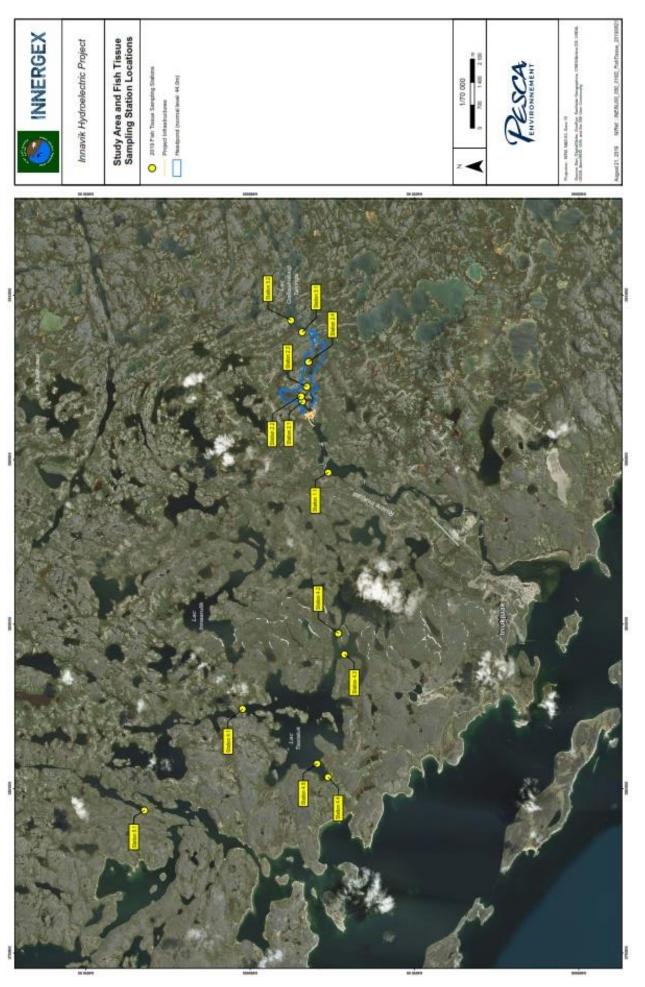

Table 2 summarized the range of total mercury concentration and the range of age of lake trout, brook trout and lake whitefish collected from the Inukjuak River watershed and lakes nearby for this study. Table 3 detailed the entire data set of total mercury concentration and age of the 259 fish examined.

Table 2. Range of total mercury concentrations and range of fish age of lake trout, brook trout and lake whitefish analyzed for total mercury.

Fish species (number of	Range of total mercury	Range of fish age, years
samples)	concentration, μg / g w.w.	
Lake Trout (n = 69)	0.088 – 1.59	3 - 17
Brook Trout (n = 88)	0.041 – 0.577	2 - 8
Lake Whitefish (n = 101)	0.037 – 0.424	3 - 14

Mercury concentrations of the three fish species from stations 1, 2 and 3 were grouped together as "Inukjuak River watershed" samples. These were compared with those from station 4 (Lake Tasialuk):

				Total mercury	Total mercury concentration, μg/g w.w.	, µg/g w.w.		
							Relative Standard	Fish age,
Habitat	# sub-station ID	# Fish ID	Common Name	Replicate 1	Replicate 2	Mean	Deviation, %	years
Inukjuak River	1.1	. 	Lake trout	0.212	0.211	0.212	0.334	7
Inukjuak River	1.1	2	Brook trout	0.236	0.241	0.239	1.484	7
Inukjuak River	1.1	ო	Brook trout	0.205	0.214	0.210	3.036	5
Inukjuak River	1.1	4	Brook trout	0.077	0.077	0.077	0	4
Inukjuak River	1.1	5	Brook trout	0.17	0.166	0.168	1.685	5
Inukjuak River	1.1	9	Brook trout	0.138	0.144	0.141	3.007	5
Inukjuak River	1.1	7	Brook trout	0.198	0.194	0.196	1.444	(a)
Inukjuak River	1.1	8	Brook trout	0.135	0.139	0.137	2.066	9
Inukjuak River	1.1	б	Brook trout	0.108	0.114	0.111	3.82	4
Inukjuak River	1.1	10	Brook trout	0.237	0.246	0.242	2.634	7
Inukjuak River	1.1	11	Brook trout	0.202	0.203	0.203	0.349	9
Inukjuak River	1.1	12	Brook trout	0.099	0.096	0.098	2.174	9
Inukjuak River	1.1	13	Brook trout	0.219	0.216	0.218	0.975	4
Inukjuak River	1.1	14	Brook trout	0.092	0.081	0.087	8.994	4
Inukjuak River	1.1	15	Brook trout	0.264	0.273	0.269	2.369	5
Inukjuak River	1.1	16	Brook trout	0.114	0.117	0.116	1.835	5
Inukjuak River	1.1	17	Brook trout	0.139	0.142	0.141	1.509	5
Inukjuak River	1.1	18	Brook trout	0.13	0.131	0.131	0.542	5
Inukjuak River	1.1	19	Brook trout	0.129	0.131	0.130	1.088	4
Inukjuak River	1.1	20	Brook trout	0.108	0.107	0.108	0.658	4
Inukjuak River	1.1	21	Brook trout	0.113	0.106	0.110	4.521	n.o.
Inukjuak River	1.1	22	Brook trout	0.106	0.111	0.109	3.263	5
Inukjuak River	1.1	23	Brook trout	0.111	0.11	0.111	0.64	5
Inukjuak River	1.1	24	Brook trout	0.274	0.271	0.273	0.778	5
Inukjuak River	1.1	25	Brook trout	0.159	0.159	0.159	0	5
Inukjuak River	1.1	26	Lake whitefish	0.1	0.108	0.104	5.442	ω
Inukjuak River	1.1	27	Lake whitefish	0.237	0.243	0.240	1.767	1
Inukjuak River	1.1	28	Lake whitefish	0.127	0.119	0.123	4.602	7
Inukjuak River	1.1	29	Lake whitefish	0.079	0.077	0.078	1.813	9
Inukjuak River	1.1	30	Lake whitefish	0.078	0.075	0.077	2.771	5
Inukjuak River	1.1	31	Lake whitefish	0.073	0.075	0.074	1.911	4
Inukjuak River	1.1	32	Lake whitefish	0.082	0.08	0.081	1.746	9
Inukjuak River	1.1	33	Lake whitefish	0.084	0.084	0.084	0	9
Inukjuak River	1.1	34	Lake whitefish	0.08	0.08	0.080	0	7
Inukjuak River	1.1	35	Lake whitefish	0.136	0.132	0.134	2.11	6
Inukjuak River	1.1	36	Lake whitefish	0.075	0.076	0.076	0.936	5

Table 3. total mercury concentration (µg / g w.w.) of 259 fish collected from the Inukjuak River watershed and nearby lakes.

				1))	Relative Standard	Fish age,
Habitat	# sub-station ID	# Fish ID	Common Name	Replicate 1	Replicate 2	Mean	Deviation, %	years
Inukjuak River	1.1		Landlocked atlantic salmon	0.058	0.052	0.055	7.715	4
Inukjuak River	2.1	38	Lake whitefish	0.089	0.087	0.088	1.607	4
Inukjuak River	2.1	39	Lake whitefish	0.44	0.408	0.424	5.337	14
Inukjuak River	2.1	40	Lake whitefish	0.1	0.103	0.102	2.079	8
Inukjuak River	2.1	41	Lake whitefish	0.282	0.278	0.280	1.01	11
Inukjuak River	2.1	42	Lake whitefish	0.062	0.063	0.063	1.131	4
Inukjuak River	2.1	43	Brook trout	0.074	0.068	0.071	5.976	4
Inukjuak River	2.1	44	Lake whitefish	0.105	0.106	0.106	0.67	4
Inukjuak River	2.1	45	Lake whitefish	0.081	0.08	0.081	0.878	5
Inukjuak River	2.1	46	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.1	47	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.1	48	Brook trout	n.s.	n.s.	n.s.	n.s.	n.s.
_ake Qattaakuluup Tasinga	3.1	49	Lake trout	0.53	0.549	0.540	2.491	15
Lake Qattaakuluup Tasinga	3.1	50	Lake trout	0.47	0.482	0.476	1.784	12
ke Qattaakuluup Tasinga	3.1	51	Lake trout	0.195	0.197	0.196	0.721	5
💆 Lake Qattaakuluup Tasinga	3.1	52	Lake trout	0.173	0.176	0.175	1.215	4
Lake Qattaakuluup Tasinga	3.1	53	Lake trout	0.183	0.192	0.188	3.392	n.o.
ထLake Qattaakuluup Tasinga	3.1	54	Brook trout	0.065	0.062	0.064	3.34	ო
Q Lake Qattaakuluup Tasinga	3.1	55	Brook trout	0.144	0.138	0.141	3.009	4
	3.1	56	Brook trout	0.2	0.214	0.207	4.783	4
Qattaakuluup	3.1	57	Brook trout	0.584	0.57	0.577	1.716	7
Lake Qattaakuluup Tasinga	3.1	58	Lake whitefish	0.08	0.083	0.082	2.602	5
_ake Qattaakuluup Tasinga	3.1	59	Lake whitefish	0.103	0.099	0.101	2.802	5
_ake Qattaakuluup Tasinga	3.1	60	Lake whitefish	0.101	0.098	0.100	2.132	5
ake Qattaakuluup Tasinga	3.1	61	Lake whitefish	0.097	0.094	0.096	2.221	7
_ake Qattaakuluup Tasinga	3.1	62	Lake whitefish	0.087	0.089	0.088	1.607	9
_ake Qattaakuluup Tasinga	3.1	63	Lake whitefish	0.09	0.096	0.093	4.562	7
_ake Qattaakuluup Tasinga	3.1	64	Lake whitefish	0.097	0.092	0.095	3.746	7
Inukjuak River	1.1	65	Brook trout	0.069	0.074	0.072	4.951	с
Inukjuak River	1.1	99	Brook trout	0.061	0.064	0.063	3.394	ო
Inukjuak River	1.1	67	Brook trout	0.154	0.159	0.157	2.262	4
Inukjuak River	1.1	68	Brook trout	0.105	0.109	0.107	2.645	S
Inukjuak River	1.1	69	Brook trout	0.097	0.094	0.096	2.221	£
Inukjuak River	1.1	20	Brook trout	0.329	0.322	0.326	1.521	9
Inukjuak River	1.1	71	Brook trout	0.175	0.176	0.176	0.403	ъ
Inukjuak River	1.1	72	Brook trout	0.081	0.078	0.080	2.668	S
Inukjuak River	1.1	73	Brook trout	0.117	0.12	0.119	1.79	5
Inukjuak River	1.1	74	Lake whitefish	0.108	0.117	0.113	5.653	7

						1	Relative Standard	Fish age,
Habitat	# sub-station ID	# Fish ID	Common Name	Replicate 1	Replicate 2	Mean	Deviation, %	years
Inukjuak River	1.1	75	Lake whitefish	0.325	0.343	0.334	3.811	11
Inukjuak River	1.1	76	Lake whitefish	0.142	0.137	0.140	2.538	10
Inukjuak River	1.1	77	Lake whitefish	0.197	0.181	0.189	5.984	12
Inukjuak River	1.1	78	Lake whitefish	0.109	0.106	0.108	1.973	7
Inukjuak River	1.1	79	Lake whitefish	0.139	0.141	0.140	1.01	8
Inukjuak River	1.1	80	Lake whitefish	0.078	0.079	0.079	0.901	5
Inukjuak River	1.1	81	Lake whitefish	0.083	0.087	0.085	3.329	5
Inukjuak River	1.1	82	Lake whitefish	0.072	0.074	0.073	1.937	9
Inukjuak River	1.1	83	Lake whitefish	0.083	0.088	0.086	4.14	9
Inukjuak River	1.1	84	Lake whitefish	0.083	0.088	0.086	4.14	9
Inukjuak River	1.1	85	Lake whitefish	0.077	0.075	0.076	1.861	5
Inukjuak River	1.1	86	Lake whitefish	0.081	0.08	0.081	0.878	9
Inukjuak River	1.1	87	Lake whitefish	0.086	0.091	0.089	4	5
Inukjuak River	1.1	88	Lake whitefish	0.075	0.085	0.080	8.838	4
Inukjuak River	1.1	89	Lake whitefish	0.087	0.085	0.086	1.644	5
Inukjuak River	1.1	06	Lake whitefish	0.073	0.071	0.072	1.964	4
Inukjuak River	1.1	91	Lake whitefish	0.073	0.074	0.074	0.962	4
Inukjuak River	1.1	92	Brook trout	0.057	0.055	0.056	2.525	7
Inukjuak River	2.2	93	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	94	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	95	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	96	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	97	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	98	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	66	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	100	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	101	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	102	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	103	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	104	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	105	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	106	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	107	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	108	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	109	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	110	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	111	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	112	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.

