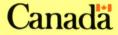


Environment Canada Lands Directorate

Indian and Northern Affairs Canada Northern Environment Branch Environnement Canada Direction générale des terres


Affaires indiennes et du Nord Canada Direction de l'environnement du nord

AN AQUATIC RESOURCE SURVEY OF ISLANDS BORDERING VISCOUNT MELVILLE SOUND

LAND USE INFORMATION SERIES

Background Report No. 2

A-11727 CACUV

ERRATA

ERRATA

ERRATA

APPENDIX I. MARINE FISH SPECIES DISTRIBUTIONS

Table 15. Distribution records of marine fish species caught in the Viscount Melville Sound study area.

Species Name		— Catch Location (Fig. 11) and Reference					
Scientific	Common	- · ·					
. Dalatiidae							
Somniosus microcephalus (Bloch & Schneider) 1801	Greenland shark	l (Templeman 1963).					
. Salmonidae							
Coregonus sardinella Valenciennes 1848	least cisco	19, 23 (McAllister pers. comm.).					
Salvelinus alpinus (Linnaeus) 1758	Arctic charr	18, 19, 23 (McAllister pers. comm.).					
. Gadidae		23 (Nigiyok pers. comm.), 15 (Sabine 1821).					
Arctogadus glacialis (Peters) 1874	polar cod	1 (this report); 18, 19, 22 (Boulva 1972); 13 (Buchanan <i>et al.</i> 19) 7 (MacDonald pers. comm.); 9, 10, 17, 18 (McAllister pers. comm.).					
Arctogadus Sp.	cod	8, 12, 18 (McAllister pers. comm.).					
Boreogadus saida (Lepechin) 1774	Arctic cod	25 (this report); 1, 2, 3, 26, 27 (Bain and Sekerak 1978); 1 (Bain at a.l. 1977); 14 (Beak 1975); 1 (Green and Steele 1975, Holeton 1974); 18 (MacDonald 1954); 7 (MacDonald pers. comm.); 1, 2, 4, 5, 12, 15, 18, 20 (McAllister pers. comm.); 18 (Walters 1953).					
Gadus ogac (Richardson) 1836	Greenland cod	22 (McAllister pers. comm.).					
. Anarhichadidae							
Anarhichas denticulatus Krøyer 1845 . Lumpenidae	northern wolffish	18 (MacDonald 1954, McAllister pers. comm., Walters 1953).					
<i>Lumpenus fabricii</i> (Valenciennes) 1836 . Zoarchidae	slender eelblenny	21 (this report).					
<i>Gymmelis viridis</i> (Fabricius) 1780	fish doctor	1 (this report); 13 (Buchanan <i>et al.</i> 1977); 1 (Green and Steele 19 Holeton 1974); 1, 2, 5 (McAllister pers. comm.).					
Lycodes mucosus Richardson 1855	saddled eelpout	13 (Buchanan et al. 1977); 1 (Green and Steele 1975); 26 (Manning and Macpherson 1955); 1, 2, 4, 26 (McAllister pers. comm.).					
Lycodes pallidus Collett 1878	pale eelpout	18 (MacDonald 1954, McAllister pers. comm., Walters 1953).					
Lycodes polaris (Sabine) 1824	Canadian eelpout	1 (Green and Steele 1975, McAllister pers. comm.).					
<i>Lycodas turnari</i> Bean 1878 Ammodytidae	polar eelpout	1 (Holeton 1974).					