							Relative Standard	Fish age,
Habitat	# sub-station ID	# Fish ID	Common Name	Replicate 1	Replicate 2	Mean	Deviation, %	years
Inukjuak River	2.2	113	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	114	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	115	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	116	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	117	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.2	118	Lake whitefish	0.083	0.081	0.082	1.724	5
Inukjuak River	2.2	119	Lake whitefish	0.082	0.088	0.085	4.992	5
Inukjuak River	2.2	120	Lake whitefish	0.088	0.089	0.089	0.799	9
Inukjuak River	2.2	121	Lake whitefish	0.07	0.067	0.069	3.096	5
Inukjuak River	2.2	122	Lake whitefish	0.083	0.079	0.081	3.491	5
Inukjuak River	2.2	123	Lake whitefish	0.09	0.092	0.091	1.554	5
Inukjuak River	2.2	124	Lake whitefish	0.083	0.079	0.081	3.491	9
Inukjuak River	2.2	125	Lake whitefish	0.063	0.061	0.062	2.281	9
Inukjuak River	2.2	126	Lake whitefish	0.079	0.076	0.078	2.737	9
D Inukjuak River	2.2	127	Lake whitefish	0.155	0.16	0.158	2.245	5
Inukjuak River	2.2	128	Lake whitefish	0.069	0.066	0.068	3.263	5
Inukjuak River	2.2	129	Lake whitefish	0.091	0.096	0.094	3.782	8
Inukjuak River	2.2	130	Lake whitefish	0.327	0.317	0.322	2.196	10
Lukjuak River	2.2	131	Lake whitefish	0.316	0.31	0.313	1.356	11
2 Inukjuak River	2.2	132	Brook trout	0.22	0.233	0.227	4.057	7
Inukjuak River	2.2	133	Brook trout	0.099	0.096	0.098	2.175	5
Inukjuak River	2.2	134	Brook trout	0.113	0.113	0.113	0	5
Inukjuak River	2.2	135	Brook trout	0.169	0.17	0.170	0.417	4
Inukjuak River	2.1	136	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Inukjuak River	2.1	137	Longnose sucker	n.s.	n.s.	n.s.	n.s.	n.s.
Lake Qattaakuluup Tasinga	3.1	138	Lake whitefish	0.119	0.114	0.117	3.035	ი
Lake Qattaakuluup Tasinga	3.1	139	Lake whitefish	0.082	0.082	0.082	0	ო
Lake Qattaakuluup Tasinga	3.1	140	Lake whitefish	0.119	0.123	0.121	2.337	0
	3.1	141	Lake whitefish	0.086	0.088	0.087	1.625	ω
Lake Qattaakuluup Tasinga	3.1	142	Lake whitefish	0.179	0.191	0.185	4.589	12
Lake Qattaakuluup Tasinga	3.1	143	Lake whitefish	0.112	0.126	0.119	8.319	0
Lake Qattaakuluup Tasinga	3.1	144	Lake whitefish	0.064	0.065	0.065	1.096	9
Lake Qattaakuluup Tasinga	3.1	145	Lake whitefish	0.087	0.092	060.0	3.955	5
Lake Qattaakuluup Tasinga	3.1	146	Lake whitefish	0.089	0.088	0.089	0.799	9
Lake Qattaakuluup Tasinga	3.1	147	Lake whitefish	0.082	0.08	0.081	1.746	4
Lake Qattaakuluup Tasinga	3.1	148	Lake whitefish	0.084	0.08	0.082	3.449	4
Lake Qattaakuluup Tasinga	3.1	149	Brook trout	0.172	0.164	0.168	3.367	5
Lake Qattaakuluup Tasinga	3.1	150	Brook trout	0.182	0.184	0.183	0.773	n.o.

tion, % years 775 117 419 n.o. 209 3 892 2 892 2 175 3 483 967 4 783 7 783 7
Mean Deviation, % 1.593 1.775 1.350 0.419 1.350 0.419 0.064 2.209 0.048 5.892 0.065 2.175 0.065 2.175 0.147 0.483 0.147 0.483 0.143 2.175 0.143 2.175 0.143 2.175 0.143 2.175 0.143 2.175 0.143 2.175 0.280 2.175 0.280 2.175 0.280 2.783 0.253 0.559
0.254 0.000 0.063 0.000
Replicate 1 1.613 1.613 0.065 0.046 0.046 0.146 0.146 0.285 0.285 0.297 0.252
Common Name Lake trout Lake trout Brook trout Brook trout Brook trout Brook trout Brook trout Lake trout Lake trout Lake trout
161 # Fish ID 151 152 155 155 156 157 158 158 160 161
sub-sation 10 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
Tasinga Tasinga Tasinga Tasinga Tasinga Tasinga Tasinga

d Fish age,	years	7	б	13	n.s.	n.s.	n.s.	5	7	ი	7	7	7	o	8	9	8	ი	ო	>12	8	11	unreadable	0	თ	11	o	n.o.	ω	n.o.	10	n.o.	10	7	ω	ω	9	7	с с
Relative Standard	Deviation, %	1.177	1.734	2.901	n.s.	n.s.	n.s.	6.148	0.787	0.336	1.97	4.317	2.05	6.35	4.562	5.156	3.879	2.761	2.438	2.248	7.333	7.872	2.012	1.974	0.898	9.239	3.586	1.914	0.248	1.734	0	2.929	1.853	2.183	4.348	2.11	1.821	2.075	0.817
	Mean	0.421	0.286	0.585	n.s.	n.s.	n.s.	0.046	0.450	0.211	0.180	0.262	0.242	0.457	0.155	0.192	0.201	0.461	0.116	0.755	0.135	0.243	0.598	0.466	0.315	0.398	0.355	0.333	0.286	0.286	0.352	0.338	0.344	0.292	0.342	0.436	0.117	0.239	0.260
	Replicate 2	0.417	0.282	0.597	n.s.	n.s.	n.s.	0.044	0.452	0.211	0.177	0.254	0.245	0.436	0.16	0.185	0.195	0.47	0.118	0.767	0.128	0.256	0.589	0.472	0.313	0.424	0.346	0.328	0.285	0.282	0.352	0.331	0.339	0.296	0.352	0.442	0.118	0.242	0.258
•	Replicate 1	0.424	0.289	0.573	n.s.	n.s.	n.s.	0.048	0.447	0.21	0.182	0.27	0.238	0.477	0.15	0.199	0.206	0.452	0.114	0.743	0.142	0.229	0.606	0.459	0.317	0.372	0.364	0.337	0.286	0.289	0.352	0.345	0.348	0.287	0.331	0.429	0.115	0.235	0.261
	Common Name	Lake trout	Lake trout	Lake trout	Cisco	Cisco	Cisco	Lake whitefish	Lake trout	Lake trout	Lake trout	Brook trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout							
	# Fish ID	189	190	191	194	195	196	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231
	# sub-station ID	4.1	4.1	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	Habitat	Lake Tasialuk (Control)	D Lake Tasialuk (Control)	Lake Tasialuk (Control)	Lake Tasialuk (Control)	ບ Lake Tasialuk (Control)	ይ Lake Tasialuk (Control)	2 Lake Tasialuk (Control)	Lake Tasialuk (Lake Tasialuk (Control)																													

				•			Relative Standard	Fish age,
-qns #	# sub-station ID	# Fish ID	Common Name	Replicate 1	Replicate 2	Mean	Deviation, %	years
	2.3	232	Brook trout	0.066	0.07	0.068	4.159	4
	2.4	233	Brook trout	0.043	0.044	0.044	1.626	2
	2.4	234	Brook trout	0.058	0.058	0.058	0	2
	2.4	235	Brook trout	0.107	0.109	0.108	1.309	5
	2.4	236	Brook trout	0.065	0.067	0.066	2.142	4
	2.4	237	Brook trout	0.066	0.067	0.067	1.063	4
	2.4	238	Lake whitefish	0.06	0.059	0.060	1.188	4
	2.4	239	Lake whitefish	0.057	0.063	090.0	7.072	4
	2.4	240	Lake whitefish	0.103	0.102	0.103	0.69	6
	2.4	242	Lake whitefish	0.113	0.124	0.119	6.564	80
	2.4	244	Lake whitefish	0.064	0.062	0.063	2.244	S
	2.4	245	Lake whitefish	0.054	0.059	0.057	6.258	5
	2.4	246	Lake whitefish	0.066	0.066	0.066	0	7
	2.4	247	Lake whitefish	0.072	0.072	0.072	0	7
	2.4	248	Lake whitefish	0.168	0.158	0.163	4.338	10
	2.4	249	Lake whitefish	0.226	0.243	0.235	5.126	12
	2.4	250	Lake whitefish	0.234	0.253	0.244	5.52	12
	4.1	251	Brook trout	0.044	0.042	0.043	3.288	4
	4.1	252	Brook trout	0.121	0.123	0.122	1.159	7
	4.1	253	Brook trout	0.1	0.092	0.096	5.893	5
	4.1	254	Brook trout	0.138	0.134	0.136	2.079	с
	4.1	255	Brook trout	0.057	0.061	0.059	4.793	ъ
	4.1	256	Brook trout	0.098	0.095	0.097	2.198	9
	4.1	257	Brook trout	0.121	0.133	0.127	6.685	9
	4.1	258	Brook trout	0.098	0.096	0.097	1.458	£
	4.1	259	Brook trout	0.064	0.059	0.062	5.75	n.o.
	4.1	260	Brook trout	0.098	0.092	0.095	4.466	9
	4.1	261	Brook trout	0.042	0.04	0.041	3.449	2
	4.1	262	Brook trout	0.047	0.043	0.045	6.284	с
	4.1	263	Brook trout	0.048	0.044	0.046	6.148	4
	4.1	264	Brook trout	0.123	0.121	0.122	1.159	7
	4.1	265	Brook trout	0.124	0.126	0.125	1.131	7
	4.1	266	Brook trout	0.242	0.243	0.243	0.292	8
	4.1	267	Brook trout	0.062	0.058	0.060	4.713	ъ
	4.1	268	Brook trout	0.07	0.074	0.072	3.928	4
	4.1	269	Brook trout	0.098	0.097	0.098	0.725	7
	4.1	270	Brook trout	0.106	0.101	0.104	3.416	9
	4.1	271	Brook trout	0.157	0.166	0.162	3.941	Ð

# Fish ID Common Name 272 Lake trout 273 Lake trout 274 Lake trout 275 Lake trout	
Lake Lake Lake	
Lake Lake Lake	
Lake	
Lake	
Lake trout	
Lake trout	
Brook trout	
Brook trout	
Brook trout	
Lake whitefish	
-ake whitefish	_
ake whitefish.	_
Lake trout	

n.o., no otolith n.s. no sample (a) two different otolithes

Box – and – whisker plots were used for visually depicting mercury data of the three fish species from the Inukjuak River watershed and Lake Tasialuk. They were particularly useful for visually estimating various L – estimators such as interguartile range, midhinge, median, midrange, trimean, etc. for indicating central tendency, statistical dispersion and the distribution shape of each data set. As indicated by the box – and – whisker plots (figures 2, 3 & 4), the arithmetic means (•) were always above the medians (horizontal lines inside the boxes) for mercury concentrations in fish from the Inukjuak River watershed which indicated positively skewed frequency distributions of the data. Whereas the frequency distributions of the mercury data of fish from Lake Tasialuk were closer to normal. The central tendency of the data was gauged by the medians (Q_2) which provided a robust measure in skewed distributions. The 95% confidence intervals of the medians were represented by the inner red boxes. The interquartile ranges (outer yellow boxes) within which 50% of the data were located (i.e. between the first quartile Q_1 and the third quartile Q_3) were used to show data dispersions and variability since they were less influenced by extreme values and were less influenced by sampling fluctuation in highly skewed distributions. Upper and lower whiskers (vertical lines above and below the interquartile boxes) showed the range of values that fell within the "upper and lower inner fences": Upper inner fence = $Q_3 + 1.5 (Q_3 - Q_1)$; lower inner fence = $Q_1 - 1.5$ $(Q_3 - Q_1)$. Outliers (\blacklozenge) were defined as data points that fell below the first quartile minus 1.5 x interguartile range or above the third quartile plus 1.5 x interguartile range of the data set. The number (n) below the lower whiskers indicated the number of fish.

Table 4 summarized the box – and – whisker plots: Tukey's trimean (TM) measures the probability distribution's location and is defined as the weighted average of the distribution's median and its two quartiles: $TM = \{Q_1 + 2Q_2 + Q_3\} \div 4$. An advantage of the trimean as a measure of the centre of a distribution is that it is statistically robust for data set with non-normal frequency distributions, extensive dispersion and the presence of outliers. it combines the median's emphasis on centre values with the midhinge (i.e. average of Q_1 and Q_3)' s attention to the extreme (Tukey 1977).

Figure 2. Box – and – whisker plot of mercury concentration in lake trout from the Inukjuak River watershed (stations 1, 2 and 3) and Lake Tasialuk (station 4).

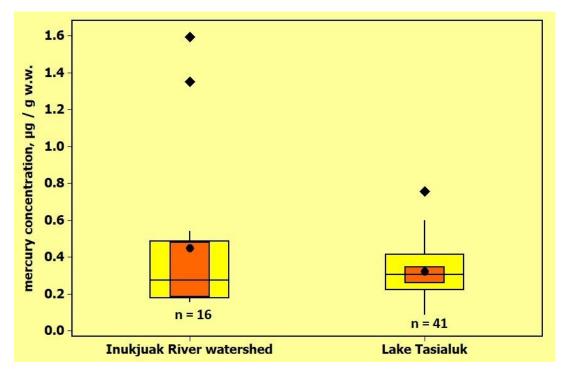


Figure 3. Box – and – whisker plot of mercury concentration in brook trout from the Inukjuak River watershed (stations 1, 2 and 3) and Lake Tasialuk (station 4).

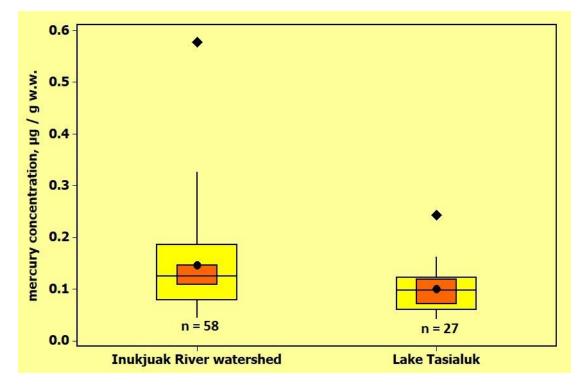
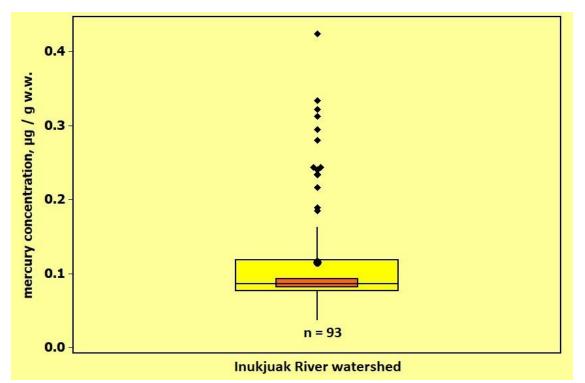



Figure 4. Box – and – whisker plot of mercury concentration in lake whitefish from the Inukjuak River watershed (stations 1, 2 and 3).

(note: there is only one lake whitefish from Lake Tasialuk, hence excluded from the plot)

Table 4. Summary of the box – and – whisker plots of mercury data of fish from Inukjuak watershed and Lake Tasialuk. Mercury concentration in $\mu g / g w.w.$

Location	Fish species	Tukey's	Interquartile	1 st	2 nd	3 rd	95%
		Trimean ^a	Range (IQR)	Quartile	Quartile	Quartile	confidence
				Q1	Q2	Q3	intervals of
							the median
							(upper,
							lower limits)
Inukjuak River	Lake trout	0.304	0.307	0.178	0.276	0.485	0.184, 0.479
watershed							
Lake Tasialuk	Lake trout	0.313	0.191	0.225	0.307	0.416	0.262, 0.345
Inukjuak River	Brook trout	0.129	0.107	0.079	0.124	0.186	0.108, 0.146
watershed							
Lake Tasialuk	Brook trout	0.094	0.062	0.060	0.098	0.122	0.072, 0.118
Inukjuak River	Lake	0.092	0.043	0.076	0.086	0.119	0.081, 0.093
watershed	whitefish						

^a Tukey's trimean (TM) which is a measure of a probability distribution's location defined as a weighted average of the distribution's median (Q_2) and its two quartiles (Q_1 , Q_3):

$$\mathsf{TM} = \{ Q_1 + 2Q_2 + Q_3 \} \div 4$$

The mercury data for lake trout from the Inukjuak River watershed and from Lake Tasialuk have unequal variances (Levene's test statistic = 6.09, p – value = 0.017). The mercury data of lake trout from the Inukjuak River watershed were highly skewed and highly deviated from normal distribution (Anderson – Darling test statistic = 1.986, p – value < 0.005), although the mercury data of lake trout from Lake Tasialuk were normally distributed (Anderson -Darling test statistic = 0.388, p - value = 0.372). Log_e transformation has greatly improved the lake trout mercury data of the Inukjuak River watershed and rendered the frequency distribution very close to normality (Anderson – Darling test statistic = 0.723, p – value = 0.048). The mercury data of lake trout from Lake Tasialuk remained normally distributed after loge transformation (Anderson – Darling test statistic = 0.483, p – value = 0.218). Despite loge transformation, the variances of the mercury data of lake trout from the Inukjuak River watershed and that from Lake Tasialuk though have improved but still unequal (Levene test statistic = 4.63, p - value = 0.035). In view of these findings, the relatively robust nonparametric Welsh's t – test (Welsh 1951) was used to test if there are significant differences in loge transformed mercury concentrations between lake trout from the Inukjuak River watershed and those from Lake Tasialuk. The Welsh's t – test is suitable to apply to data sets with unequal variances but with frequency distributions not too much deviated from normality. The unbalanced design of the data sets also rendered Welsh's t – test a preferred choice. The test yielded F_{1, 20.203} of 0.492 and a p - value of 0.491 The F - value calculated was lower than the critical F_{α} value of 3.84 at the 0.05 level of significance; hence, there was no significant difference of the log_e transformed mean mercury concentrations of lake trout between the Inukjuak River watershed and Lake Tasialuk at the 0.05 level of significance.

The mercury data of brook trout from the Inukjuak River watershed and Lake Tasialuk also have unequal variances (Levene's test statistic = 4.50, p – value = 0.037). Similar to the lake trout mercury data, the mercury data of brook trout from the Inukjuak River watershed were highly skewed and highly deviated from normal distribution (Anderson – Darling test statistic =

1.978, p – value < 0.005), although the mercury data of brook trout from Lake Tasialuk were quite normally distributed (Anderson - Darling test statistic = 0.652, p - value = 0.079). Log_e transformation has greatly improved the brook trout mercury data of the Inukjuak River watershed and rendered the frequency distribution normal (Anderson – Darling test statistic = 0.285, p – value = 0.616). However, the mercury data of brook trout from Lake Tasialuk deviated further away from normality after loge transformation: Anderson - Darling test statistic has elevated to 0.848 while p - value has decreased to 0.025. Log_e transformation rendered the variances of the mercury data of brook trout from the Inukjuak River watershed and that from Lake Tasialuk became equal (Levene test statistic = 1.43, p - value = 0.236). In view of these findings, the nonparametric Mann – Whitney U – test (Mann and Whitney 1947) was used to test if there were significant differences in log_e transformed mercury concentrations between brook trout from the Inukjuak River watershed and those from Lake Tasialuk. Mann -Whitney U – test searches the central tendency differences between the medians of the two samples that might represent different populations. It is a robust, yet statistically powerful test suitable for testing two samples whose frequency distributions are highly deviated from normality but have equal variances without running the risk of inflating Type I Error even with outliers present in the samples. The test results on the loge transformed mercury data were: $U_{calculated}$ = 509.5, U_{α} = 573.36; n_x = 58, n_y = 27; p = 0.00494, two – tailed at 0.05 level of significance. In statistical terms, the test concluded that it was not equally likely that a randomly selected mercury concentration value from the Inukjuak River watershed brook trout samples would be less than or greater than a randomly selected mercury concentration value from Lake Tasialuk brook trout samples, i.e. the two independent the Inukjuak River watershed brook trout and Lake Tasialuk brook trout were selected from populations having different frequency distributions. In plain language, this means there was a significant difference in mercury concentrations of brook trout between the Inukjuak River watershed and Lake Tasialuk at the 0.05 level of significance. Indeed, a "directional" (i.e. one – tailed test) for which U_{α} = 608.73 and the p – value became 0.00988 further led to the conclusion that the mercury

concentration in brook trout from the Inukjuak River watershed was higher than that from Lake Tasialuk at the 0.05 level of significance.

The Health Canada's mercury safety guideline for commercial fish consumption (0.5 μ g / g w.w.) is often used as the reference point to define the notions of high vs. low mercury levels in fish (Health Canada 2007). In fact, a more stringent mercury guideline of 0.2 μ g / g w.w. was put forward in 1979 by the Medical Services Branch of Health Canada for subsistence fish consumption. This guideline was instituted as a "safety consumption limit" for people eating "large quantities of fish" (Wheatley 1979) and is still "unofficially" recognized by Health Canada today. However, the quantities of fish that are considered as "large" were not defined in this guideline. The Tukey's trimeans of all three fish species from both the Inukjuak River watershed and Lake Tasialuk (Table 4.) were below the 0.5 μ g / g w.w. guideline. However, trimeans for lake trout from both locations were above 0.2 μ g / g w.w. Table 5 shows the number of fish of the three species from the entire 259 fish analyzed exceeding the two mercury guidelines.

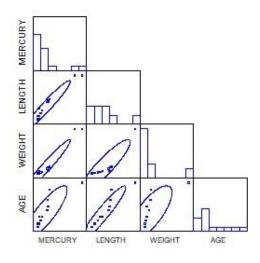
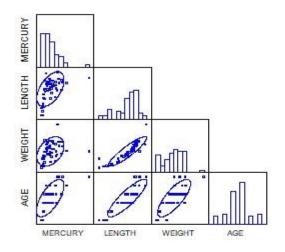

Location	Fish species	Number of fish exceeding mercury guideline		
		≥ 0.2 µg / g w.w.	≥ 0.5 µg / g w.w.	
	Lake trout	10	3	
Inukjuak River	Brook trout	13	1	
watershed	Lake whitefish	12	0	
	Lake trout	33	4	
Lake Tasialuk	Brook trout	1	0	
	Lake whitefish	0	0	
	Lake trout	4	0	
Station 5.1 (control)	Brook trout	0	0	
	Lake whitefish	0	0	

Table 5. The number of fish of the three species from the entire 259 fish analyzed exceeding the two mercury guidelines.

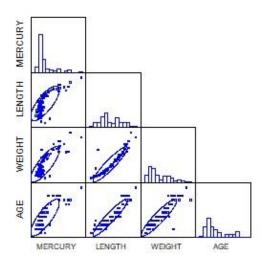
Fish Growth and Mercury Concentration

It is well known that mercury bioaccumulation in fish often increases as the fish grow older (and often bigger). Positive correlations between mercury concentration in tissues and fish growth have been demonstrated in a number of species. The relationships (dependence) between mercury concentration and fish growth (measured as age, fork length and weight) in terms of their directions and strength were determined using the robust nonparametric Spearman's rank correlation. The method assessed how well the dependence between mercury concentration and each of the three growth parameters be described using a monotonic function. Figures 5 to 11 show the spearman's correlation matrices of fish from the Inukjuak River watershed, Lake Tasialuk and sub-station 5.1 (control). Strong positive correlations ($p \le 1$ 0.01) were found between mercury concentration and all three growth parameters (fork length, weight and age) for lake trout, brook trout and lake whitefish from Inukjuak River watershed. This was also true for lake trout and brook trout from Lake Tasialuk ($p \le 0.01$). Mercury concentration in lake trout from sub-station 5.1 also positively correlated with all three growth parameters (0.01). Fork length and weight of lake whitefish from substation 5.1 were also positively correlated with mercury concentration (0.01 < $p \le 0.05$). A strong positive correlation ($p \le 0.01$) between mercury concentration and age of lake whitefish from sub-station 5.1 was also evident. Scatterplots of mercury vs. age were shown in figures 12 to 18.


	MERCURY	LENGTH	WEIGHT	AGE	
MERCURY	1.000	al promorandeau	an area more mo	na ponemonemore	inter 1
LENGTH	0.941	1.000			
WEIGHT	0.875	0.977	1.000		
AGE	0.945	0.993	0.972	1.000	

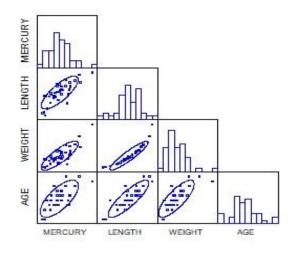
Number of observations: 13

Figure 6. Spearman correlation matrix of brook trout from Inukjuak River watershed


	MERCURY	LENGTH	WEIGHT	AGE
MERCURY	1.000			
LENGTH	0.648	1.000		
WEIGHT	0.562	0.935	1.000	
AGE	0.696	0.862	0.775	1.000

Number of observations: 54

Figure 7. Spearman correlation matrix of lake whitefish from Inukjuak River watershed	
i gare i ep cannan contenanen marine innenen nennangaan ner materenea	


	MERCURY	LENGTH	WEIGHT	AGE
MERCURY	1.000			
LENGTH	0.724	1.000		
WEIGHT	0.713	0.939	1.000	
AGE	0.706	0.929	0.904	1.000

Number of observations: 93

Figure 8. Spearman correlation matrix of lake trout from Lake Tasialuk

	ME	RCURY	LE	NGTH	W	EIGHT	AG	E
MERCURY	1	1.000	1				- Kara	
LENGTH	1	0.746		1.000				
WEIGHT	1	0.728		0.992	1	1.000		
AGE	1	0.658		0.817		0.801	1	1.000

Number of observations: 35

1272040000000000000000000000000000000000	MERCURY	LENGTH	WEIGHT	AGE
MERCURY	1.000			1
LENGTH	0.591	1.000		
WEIGHT	0.571	0.979	1.000	
AGE	0.588	0.779	0.767	1.000

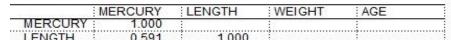
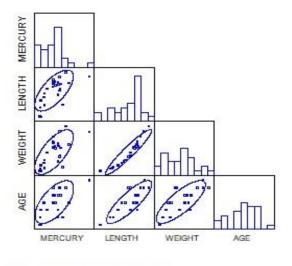
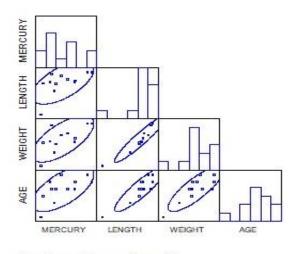