Ammodytes sp.	sand lance	20, 24 (McAllister pers. comm.).					
Cottidae		22, 24 (McAllister pers. comm.).					
Artediellus scaber Knipowitsch 1907	rough hookear	13 (Buchanan et al. 1977), 20 (McAllister pers. comm.).					
Artediellus uncinatus (Reinhardt) 1835	Arctic hookear sculpin	l (Holeton 1974).					
Cottunculus sp.	sculpin	7 (McAllister pers. comm.).					
<i>Gymnoca</i> nthus tricuspis (Reinhardt) 1832	Arctic staghorn sculpin	16, 21, 25 (this report); 13 (Buchanan <i>et al.</i> 1977); 1 (Green and Steele 1975, Holeton 1974); 1, 18, 20 (McAllister pers. comm.).					
Gymnocanthus sp.	sculpin	18 (McAllister pers. comm.).					
Icelus bicornis Reinhardt 1841	twohorn sculpin	1 (Green and Steele 1975, Holeton 1974); 18 (MacDonald 1954, McAllister 1963); 1, 18 (McAllister pers. comm.); 18 (Walters 1953) 2 (Brithermond et 1977); 1 (Green and Steele 1975 Holeton 1974					
<i>Icelus spatula</i> Gilbert and Burke 1912	spatulate sculpin	13 (Buchanan et al. 1977), 1 (Green and Steele 1975, Holeton 1974, McAllister pers. comm.).					
Myoxocephalus quadricornis (Linnaeus) 1758	fourhorn sculpin	16, 21, 25 (this report); 13 (Buchanan st al. 1977); 1 (Green and Steele 1975); 18 (MacDonald 1954); 1, 13, 18 (McAllister 1959); 1-5, 18, 19, 20, 23 (McAllister pers. comm.); 1, 18 (McAllister and Aniskowicz 1976); 15 (Sabine 1821); 18 (Walters 1953).					
Муохосерhalus всогріив (Linnaeus) 1758	shorthorn sculpin	1 (Holeton 1974); 1, 3, 20 (McAllister pers. comm.).					
<i>Triglops pingelii</i> Reinhardt 1831	ribbed sculpin	6 (this report); 13 (Buchanan <i>et al.</i> 1977); 1 (Green and Steele 1975); 1, 2, 4 (McAllister pers. comm.).					
Cyclopteridae							
Eumicrotremus derjugini Popov 1926	leatherfin lumpsucker	13 (Buchanan et al. 1977), 18 (McAllister pers. comm.).					
Eumicrotremus spinosus (Müller) 1777	Atlantic spiny lumpsucker	18 (MacDonald 1954, Walters 1953); 1, 18, 22 (McAllister pers. comm.).					
Eumicrotremus Sp.	lumpsucker	18 (McAllister pers. comm.).					
Liparididae							
Liparis fabricii Krøyer 1847	gelatinous snailfish	1, 2 (Able and McAllister 1980); 1, 2, 4 (McAllister pers. comm.).					
Liparis gibbus Bean 1881	dusky snailfish	1 (Able and McAllister 1980).					
<i>Liparis tunicatus</i> Reinhardt 1836	kelp snailfish	1, 2, 3, 5, 20 (Able and McAllister 1980); 13 (Buchanan <i>et al.</i> 1977); 1-5, 20 (McAllister pers. comm.).					
Liparis sp.	snailfish	11 (McAllister pers. comm.).					
Gasterosteidae							
Pungitius pungitius (Linnaeus) 1758	ninespine stickleback	1 (Green and Steele 1975).					