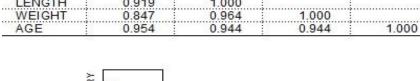
Figure 9. Spearman correlation matrix of brook trout from Lake Tasialuk





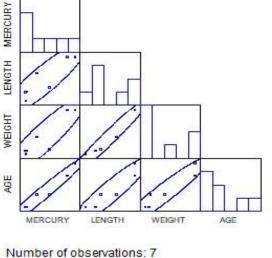
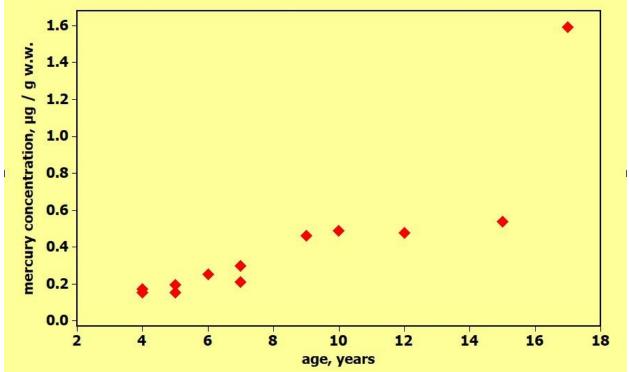
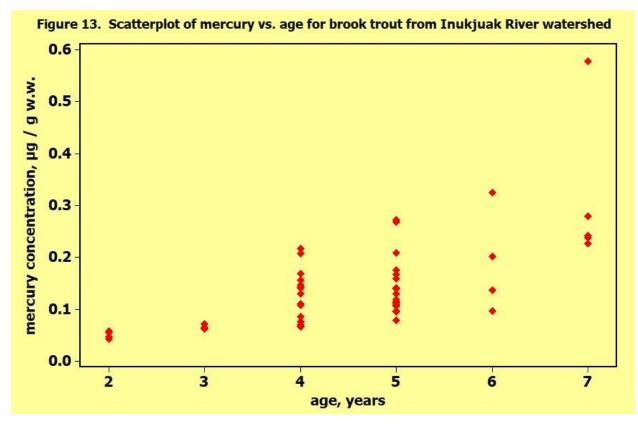
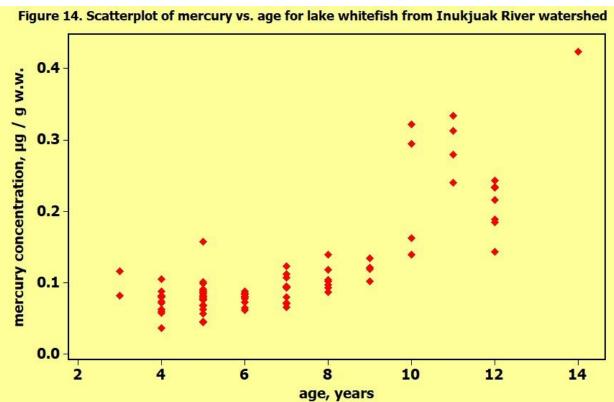
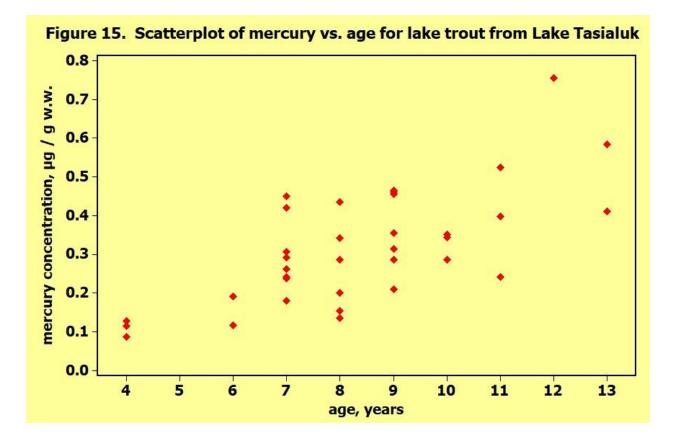
È

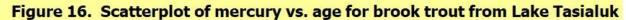
Figure 10. Spearman correlation matrix of lake trout from sub-station 5.1

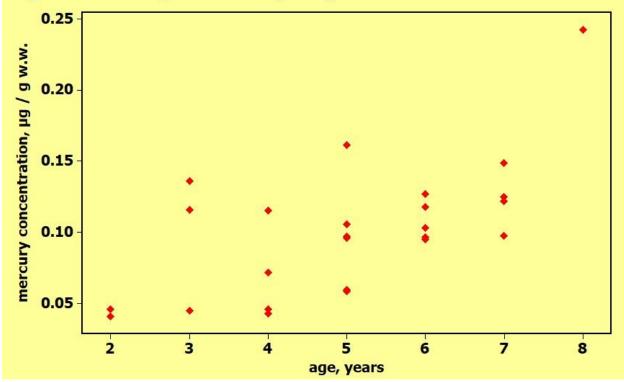

	: ME	RCURY	: LE	INGTH	W	EIGHT	AGE	
MERCURY	3	1.000	1				1	
LENGTH		0.684		1.000				
WEIGHT		0.669		0.991		1.000		
AGE	1	0.650		0.775		0.743		1.000

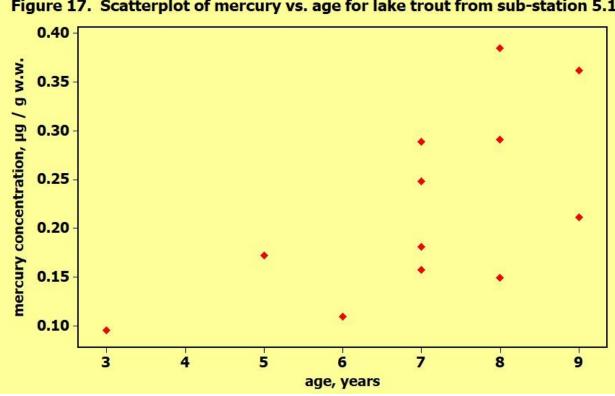
	MERCURY	LENGTH	WEIGHT	AGE
MERCURY	1.000	al compositional	to Sinorenaren	en len en e
LENGTH	0.919	1.000		

Figure 11. Spearman correlation matrix of lake whitefish from sub-station 5.1


Figure 12. Scatterplot of mercury vs. age for lake trout from Inukjuak River watershed







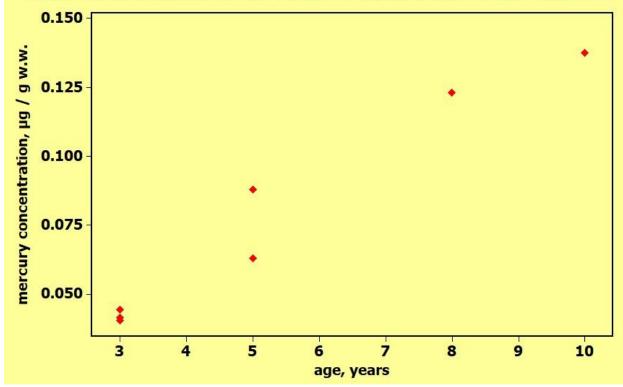


Figure 17. Scatterplot of mercury vs. age for lake trout from sub-station 5.1

Linear Regression Models

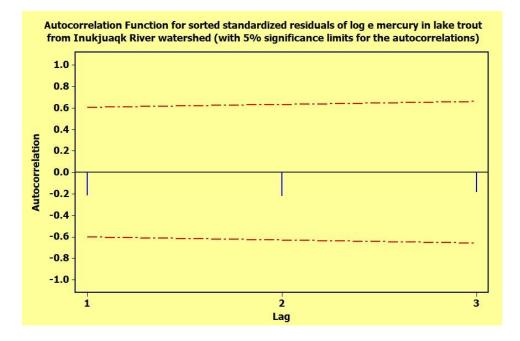
It was found that log_e transformation of mercury concentration has readily improved the regression of mercury concentration on fish age by increasing the R²% which measured the strength of the relationship and how well the linear regression model fitted the data. Analysis of residuals was carried out to ensure the four pre-requisite assumptions for the regression model be met: (1) Equal variances in the residuals were tested using the Goldfeld – Quandt test on sorted standardized residuals (Goldfeld and Quandt 1965); (2) Randomness of the residuals was tested using the Wald – Wolfwitz Runs test on sorted standardized residuals (Magel and Wibowo 1997); (3) Independence of the residuals was tested using the Durbin – Watson test statistic (Durbin and Watson 1950) and (4) Normality of the residuals was tested using the Anderson – Darling test statistic and normality plot of the standardized residuals.

Before analysis of residuals was carried out, the log_e mercury concentration data sets were checked for the presence of outliers using the standard batch of diagnostic measures: Studentized residuals, Hi – leverage, Cook's distance and DFFITS. No outlier was needed to be removed from the lake trout and brook trout mercury data; however, 26 outliers were needed to be removed from the mercury data set (n =93) of lake whitefish from the Inukjuak River watershed to rendered the data more suitable for the regression model. The presence of outliers for mercury in lake whitefish from the Inukjuak River watershed was clearly shown in the box – and whisker plot (figure 4).

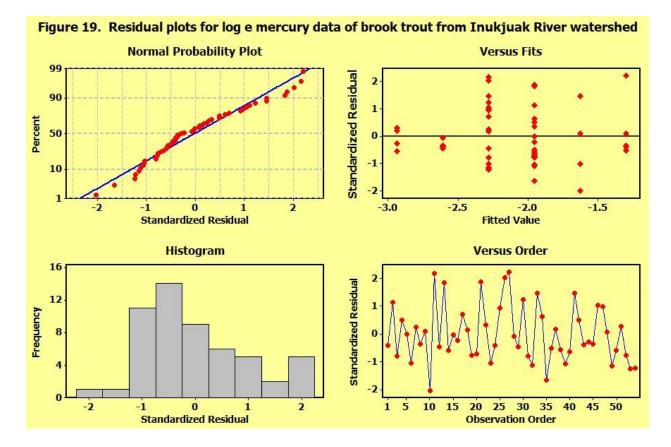
Table 6 summarized the results of the analysis of residuals for the regression of log_e mercury concentration on fish age of the lake trout, brook trout and lake whitefish from the Inukjuak River watershed, Lake Tasialuk and sub-station 5.1. Log_e transformation has rendered variances of residuals (p > 0.05) homogeneous for all cases examined. With the exception of lake whitefish from the Inukjuak River watershed, residuals were random (p > 0.05) for all other data sets. The randomness of the sorted standardized residuals tested by the Wald – Wolfowitz Runs test actually tested if the elements of a two – valued data sequence were mutually independent. The p – value (p = 0.04) of the residuals of log_e mercury data of lake whitefish from the Inukjuak

Table 6. Summary of results of analysis of residuals for the regression of loge mercury concentration on fish age of the lake trout, brook trout and lake whitefish from Inukjuak River watershed, Lake Tasialuk and sub-station 5.1.