. .

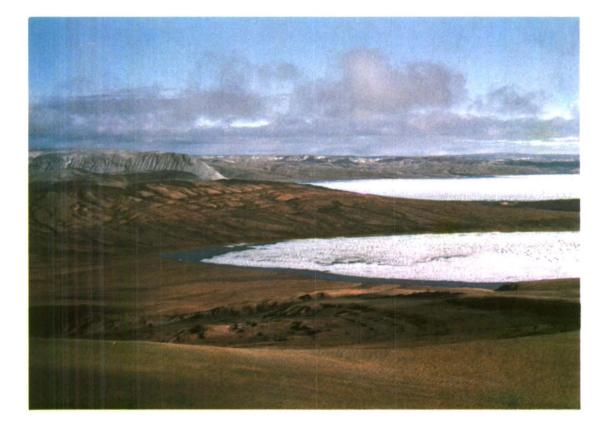
.

A-11727

AN AQUATIC RESOURCE SURVEY OF ISLANDS BORDERING VISCOUNT MELVILLE SOUND, DISTRICT OF FRANKLIN, NORTHWEST TERRITORIES

by

D.B. Stewart and L.M.J. Bernier


April 1982

This report was prepared under contract for the Lands Directorate, Department of the Environment and the Northern Environmental Protection Branch of the Department of Indian and Northern Affairs. Anadromous Arctic charr in Crooked Lake, on Prince of Wales Island, change from a silvery color to bright orange before spawning. These male charr, held by the senior author, were caught on August 24, 1981. The Dolphin River, which drains Crooked Lake, can be seen in the background.

Lakes and marine bays in the high arctic often remain ice-covered until August. This photo of Melville Island shows the ice covering Tingmisut Lake (foreground) and Weatherall Bay (background) on July 24, 1981.

© Minister of Supply and Services Canada 1983 Cat. No. En 73-5/1E ISBN 0-662-12487-1

.

PREFACE

The Northern Land Use Information Series (NLUIS) is an on-going environmental research and information mapping program for northern Canada, which provides a convenient reconnaissance-level information base to facilitate regional planning and the application of the Territorial Land Use Regulations. This map series is jointly funded by the Department of Indian and Northern Affairs, and the Department of the Environment. Since 1971, 273 maps covering 2.4 million km² have been published for the Yukon Territory, most of the mainland Northwest Territories, and the north Baffin Island area. Information presented in map and text form includes a wide range of environmental-social topics such as wildlife information, fish resources, an ecological land classification, native land use data, historical sites, proposed resource development activities, areas of conservation interest, and other information to assist in land use planning and management. The program relies on the co-operation and assistance of several federal and territorial government departments. private research groups and local residents of the Yukon and Northwest Territories. Major participants include the federal Department of Fisheries and Oceans which provides the information on fish resources, the Northwest Territories Wildlife Service which is responsible for the terrestrial wildlife data, and the Lands Directorate of Environment Canada which produces the ecological land classification information, co-ordinates the socio-economic and cultural data collection, and is responsible for the overall production of the maps and texts.

In addition to the published maps, several reports such as this, have been prepared which are based on the background research used in the preparation of the maps. A list of these reports is included in the Appendix.

(The views expressed in this report are those of the author and do not necessarily reflect those of Environment Canada or the Department of Indian and Northern Affairs).

G.G. McLean Program Coordinator Land Use Information Series

TABLE OF CONTENTS

INTRODUCTION	1
MATERIALS AND METHODS	3
RESULTS	7
Bathurst Island General description	7 9 11 12
General description	18 2 2 22 23
General description	27 30 31 33 33 34
Fishes Fishes Victoria and Stefansson islands General description Domestic, commercial, and sport fishing Previous aquatic Survey results and discussion	34 45 48 49 50
SUMMARY	57
ACKNOWLEDGEMENTS	61
REFERENCES	63
PERSONAL COMMUNICATIONS	73
APPENDIX I MARINE FISH SPECIES DISTRIBUTIONS	75
APPENDIX II FISH DATA	79 80
APPENDIX III SUMMARY OF FISH STOMACH CONTENTS	97

APPENDIX	IV	BONE STRONTIUM MEASUREMENTS
APPENDI X	۷	GEOGRAPHIC DISTRIBUTIONS
		Fish parasites
APPENDIX	VI	BIRD AND MAMMAL OBSERVATIONS
APPENDIX	VII	REPORTS RELATING TO THE LAND USE INFORMATION SERIES 109

LIST OF FIGURES, TABLES AND PLATES

Page

INTRODUCTION

Figure 1	Map of study area	2
BATHURST, CORNWA	ALLIS, AND LITTLE CORNWALLIS ISLANDS	
Figure 2 Table 1 Table 2 Table 3 Table 4 Figure 3	Zooplankton species and abundance	.8 .3 .5 .5
MELVILLE ISLAND		
Figure 4 Table 5 Table 6	Map of sampling locations1Zooplankton species and abundance2Water chemistry2	4
PRINCE OF WALES	ISLAND	
Figure 5 Plate 1 Table 7 Table 8 Table 9	Age, length, and weight summary for Arctic	9 5 5
Table 10	charr and least cisco from Crooked Lake	
Figure 6	least cisco from Crooked Lake	
Figure 7	and least cisco populations	
Figure 8	Crooked Lake	
Figure 9	Diet of Arctic charr and least cisco in Crooked Lake	