Goldfeld – Quandt test Wald – Wolfwitz Runs Durbin – Watson test Levene test statistic, p - test, p - value statistic (DW) value 0.370 ^a 0.370^{a} 0.873^{c} 2.52, 0.141 ^a 0.370^{a} 0.873^{c} 0.873^{c} 0.020, 0.878 ^a 0.370^{a} 0.370^{a} 0.873^{c} 0.020, 0.878 ^a 0.300^{a} 2.020^{b} 0.873^{c} 0.020, 0.878 ^a 0.040 1.652^{b} 0.873^{c} 0.040 0.040 1.652^{b} 0.040^{a} 2.387^{b} 0.480, 0.493 ^a 0.060^{a} 2.387^{b} 0.060^{a} 2.387^{b} 0.2620, 0.118 ^a 0.060^{a} 2.146^{b} 0.344^{a} 2.146^{b} $2.620, 0.118^{a}$ 0.344^{a} 2.071^{b} $3.79, 0.109^{a}$ $3.79, 0.109^{a}$ 0.224^{a} 2.071^{b}	Location	Fish	Number	Test for equal variances	Test for randomness	Test for independence	Test for normal
(n) Levene test statistic, p - value statistic (DW) Lake 13 2.52 , 0.141^a 0.370^a 0.873^c Lake 13 2.52 , 0.141^a 0.370^a 0.873^c Brook 57 0.020 , 0.878^a 0.309^a 2.020^b Brook 57 0.020 , 0.878^a 0.909^a 2.020^b Ulke 67^* 0.680 , 0.412^a 0.040 1.652^b Ulke 35 0.480 , 0.493^a 0.040 1.652^b Ulke 35 0.480 , 0.493^a 0.040 1.652^b Brook 26 0.260 , 0.118^a 0.040^a 2.387^b Hout 12 0.060^a 0.344^a 2.146^b Induct 12 0.060^a 0.344^a 2.071^b Lake 7 3.79 , 0.109^a 0.224^a 2.071^b		species	of fish	Goldfeld – Quandt test	Wald – Wolfwitz Runs	Durbin – Watson test	distribution Anderson –
interfact value			(u)	Levene test statistic, p -	test, p - value	statistic (DW)	Darling test statistic, p -
Lake13 $2.52, 0.141^{a}$ 0.370^{a} 0.873^{c} Brout 57 $0.020, 0.878^{a}$ 0.309^{a} 2.020^{b} Brout 57 $0.020, 0.878^{a}$ 0.909^{a} 2.020^{b} Brout 57 $0.020, 0.878^{a}$ 0.909^{a} 2.020^{b} Like 57 $0.040, 0.412^{a}$ 0.040 1.652^{b} Lake 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Lake 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Brook 26 $2.620, 0.118^{a}$ 0.060^{a} 2.344^{a} Lake 12 $0.060, 0.810^{a}$ 0.344^{a} 2.071^{b} Lake 12 $0.060, 0.810^{a}$ 0.069^{a} 2.071^{b} Lake 7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b}				value			value
trout 10000 57 $0.020, 0.878^{a}$ 0.909^{a} 2.020^{b} Brook 57 $0.020, 0.878^{a}$ 0.040 1.652^{b} 1.652^{b} Like 67^{*} $0.680, 0.412^{a}$ 0.040 1.652^{b} 1.652^{b} Lake 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} 1.652^{b} Brook 26 $2.620, 0.118^{a}$ 0.060^{a} 2.387^{b} 1.652^{b} Brook 26 $2.620, 0.118^{a}$ 0.060^{a} 2.387^{b} 1.46^{b} Lake 12 $0.060, 0.810^{a}$ 0.344^{a} 2.071^{b} 1.46^{b} Lake 7 $3.79, 0.109^{a}$ 0.024^{a} 2.061^{b} 2.061^{b} 1.661^{b}	Inukjuak	Lake	13	2.52, 0.141 ^a	0.370 ^a	0.873 ^c	0.1899, 0.879 ^a
Brook trout 57 $0.020, 0.878^{a}$ 0.909^{a} 2.020^{b} Like 67^{*} $0.680, 0.412^{a}$ 0.040 1.652^{b} whitefish 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Lake 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Brook 26 $2.620, 0.118^{a}$ 0.344^{a} 2.387^{b} Brook 12 $0.060, 0.810^{a}$ 0.344^{a} 2.146^{b} Lake 12 $0.060, 0.810^{a}$ 0.344^{a} 2.071^{b} Lake 7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b}	River	trout					
trouttout 1.652^{b} Like $67^{\text{*}}$ $0.680, 0.412^{\text{a}}$ 0.040 1.652^{b} whitefish 35 $0.480, 0.493^{\text{a}}$ 0.060^{a} 2.387^{b} Lake 35 $0.480, 0.493^{\text{a}}$ 0.060^{a} 2.387^{b} Brook 26 $2.620, 0.118^{\text{a}}$ 0.344^{a} 2.146^{b} Brook 12 $0.060, 0.810^{\text{a}}$ 0.344^{a} 2.146^{b} Lake 12 $0.060, 0.810^{\text{a}}$ 0.244^{a} 2.071^{b} Lake 7 $3.79, 0.109^{\text{a}}$ 0.224^{a} 2.861^{b}	watershed	Brook	27	0.020, 0.878 ^a	_e 606.0	2.020 ^b	0.800, 0.046
Like whitefish $67 *$ $0.680, 0.412^{a}$ 0.040 1.652^{b} whitefish 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Lake 35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Brook 26 $2.620, 0.118^{a}$ 0.344^{a} 2.146^{b} Brout 12 $0.060, 0.810^{a}$ 0.344^{a} 2.071^{b} Lake 12 $0.060, 0.810^{a}$ 0.069^{a} 2.071^{b} Lake 7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b}		trout					
whitefish whitefish <thwhitefish< th=""> <thwhitefish< th=""> <th< td=""><td></td><td>Like</td><td>e7 *</td><td>0.680, 0.412 ^a</td><td>0.040</td><td>1.652 ^b</td><td>0.220, 0.829 ^a</td></th<></thwhitefish<></thwhitefish<>		Like	e7 *	0.680, 0.412 ^a	0.040	1.652 ^b	0.220, 0.829 ^a
Lake trout35 $0.480, 0.493^{a}$ 0.060^{a} 2.387^{b} Brook brout26 $2.620, 0.118^{a}$ 0.344^{a} 2.146^{b} Brout trout12 $0.060, 0.810^{a}$ 0.069^{a} 2.071^{b} Lake trout7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b}		whitefish					
trouttrout 26 $2.620, 0.118^{a}$ 0.344^{a} 2.146^{b} Brook 26 $2.620, 0.118^{a}$ 0.344^{a} 2.071^{b} Lake 12 $0.060, 0.810^{a}$ 0.069^{a} 2.071^{b} Lake7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b}	Lake	Lake	35	0.480, 0.493 ^a	090.0	2.387 ^b	0.185, 0.900 ^a
Brook trout 26 $2.620, 0.118^{a}$ 0.344^{a} 2.146^{b} 2.146^{b} Lake 12 $0.060, 0.810^{a}$ 0.069^{a} 2.071^{b} 2.071^{b} Lake 7 $3.79, 0.109^{a}$ 0.224^{a} 2.861^{b} 2.861^{b}	Tasialuk	trout					
trout trout 0.060, 0.810^{a} 0.069^{a} 2.071^{b} Lake 7 3.79, 0.109^{a} 0.224^{a} 2.861^{b}		Brook	26	2.620, 0.118 ^a	0.344 ^a	2.146 ^b	0.463, 0.236 ^a
Lake 12 0.060, 0.810 ^a 0.069 ^a 2.071 ^b trout 7 3.79, 0.109 ^a 0.224 ^a 2.861 ^b		trout					
trout	Sub-	Lake	12	0.060, 0.810 ^a	_e 690.0	2.071 ^b	0.383, 0.338 ^a
7 3.79, 0.109 ^a 0.224 ^a 2.861 ^b 2	station 5.1	trout					
		Lake	2	3.79, 0.109 ^a	0.224 ^a	2.861 ^b	0.289, 0.510 ^a
		whitefish					


 a , p > 0.05, the null hypothesis of the test has to be accepted at 0.05 level of significance.

^b, the calculated Durbin – Watson statistic (DW) is higher than both the upper critical value (du) and the lower critical value (d₁) for a single predictor and the number of sample (n). ^c, the calculated Durbin – Watson statistic (DW) is higher than the lower critical value (dL) but is lower than the upper critical value (dU) for a single predictor and the number of sample (n).


*, 26 outliers were removed from the loge mercury concentration in lake whitefish from Inukjuak River watershed data set.

River watershed was not too far below the 0.05 level of significance and was deemed marginally acceptable in the present case since the other three pre – requisite assumptions were met for this data set.

The independence of residuals is probably the most important of the four assumptions. This is because in a linear regression model, it is assumed that residuals are independent of one another, i.e. they are not correlated. Positive correlations between residuals tend to inflate the t – value for the regression coefficient, rendering the independent variables appear significant when they might not be (i.e. inflating the Type I Error). The results of Durbin – Watson test for independence of residuals showed that apart for lake trout from the lnukjuak River watershed, all the rest of the mercury data sets have independent residuals (Table 6). In the case of lake trout from the lnukjuak River watershed, the Durbin – Watson test statistic of 0.873 which was higher than the lower critical value (d_L) but was lower than the upper critical value (d_U) for a single predictor (fish age) and the number of sample (n = 13). The Durbin – Watson test in this case was inconclusive. However, the autocorrelation plot of the sorted standardised residuals below clearly showed that all autocorrelations were within the two standard error confidence bounds. Hence, there was no autocorrelation at and beyond a given lag at 0.05 level of significance. In other words, the autocorrelation plot has confirmed that the sorted standardized residuals of the loge mercury concentration data of lake trout from lnukjuak River watershed were independent of one another.

The final pre – requisite assumption that needed to validate the use of the linear regression model was the normality of frequency distribution of standardized residuals. With the exception of brook trout from the Inukjuak River watershed, residuals have highly normal frequency distributions (p > 0.05) for all other data sets (Table 6). The p – value (p = 0.046) of the standardized residuals of log_e mercury data of brook trout from Inukjuak River watershed was not too far below the 0.05 level of significance which suggested the frequency distribution was very close to normality. In the present case since the other three pre – requisite assumptions were met for this data set; it was deemed valid to be further analyzed using the linear regression model. Figures 19 to 25 showed residual plots for all the data sets.

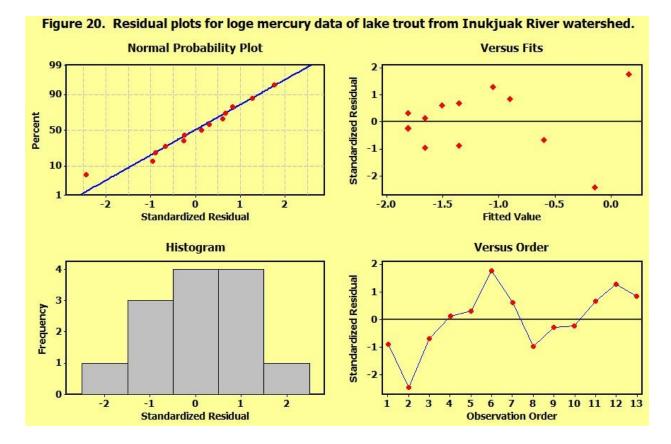
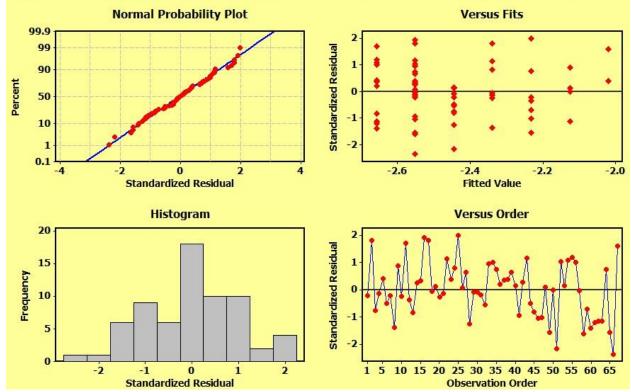



Figure 21. Residual plot for log e mercury data of lake whitefish from Inukjuak River watershed

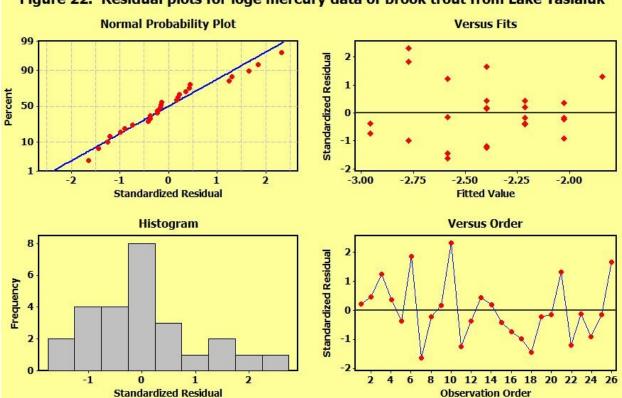
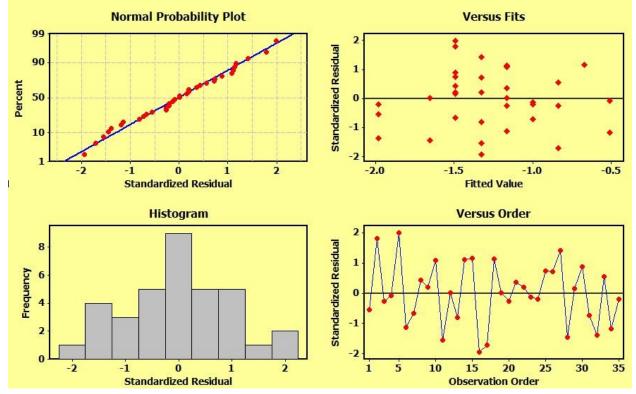



Figure 22. Residual plots for loge mercury data of brook trout from Lake Tasialuk

Figure 23. Residual plots for loge mercury data of lake trout from Lake Tasialuk

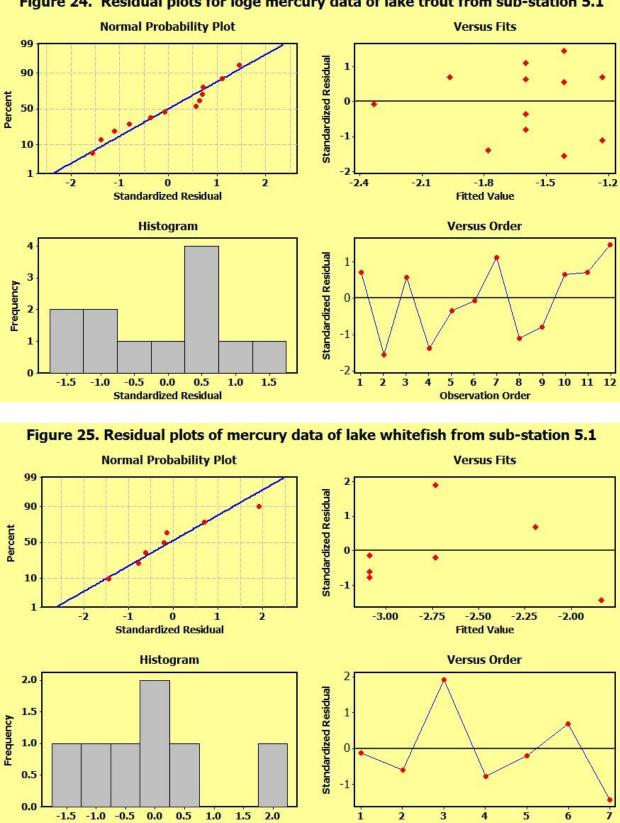


Figure 24. Residual plots for loge mercury data of lake trout from sub-station 5.1

Observation Order

Standardized Residual

Since all four pre – requisite assumptions to validate the use of the linear regression model by and large have been satisfied, we proceeded with making an attempt to use the linear regression model to help us to estimate the conditional expectation of log _e mercury concentration in fish given fish age as the predictor:

```
Regression Analysis: loge mercury in brook trout 
from Inukjuak River watershed vs age
```

The regression equation is log e mercury = - 3.60 + 0.329 age

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 -3.5968
 0.1810
 -19.87
 0.000

 age
 0.32859
 0.03830
 8.58
 0.000

S = 0.353794 R-Sq = 58.6% R-Sq(adj) = 57.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 9.2136
 9.2136
 73.61
 0.000

 Residual Error
 52
 6.5089
 0.1252
 0.1252

 Total
 53
 15.7225
 0.1252
 0.1252

Durbin-Watson statistic = 2.02034

Regression Analysis: log e mercury in lake trout from Inukjuak River watershed vs age

The regression equation is log e mercury = - 2.42 + 0.152 age

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 -2.4158
 0.1402
 -17.23
 0.000

 age
 0.15157
 0.01545
 9.81
 0.000

S = 0.230648 R-Sq = 89.7% R-Sq(adj) = 88.8%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	5.1215	5.1215	96.27	0.000
Residual Error	11	0.5852	0.0532		
Total	12	5.7066			

Durbin-Watson statistic = 0.873397

Regression Analysis: loge mercury in lake whitefish from Inukjuak River watershed vs age

The regression equation is log e mercury = - 3.34 + 0.154 age

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 -3.34123
 0.07649
 -43.68
 0.000

 age
 0.15406
 0.01058
 14.57
 0.000

S = 0.267070 R-Sq = 70.0% R-Sq(adj) = 69.7%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 15.139
 15.139
 212.24
 0.000

 Residual Error
 91
 6.491
 0.071

 Total
 92
 21.629

Durbin-Watson statistic = 1.50660

Regression Analysis: log e mercury in brook trout from Lake Tasialuk vs age

The regression equation is log e mercury = - 3.33 + 0.187 age

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 -3.3327
 0.2284
 -14.59
 0.000

 age
 0.18658
 0.04288
 4.35
 0.000

S = 0.353174 R-Sq = 44.1% R-Sq(adj) = 41.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 2.3617
 2.3617
 18.93
 0.000

 Residual Error
 24
 2.9936
 0.1247
 10.1247

 Total
 25
 5.3553
 10.1247
 10.1247

Durbin-Watson statistic = 2.14601

Regression Analysis: log e mercury in lake trout from Lake Tasialuk vs age

```
The regression equation is
log e mercury = - 2.64 + 0.164 age
```

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 -2.6372
 0.2328
 -11.33
 0.000

 age
 0.16388
 0.02696
 6.08
 0.000

S = 0.353514 R-Sq = 52.8% R-Sq(adj) = 51.4%

Analysis of Variance

```
        Source
        DF
        SS
        MS
        F
        P

        Regression
        1
        4.6160
        4.6160
        36.94
        0.000

        Residual Error
        33
        4.1241
        0.1250
        1000

        Total
        34
        8.7401
        1000
        1000
```

```
Durbin-Watson statistic = 2.38684
```

Regression Analysis: loge mercury in lake trout from sub-station 5.1 vs age

The regression equation is loge mercury = - 2.89 + 0.184 age

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 -2.8858
 0.4215
 -6.85
 0.000

 age
 0.18401
 0.05864
 3.14
 0.011

S = 0.331736 R-Sq = 49.6% R-Sq(adj) = 44.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression				9.85	0.011
Residual Error	10	1.1005	0.1100		
Total	11	2.1840			

Durbin-Watson statistic = 2.07144

Regression Analysis: loge mercury in lake whitefish from sub-station 5.1

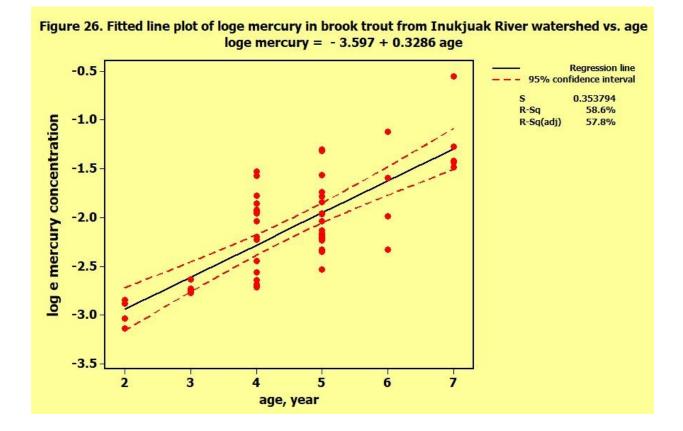
The regression equation is loge mercury = - 3.63 + 0.180 age

 Predictor
 Coef
 SE
 Coef
 T
 P

 Constant
 -3.6315
 0.1488
 -24.41
 0.000

 age
 0.17959
 0.02536
 7.08
 0.001

```
S = 0.170911 R-Sq = 90.9% R-Sq(adj) = 89.1%
```


Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	1.4652	1.4652	50.16	0.001
Residual Error	5	0.1461	0.0292		
Total	6	1.6113			

Durbin-Watson statistic = 2.86087

The absolute value of the regression coefficient (Coef) indicated the change of the mean response (i.e. \log_{e} mercury concentration) per unit increase of the predictor (i.e. fish age). The p – values of the regression coefficient were 0.000 in all cases which indicated that the relationships between fish age and \log_{e} mercury concentration were significant. The very high R -Square (adj.) and R – Square values in all cases which indicated that high percentage of the variances in the \log_{e} mercury concentration could be explained by fish age in the regression model. The T – statistic and its p – value tested the significance of each of the two coefficients (i.e. they indicated whether a relationship exists between each independent variable (constant and fish age) and the \log_{e} mercury concentration). In all the cases, the absolute values of both T – statistic were high and both the p – values were well below 0.05 level of significance which indicated that both the constant and fish age have a highly significant relationship with \log_{e} mercury concentration. The analysis of variance tested the "overall" significance of the regression model. It tested whether the R – Square was significantly different from zero. The high absolute values of F and the p – values less than the 0.05 level of significance for all cases further confirmed a true relationship existed between fish age and \log_{e} mercury concentration,

i.e. the fit of the overall model was significantly different from chance. To test if the slopes of the regression lines were significantly different from zero, we calculated a t – statistic by dividing the regression coefficient (Coef) of fish age by the standard error of the regression coefficient (SE Coef). In all cases, the absolute values of this t – statistic were higher than the critical value at 0.05 level of significance; hence the slopes of all the regression lines were significantly different from zero. Figures 26 to 32 showed the regression lines of log $_{e}$ mercury concentration on fish age and their 95% confidence intervals for all the cases studied.

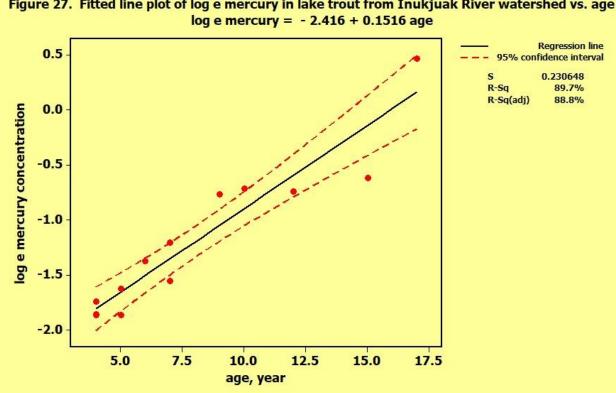


Figure 28. Fitted line plot of log e mercury in lake whitefish from Inukjuak River watershed vs. age log e mercury = - 3.085 + 0.1066 WF age

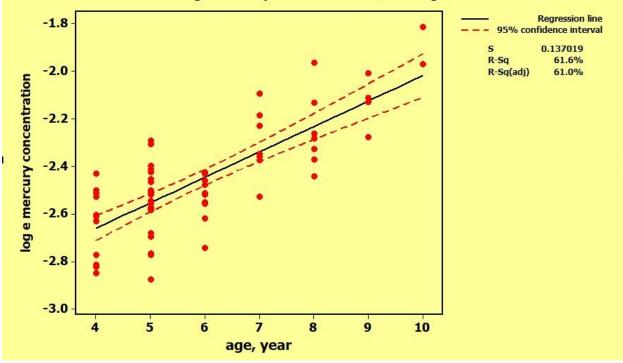


Figure 27. Fitted line plot of log e mercury in lake trout from Inukjuak River watershed vs. age

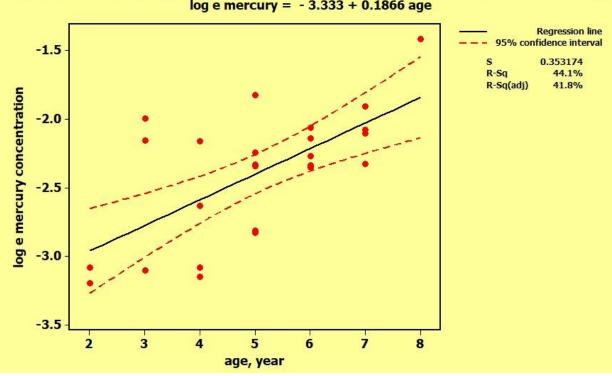
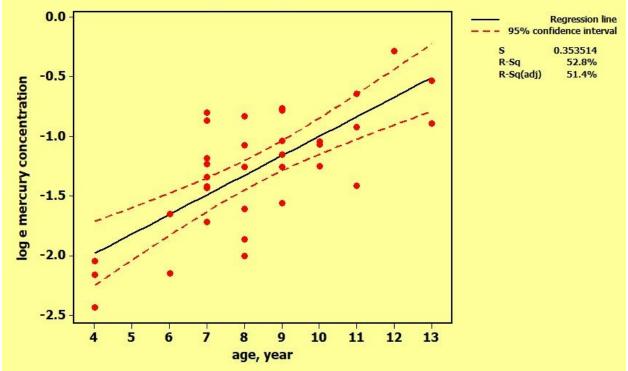



Figure 29. Fitted line plot of log e mercury in brook trout from Lake Tasialuk vs. age log e mercury = - 3.333 + 0.1866 age

Figure 30. Fitted line plot of log e mercury in lake trout from Lake Tasialuk vs. age log e mercury = - 2.637 + 0.1639 age

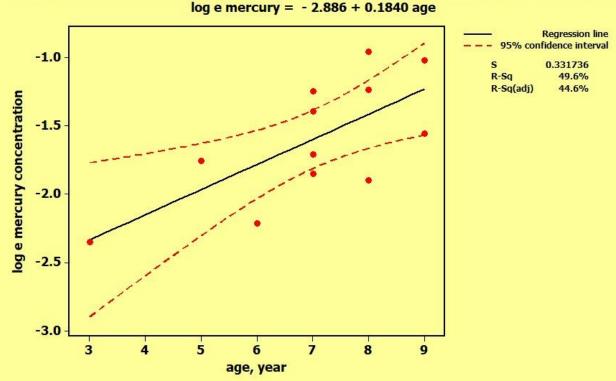


Figure 31. Fitted line plot of log e mercury in lake trout from sub-station 5.1 vs. age log e mercury = -2.886 + 0.1840 age

Figure 32. Fitted line plot of log e mercury in lake whitefish from sub-station 5.1 vs. age log e mercury = -3.631 + 0.1796 age

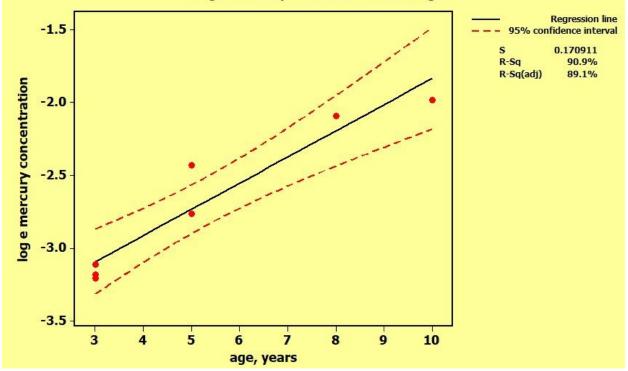


Table 7. Mercury concentration ranges of fish of "standard" ages estimated using the 95% confidence intervals of the linear regression fits.

Location	Fish species	"Standard" fish age*, years	Mercury concentration range estimated using the 95% confidence intervals, μg / g w.w.
Inukjuak River	Brook trout	5	0.128 - 0.157
watershed	Lake trout	4	0.134 - 0.200
	Lake whitefish	5	0.072 - 0.082
Lake Tasialuk	Brook trout	5	0.079 – 0.105
	Lake trout	7	0.195 – 0.260
Substation 5.1	Lake whitefish	3	0.036 - 0.057
	Lake trout	7	0.163 - 0.250

* , the most abundant age of the species in that watershed.