VICTORIA AND STEFANSSON ISLANDS

Figure Table Table Table		Zooplankton species and abundance	46 51 51
Table	14	Arctic charr and lake trout	
APPENDI X	Ι		
Figure Table		Map of marine fish species catch locations Distribution records of marine fish species caught in the survey area	77 78
APPENDIX	II		
Table	16	Raw data from fish caught on Bathurst, Cornwallis and Little Cornwallis islands	82
Table Table	17 18	Raw data from fish caught on Melville Island Raw data from fish caught in Crooked Lake,	86
Table	19	Raw data from fish caught on Stefansson and	87 92
APPENDIX	III		
Table	20	Fish diet summary	98
APPENDI X	IV		
Table	21	Bone strontium measurements from Crooked Lake Arctic charr	100
APPENDI X	۷		
Table Table Table Table	22 23 24 25	Geographic distributions of zooplankton species Geographic distributions of chironomid species	102 103 103 104
APPENDIX	VI		
Table	26	Bird and mammal observations	106

Page

INTRODUCTION

This report documents the results of survey work conducted in the summer of 1981 for the Northern Land Use Information Series mapping program. This fisheries survey encompasses Bathurst, Melville, Prince of Wales and northern Victoria islands in the District of Franklin, Northwest Territories (Fig. 1). These islands border Viscount Melville Sound which is an area of interest for potential resource and transportation development.

The Northern Land Use Information Series is an environmental research and information mapping program for northern Canada, which provides a reconnaissance-level information base to facilitate regional planning and application of the Territorial Land Use Regulations. This report provides detailed information on the biology and utilization of fish species inhabiting the study area. The information has also been summarized in comments included on the individual land use maps.

During the survey, data were collected on freshwater and marine fish, planktonic and benthic invertebrates, water chemistry, and domestic and commercial fisheries. This report summarizes that information and briefly discusses previous freshwater and marine research in the area. Wildlife and botanical observations are included in appendices along with a list of other reports in the Northern Land Use Information Series.

The project was funded jointly by the Department of Indian Affairs and Northern Development, and the Lands Directorate of the Department of the Environment. The Department of Energy, Mines and Resources and the Department of Fisheries and Oceans provided logistic support.

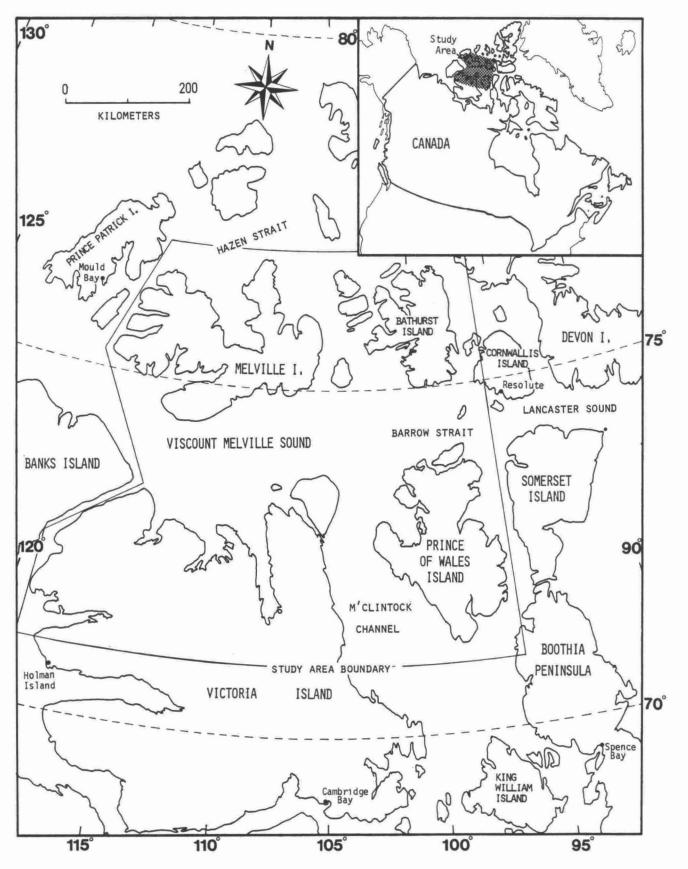


Fig. 1. Map of the Canadian Arctic Islands bordering Viscount Melville Sound showing the study area boundaries.