Using the 95% confidence intervals from figures 26 to 32, the mercury concentration ranges that the mean mercury concentration of fish of the "standard" age has a chance of 95% to fall within were calculated (Table 7).

References

AOAC (1999). AOAC Official Method 971.21 Mercury in Food. Flameless Atomic Absorption Spectrophotometric Method. Official Methods of Analysis of AOAC International 16th edition Volume I, Section 9.2.22, Chapter 9 p. 20B. AOAC International. Maryland, U.S.A.

CFIA (1999). Chapter 1, Section 1. Mercury Total. Chemical Methods Manual. Canadian Food Inspection Agency, Inspection Branch. Ottawa, Ontario.

Durbin, J. and G. S. Watson. (1951). Testing for serial correlation in least square regression, II. *Biometrika*, 38 (1-2): 159 – 179.

Goldfeld, S. M. and R. E. Quandt. (1965). Some tests for homoscedasticity. *Journal of the American Statistical Association*. 60 (310): 539 -547.

Health Canada (2007). *Human health risk assessment of mercury in fish and health benefits of fish consumption*. Health Canada: Bureau of Chemical Safety, Food Directate, Health Products and Food Branch, Health Canada, Ottawa, Ontario.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. *Annals of Mathematical Statistics*. 18(1): 50 – 60.

Magel, R. C. and S. H. Wibowo (1997). Comparing the powers of the Wald – Wolfowitz and Kolmogorov – Smirnov tests. *Biometrical Journal*. 39(6): 655 – 675.

Tukey, John W. (1977). Exploratory Data Analysis. 1st edition, Pearson. ISBN 0-201-07616-0.

Welsh, B. L. (1951). On the comparison of several mean values: An alternative approach. *Biometrika* 38: 330 – 336.

Wheatley, B. (1979). *Methylmercury in Canada: Exposure of Indian and Inuit residents to methylmercury in the Canadian environment*. Mercury Program Findings to December 31, 1978. Medical Services Branch, Health and Welfare Canada, Ottawa, Ontario. 200pp.

Appendix A

SOP 004M CVAAS Operation Parameters

Method Name: SOP004M Define Element Method Description : SOP004M Spectrometer Element : Hq Wavelength (nm) : 253.65 Slit Width (nm) : 0.7 Signal Type : AA Measurement : Peak Height Smoothing : 19 points Settings Read Parameters Time (sec): 22.0 Delay Time (sec): 4.0 BOC Time (sec): 3 Replicates ... Same for All Samples : 2 Lamp Current Use value entered in Lamp Setup window FIAS Operation Cell Temperature (C) : 100 Sample Volume (uL) : 500 Use Amalgam? No Remotes Step Time Pump 1 Pump 2 Valve (sec) Speed Speed Position 2 4 5 6 7 8 9 10 3
 Prefill
 13
 110
 0
 Fill

 1
 15
 110
 0
 Fill

 2
 20
 110
 0
 Inject
 Read Step : 2 Steps to Repeat : 1 to 1 Number of Repeats : 0 _____ Autosampler Wash Frequency : Only after solutions exceeding limit Limit : Concentration (Calib. units) > 0.1 ug/L Wash Location : 0 Normal Cycles : 1 Use FIAS steps: 1 to 1 ______ Calibration Equation and Units Equation : Linear Through Zero Maximum Decimal Places : 3 Maximum Significant Figures : 4 Calibration Units : ug/L

Method Name: SOP004M

Sample Units : ug/L

Calibration Standard Concentrations

	ID	Concentration	A/S Loc	
Calib Blank	calib blank		. 1	
Reslope Std.	5.00 ppb	5.000	5	
Standard 1	0.625 ppb	0.625	2	
Standard 2	1.250 ppb	1.250	3	
Standard 3	2.500 ppb	2.500	4	
Standard 4	5.000 ppb	5.000	5	
Standard 5	10.000 ppb	10.000	6	

Initial Calibration Options

When opening this method manually: Clear calibration curve(s) and construct a new calib curve.

When using this method in a multimethod sequence: Start by constructing new calibration curves.

Calibration Check

Correlation coefficient checking is not enabled in this method.

Recalibration

Recalibration Type : Reslope Frequency ... Every 18 samples

Analyze standards at end of analysis is not enabled in this method.

Precision Checks

Precision checking is not enabled in this method.

Beyond Calibration Range

Beyond calibration range checking is not enabled in this method.

Matrix Recovery

Matrix recovery checking is not enabled in this method.

Page 2 of Page 59 of 68 25/10/2019 12:36:35 PM

Method Name: SOP004M

Sample Limits

Not Enabled

QC Sample Definition

QC	Sample ID		Count as Sample	Subtract Reagent Blank
	dorm2 1/2 0.211g dolt2 1/2 0.210g	-	No No	No No

QC Sample Concentrations and Limits

QC 1: dorm2 1/2 0.211	g	Concentratio	n Units: Cal	ibration
Analyte	Units	Conc	Lower Limit	Upper Limit
Hg 253.65	ug/L	5.93	5.337	6.523
QC 2: dolt2 1/2 0.210	Concentratio	ibration		
Analyte	Units	Conc	Lower Limit	Upper Limit
Hg 253.65	ug/L	2.72	2.448	2.992

Schedule for QC Analyses

QC	Sample ID		After Init Cal	After Recal	Periodic	Freq	At End
QC 1 QC 2	dorm2 1/2 dolt2 1/2	· · · · · · · · · · · · · · · · · · ·	No No	No No	No No	1 1	No No
Fre		of Analyses Same for all QC es	's : 1			· · ·	

Failure Actions for After-Calibration QC's

QC	Sample ID		When All Tries Fail	Additional Message
QC 1 QC 2	(Not Scheduled) (Not Scheduled)	с. 		

Failure Actions for Periodic QC's

Times to When All Additional

Page 3 of Page 60 of 68 25/10/2019 12:36:35 PM

Method Name: SOP004M

QC	Sample ID	Retry QC	Tries Fail	Message
QC 1 QC 2	(Not Scheduled) (Not Scheduled)			

Failure Actions for At-End QC's

QC	Sample ID	Times to Retry QC	When All Tries Fail	Additional Message
QC 1 QC 2	(Not Scheduled) (Not Scheduled)			

Maximum Retries After QC Failure

After a group of standards or unknowns has been reanalyzed 1 times, then Continue

Options

Include in Results Display and Printed Log:

Headers:

- * Analytical Header
- * Method Header (Short)
- * Sample Header (Short)

Start each sample on a new page

Sample Data Items:

Sar	nple Data Items:	Sui	mmary Items:
*	Replicate Data		Analysis List
	Means and Statistics	*	Matrix Test Reports
	Transient Peak Plots (Last)	*	Calibration Summary
*	Over Calibration Message (110%)		Calibration Curves

Save with Results:

* Transient Peak Profiles

Remarks:

Appendix B

Fish Bio – data

(provided by Pesca Environnement & Innergex Renewable Energy Inc.)

M tu V
х У Гиппптаптатататаа Х Х
Weight (g) 512 512 513 514 515 515 515 540 540 543 543 543 543 543 543 543 543 543 543
Fork length (mm) 360 390 390 390 390 375 380 390 395 386 390 395 367 366 390 365 366 370 366 370 366 370 366 370 366 370 366 370 370 370 370 370 370 370 370 370 370
Total Length (mm) 1041 Length (mm) 252 405 390 390 375 370 375 380 375 380 375 380 370 375 380 370 385 370 370 385 370 370 370 370 370 370 370 370
Common Name Lake trout Brook trout Lake whitefish Lake trout Lake trout
5558888888888888888888888888888888888
sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-
Habitat Inukjuak River Inukjuak Rive

Habitat	# sub-station ID	# Fish ID	Common Name	Total Length (mm)	Fork length (mm)	Weight (g)	Sex_(MFX)	Maturity
-ake Qattaakuluup Tasinga (Inukiuak River)	3.1	52	Lake trout	244	222	111	×	~
(Inukiuak	3.1	53	Lake trout	244	222	111	×	-
Lake Qattaakuluup Tasinga (Inukiuak River)	3.1	54	Brook trout	195	189	71	×	.
Qattaakuluup Tasinga (Inukiuak	3.1	55	Brook trout	323	316	318	: LL	• 4
Oattaakuluup Tasinga (Inukiuak	3.1	56	Brook trout	360	344	402	Σ	ŝ
Qattaakuluup Tasinga (Inukiuak	3.1	57	Brook trout	410	396	407	: LL	
Qattaakuluup Tasinga (Inukiuak	3.1	58	Lake whitefish	311	278	216	×	-
Qattaakuluup Tasinga (Inukjuak	3.1	59	Lake whitefish	335	304	338	Ŀ	2
Lake Qattaakuluup Tasinga (Inukjuak River)	3.1	60	Lake whitefish	315	273	228	×	-
Lake Qattaakuluup Tasinga (Inukjuak River)	3.1	61	Lake whitefish	375	336	442	Ŀ	2
Lake Qattaakuluup Tasinga (Inukjuak River)	3.1	62	Lake whitefish	398	358	622	Ŀ	ę
Lake Qattaakuluup Tasinga (Inukjuak River)	3.1	63	Lake whitefish	420	377	683	Σ	e
Lake Qattaakuluup Tasinga (Inukiuak River)	3.1	64	Lake whitefish	420	377	683	Σ	З
Inukiuak River	1.1	65	Brook trout	200	190	70	L	2
Inukiuak River	1.1	66	Brook trout	210	200	82	×	-
Inukiuak River	1.1	67	Brook trout	300	290	276	Ŀ	З
Inukiuak River	1.1	68	Brook trout	355	340	422	LL	4
Inukiuak River	1.1	69	Brook trout	365	355	471	Σ	2
Inukinak River	. +	20	Brook trout	370	360	415	Ŀ	1.00
Inukinak River		71	Brook trout	300	375	205	- 2	ი ო
Individual River		- 22	Brook trout	304	378	654	ĒLL	ი ო
Indigate River		73	Brock trout	370	368	508	. ц	0
		0.4	Laka whitefich	200	386	783	- 2	r (*
li unjuan Jaukiuak		75	Lake whitefish	427	000 404	1652	∑ ⊔	י מ
		02	Lake willensin	100		500	- 2	יכ
		0		407	424	126	Ξ	ი ი
Inukjuak	L	2		482	444	1201	Z ;	n)
Inukjuak	1.1	78	Lake whitefish	419	381	643	×∶	×
	1.1	79	Lake whitefish	426	387	757	Σ	e
_	1.1	80	Lake whitefish	329	299	377	Σ	2
_	1.1	81	Lake whitefish	333	301	321	Ŀ	2
Inukjuak River	1.1	82	Lake whitefish	339	305	353	Σ	2
Inukjuak River	1.1	83	Lake whitefish	323	294	330	×	×
Inukjuak River	1.1	84	Lake whitefish	331	299	343	Ŀ	2
Inukjuak River	1.1	85	Lake whitefish	310	281	275	Ŀ	2
Inukjuak River	1.1	86	Lake whitefish	343	312	402	Σ	2
Inukjuak River	1.1	87	Lake whitefish	328	298	332	Ŀ	2
Inukjuak River	1.1	88	Lake whitefish	278	255	212	Ŀ	3
Inukjuak River	1.1	89	Lake whitefish	330	290	300	Ŀ	2
Inukjuak River	1.1	06	Lake whitefish	270	240	162	×	-
Inukjuak River	1.1	91	Lake whitefish	270	240	162	×	-
Inukjuak River	1.1	92	Brook trout	135	130	240	×	-
Inukjuak River	2.2	93	Longnose sucker	395	380	677	Σ	8
Inukjuak River	2.2	94	Longnose sucker	415	395	856	Ŀ	S
Inukiuak River	2.2	95	Longnose sucker	430	415	945	L	С
Inukjuak River	2.2	96	Longnose sucker	430	405	908	Σ	8
Inukiuak River	2.2	97	Longnose sucker	455	435	1111	Σ	8
Inukiuak River	2.2	98	Longnose sucker	435	405	891	Σ	З
	2.2	66	Longnose sucker	440	420	954	Ŀ	6
Inukiuak River	2.2	100	Lonanose sucker	425	405	849	Σ	8
Inukjuak River	2.2	101	Longnose sucker	425	405	925	Ŀ	6
Inukiuak River	2.2	102	Lonanose sucker	420	395	897	LL	ი
Inukiuak River		103		395	375	782	. LL	00
· · · · · · · · · · · · · · · · · · ·	-)))	-)

Maturity	0 00	8	ω	ო	ი ი	2	0 0	N 1				· 	0	2	2	7	7	7	2	2	2	e	2	e	ი	ო	ი ი	ი ი	ი [.]	4	· (، ۲		- ന	ŝ	e	ю	7	7	·	7	2	4	4	4	4	0 0	N 1	-
Sex_(MFX) F	. ≥	Ŀ	Ŀ	Ŀ	LL	LL	ш 2	≥ >	< >	< >	< ×	: ×	Σ	ш	ш	ш	Σ	Σ	Σ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Σ	Σ	Σï	Σ	Σı	т;	×L	∟ >	< >	×Σ	Ŀ	Σ	ш	ш	Ŀ	×	ш	Ŀ	ш	LL I	ш	шI	LL I	т >	×
Weight (g) 840	828	721	339	413	649	330	249	230	191 F.2	00 46	44	45	262	379	479	351	278	312	387	263	362	126	240	667	991	991	1021	389	609	622	401	2.1U	2C 67	865	782	1060	801	527	244	271	125	125	459	459	7285	7285	101	69	108
Fork length (mm) ସେମ	400	370	335	310	365	290	270	760	240	155	160	160	282	313	341	297	279	293	213	284	304	208	269	369	460	460	438	319	366	354	300	392 475	188	395	388	439	404	345	286	291	223	223	342	342	785	785	210	182	71.7
Total Length (mm)	420	395	355	330	380	310	280 230	0/7 010	250	160	170	170	310	335	374	329	308	323	343	318	335	234	298	407	512	512	457	331	378	365	315	417	134 207	431	426	484	438	379	317	320	246	246	358	358	855	855	218	191	223
Common Name	Lonanose sucker	Longnose sucker	Longnose sucker		Longnose sucker	LUIGIIUSE SUCKEI	Longnose sucker	Lonanose sucker	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Brook trout	Brook trout	Brook trout	Brook trout	Longnose sucker	Longnose sucker	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Lake whitefish	Brook trout	Brook trout	Lake trout	Lake trout	Brook trout	Brook trout	Brook trout												
# Fish ID	105	106	107	108	109	110	111		113	+ - + 7 - +	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	13/	130	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	- CCT
# sub-station ID	2.2	2.2	2.2	2.2	2.2	2.2	2.2	7.7	7.7	7.7	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.1	2.1 2.4	0 2.4		3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2
Habitat	Inukiuak River	Inukiuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River		Inukjuak Kiver Inukinak Divar	Inukinak River	Inukiuak River	Inukiuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak River	_	D Inukjuak River		Inukjuak	Inukjuak	Inukjuak	Inukjuak	9 Inukjuak River		Inukjuak River	Inukjuak River	Inukjuak River	Inukjuak Kiver	Lake Gattaakuluup Tasiriga (Iriuk)uak Kiver) Lake Dattaakuluun Tasinna (Inukiuak River)	Lake Oattaakuluun Tasinda (Inukiuak River)	Lake Qattaakuluup Tasinga (Inukiuak River)	Lake Qattaakuluup Tasinga (Inukjuak River)	Qattaakuluup Tasinga (Inukjuak	Qattaakuluup Tasinga (Inukjuak	Lake Qattaakuluup Tasinga (Inukjuak River)	Lake Qattaakuluup Tasinga (Inukjuak Kiver)									

Habitat	# sub-station ID	# Fish ID	Common Name	Total Length (mm)	Fork length (mm)	Weight (g)	Sex_(MFX)	Maturity
Qattaakuluup Tasinga (Inukjuak River)	3.2	156	Brook trout	265	251	162	×	-
Lake Qattaakuluup Tasinga (Inukjuak River)	3.2	157	Brook trout	348	331	384	ш	4
Qattaakuluup Tasinga (Inukiuak River)	3.2	158	Brook trout	378	368	520	Σ	e
Qattaakuluup Tasinga (Inukiuak River)	3.2	159	Brook trout	378	368	520	Σ	С
Lake Qattaakuluup Tasinga (Inukiuak River)	3.2	160	Lake trout	327	298	277	×	-
Qattaakuluup Tasinga (Inukiuak River)	3.2	161	Lake trout	280	256	165	×	-
Qattaakuluup Tasinga (Inukjuak River)	3.2	162	Lake trout	238	222	120	Ŀ	2
Qattaakuluup Tasinga (Inukjuak River)	3.2	163	Lake trout	230	210	94	×	-
Qattaakuluup Tasinga (Inukjuak River)	3.2	164	Lake trout	360	330	357	Ŀ	2
Qattaakuluup Tasinga (Inukjuak River)	3.2	165	Lake trout	480	438	864	ш	e
Qattaakuluup Tasinga (Inukjuak River)	3.2	166	Lake trout	485	448	458	Δ	4
Qattaakuluup Tasinga (Inukiuak River)	3.2	167	Lake trout	485	448	458	Σ	4
Lake Qattaakuluup Tasinga (Inukjuak River)	3.2	168	Lake whitefish	237	216	114	Ŀ	2
Qattaakuluup Tasinga (Inukiuak River)	3.2	169	Lake whitefish	252	230	137	Ŀ	2
Qattaakuluup Tasinga (Inukiuak River)	3.2	170	Lake whitefish	275	250	167	×	-
Qattaakuluup Tasinga (Inukiuak River)	3.2	171	Lake whitefish	285	259	216	×	.
Lake Qattaakuluup Tasinga (Inukiuak River)	3.2	172	Lake whitefish	327	296	385	Σ	2
Oattaakuluup Tasinga (Inukiuak River)	3.2	173	Lake whitefish	305	276	273	×	I
Oattaakuluun Tasinda (Inukiuak River)	3.2	174	l ake whitefish	363	331	446	: LL	~ ~
Lake Oattaakuluun Tasinga (Inukiuak River)	3 C E	175	Lake whitefish	489	443	1093	. 2	103
Lake Qattaakuluup Tasinga (Inukiuak River)	3.2	176	Lake whitefish	498	451	1193	Σ	0 00
Dattaakuluun Tasinga (Inukiuak River)	3.2	177	Lake whitefish	474	430	026	Ŀ	6
Dattaakuluun Tasinga (Inukiuak River)	3.2	178	Lake whitefish	459	419	867	. LL	6
Diake Oattaakuluun Tasinga (Inukiuak River)	3.2	179	Lake whitefish	416	374	687	. LL	
Dattaakuluun Tasinda (Inukiuak River)	i c c	180	Lake whitefish	243	222	122	. ×) -
Cattaakuluun Tasinga (Inukiuak River)	10 0 0	181	Lake whitefish	468	424	978	< 2	- ന
zamaanuudpitasiiiga (iiian)aan miyer) Laka Tacialink (Control)	4.1	187	Brock trout	355	345	506	ΞL	0 4
Lake Tasialuk (Control)	4.1	183	Brock trout	355	340	457	- 4	1 4
Lake Tasialuk (Control)	4.1	184	Brook trout	370	360	556	. 2	. 4
	4.1	185	Brook trout	450	435	895	i LL	4
\sim	4.1	186	Brook trout	113	110	13	. ×	· .
\sim	4.1	187	Lake trout	420	380	595	: LL	· က
\sim	4.1	188	l ake trout	235	215	104	. ×	
\sim	41	189	Lake trout	320	290	246	ζ ΙΔ	- 0
\sim	4.1	190	Lake trout	475	430	949	Σ	က
\sim	4.1	191	Lake trout	565	520	1757	Σ	9 4
Lake Tasialuk (Control)	4.2	194	Cisco	320	295	350	Ŀ	ი
Lake Tasialuk (Control)	4.2	195	Cisco	230	210	101	Ŀ	ო
Lake Tasialuk (Control)	4.2	196	Cisco	325	300	390	Ŀ	ო
Lake Tasialuk (Control)	4.2	200	Lake whitefish	410	370	685	L	2
Lake Tasialuk (Control)	4.2	201	Lake trout	440	400	758	Σ	ო
Lake Tasialuk (Control)	4.2	202	Lake trout	400	360	566	Ŀ	2
Lake Tasialuk (Control)	4.2	203	Lake trout	375	345	457	Ŀ	2
Lake Tasialuk (Control)	4.2	204	Lake trout	415	375	593	Ŀ	2
Lake Tasialuk (Control)	4.2	205	Lake trout	365	330	416	×	-
Lake Tasialuk (Control)	4.2	206	Lake trout	495	460	1215	Ŀ	4
Lake Tasialuk (Control)	4.2	207	Lake trout	270	245	151	Ŀ	2
Lake Tasialuk (Control)	4.2	208	Lake trout	325	295	288	Ŀ	2
Lake Tasialuk (Control)	4.2	209	Lake trout	410	370	670	Ŀ	2
Lake Tasialuk (Control)	4.2	210	Lake trout	475	430	943	Σ	ი
Lake Tasialuk (Control)	4.2	211	Brook trout	280	270	202	Ŀ	ო
Lake Tacialiuk (Control)	4.3	212	Lake trout	595	540	2377	ц	4

Sex_(MFX) Maturity F 2 M 4 M 4		м м 	ი ი 	ν α	7	ი ი ი	ה כ 	2	5	. 2		1 0	2	~ ~	- 7	. 4	n	7 7	- ო	4	0 0	1 0	2	с v	ი. ი		4	4 ୯	0 4	4	4	4	3	4	F	f -	r
1176 M		985 F 878 M		622 F	622 F	900 E	547 M		750 F	538 F	527 F	527 F			559 F			181 F			286 F				135/ M 1357 M			4// F								62 X	
345 491 350 490 460 1176		445 0 430 8				425 9 426 0					350 340 5				355 55				395 8 -						4/5 C1				255 1							180 6	
	- 4	4 4		ñ ñ		4.4	ř Ř	ю 	4		ი 	› ش 	N	<u> </u>	- 7		5	či č		4	Ň	ი ო 	ň	4	4 4	Ň	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			3	ю 		m m	<u> </u>		
Total Length (mm) 385 380 505	455	485 475	440	440	415	465	400	345	440	400	380	380	288	140	370	270	295	263	440	445	355	385	370	470	530	238	420	350	265	370	365	365	205	385	120	185	
Common Name Lake trout Lake trout Lake trout	Lake trout	Lake trout Lake trout	Lake trout	Lake trout Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout	Lake trout Lake trout	Lake trout	Brook trout	Brook trout	Brook trout Brook trout	Brook trout	Brook trout	Lake whitefish	Lake whitefish Lake whitefish	Brook trout	Brook trout	Brook trout Brook trout	Brook trout	Brook trout	Brook trout	Brook trout	Brook trout	Brook trout	Brook trout	Brook trout							
# Fish ID 213 214 215	216	217 218	219	221	222	223 224	225	226	227	228	229	231	232	233	235	236	237	238	240 240	242	244	245 246	247	248	249	251	252	253	255	256	257	258	259	260	261	262	
sub-station ID 4.3 4.3 4.3																																					
# sub-s	6.4	4.3 4.3	4.3	4.4 6.4	4.3	4.3	4.3	4.3	4.3	4.3 0.4	4.3	4.3 6.4	2.3	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	4.1	4.1	4.1 4.1	- 1 + 4	4.1	4.1	4.1	4.1	4.1	4.1	4.1	

Habitat	# sub-station ID	# Fish ID	Common Name	Total Length (mm)	Fork length (mm)	Weight (g)	Sex_(MFX)	Maturity
Lake Tasialuk (Control)	4.1	267	Brook trout	290	280	225	Ŀ	ი
Lake Tasialuk (Control)	4.1	268	Brook trout	335	315	377	ш	4
Lake Tasialuk (Control)	4.1	269	Brook trout	395	380	693	Ŀ	4
Lake Tasialuk (Control)	4.1	270	Brook trout	380	365	497	ш	4
Lake Tasialuk (Control)	4.1	271	Brook trout	370	355	532	Ŀ	4
Lake Tasialuk (Control)	4.1	272	Lake trout	350	315	318	Σ	2
Lake Tasialuk (Control)	4.1	273	Lake trout	490	445	1022	Ŀ	4
Lake Tasialuk (Control)	4.1	274	Lake trout	230	210	105	Ŀ	2
Lake Tasialuk (Control)	4.1	275	Lake trout	515	475	1316	Ŀ	4
Lake Tasialuk (Control)	4.1	276	Lake trout	525	480	1285	Σ	4
Lake Tasialuk (Control)	4.4	277	Lake trout	205	190	80	×	-
Lake (Control)	5.1	278	Brook trout	134	131	21	×	-
Lake (Control)	5.1	279	Brook trout	128	124	16	×	-
Lake (Control)	5.1	280	Brook trout	138	134	20	×	-
Lake (Control)	5.1	281	Lake whitefish	258	238	143	Ŀ	2
Lake (Control)	5.1	282	Lake whitefish	207	188	64	×	-
Lake (Control)	5.1	283	Lake whitefish	294	260	185	Ŀ	2
Lake (Control)	5.1	284	Lake whitefish	259	236	144	Ŀ	2
Lake (Control)	5.1	285	Lake whitefish	364	336	511	Ŀ	2
Lake (Control)	5.1	286	Lake whitefish	462	422	1206	Ŀ	ო
Lake (Control)	5.1	287	Lake whitefish	462	422	1206	Ŀ	ო
Lake (Control)	5.1	288	Lake trout	274	257	162	×	-
Lake (Control)	5.1	289	Lake trout	329	302	274	Ŀ	2
Lake (Control)	5.1	290	Lake trout	338	309	308	Ŀ	2
Lake (Control)	5.1	291	Lake trout	318	294	263	Ŀ	2
Lake (Control)	5.1	292	Lake trout	322	293	247	Ŀ	2
Lake (Control)	5.1	293	Lake trout	152	140	28	×	-
Lake (Control)	5.1	294	Lake trout	329	302	269	Ŀ	2
Lake (Control)	5.1	295	Lake trout	361	332	338	Ŀ	2
Lake (Control)	5.1	296	Lake trout	366	342	437	Ŀ	2
Lake (Control)	5.1	297	Lake trout	347	315	356	Σ	2
Lake (Control)	5.1	298	Lake trout	378	350	454	Ŀ	2
Lake (Control)	5.1	299	Lake trout	378	350	454	ш	7