MATERIALS AND METHODS

Fish and related biota were collected between July 19 and September 3, 1981, from fresh and coastal marine waters of the islands bordering Viscount Melville Sound in the District of Franklin, Northwest Territories (Fig. 1). Sites were reached by using either a float-equipped Bell 206B Jet Ranger helicopter or an inflatable Zodiac boat. Freshwater and marine fish, planktonic and benthic invertebrates, surface water, and shoreline vegetation samples were collected. Fish were weighed and measured; their stomach contents and parasite loads were examined; and bone strontium content, age, sex, and maturity were determined. Zooplanktonic and zoobenthic species were identified and counted and total dissolved solid, nutrient, and ion concentrations and pH and conductivity were measured in samples of surface water.

Fish were caught using gillnets, hoopnets, and minnow traps. Gillnets were Lundgren's green multifilament nylon survey type, 1.8 m deep and 60 m long, consisting of six 10 m panels of 10, 19, 33, 45, 55, and 60 mm mesh sizes (bar measure). Nets were generally set offshore on the bottoms of lakes, large rivers and the ocean. Streams were sampled by setting two hoopnets across the channel. The upstream hoopnet caught fish moving downstream and vice versa. The hoops, 61 cm in diameter with 3.7 m wings, were covered by #35 delta nylon with meshes 3.2 mm square. Fry were caught in the shallows using cylindrical minnow traps made of galvanized wire. The traps were 44 cm long and 22 cm in diameter with meshes 6.2 mm square. Mouth openings, 2 cm in diameter, were located at each of the inverted conical ends.

In the field, fish were weighed (Accu-Weight spring scales, round weight 0 to 30 ± 0.5 g; 30 to 2000 ± 10 g; 2000 to 10000 ± 50 g), fork length (mm) was measured, and otoliths or scales were removed and stored in coin envelopes. Stomach contents were examined and a subsample of stomachs was preserved in 10% formalin for laboratory analysis. Sexual maturity was determined through gonad examination and the skin, mouth, gills, digestive tract, body cavity and swimbladder were examined for parasites. Complete digestive tracts and internal organs were removed from a subsample of fish and frozen for laboratory parasite analysis. Fish species identifications were confirmed by Dr. D.E. McAllister (pers. comm.) from representative preserved specimens sent to the National Museum of Natural Science (N.M.N.S.).

Otoliths were used to age Arctic charr *Salvelinus alpinus* and lake trout *S. namaycush*, following the technique of Grainger (1953). Least cisco *Coregonus sardinella* were aged from scales, read using a Leitz Trichinoscope (model IX-Q).

Anadromous fish have higher concentrations of strontium in their bones than do strictly freshwater fish as a consequence of higher strontium concentrations in saltwater than in freshwater (Behrens Yamada et al. 1979; Moreau and Barbeau 1979; Gaboury 1980). To determine whether anadromous Arctic charr inhabit Crooked Lake on Prince of Wales Island, a subsample of charr otoliths was assayed for strontium content. A 10 to 15 mg sample of otolith was dissolved in 1.0 ml of concentrated nitric acid (HNO_3) , diluted to 10 ml, and analyzed by Direct Current Plasma Emission (DCP) at 407.7 nm, using aqueous standards (Hunt pers. comm.). To prevent alkali metal enhancement, samples were adjusted to 5 ppt lithium, using lithium chloride buffer. Samples of lake water, which were analyzed directly, and sediment were also assayed for strontium using DCP at 407.7 nm. Lake sediment samples were dried, ground, and filtered through a 100 mesh sieve. One gram samples of dry filtered sediment were dissolved in 5 ml of aqua regia $(3:1, HC1 \text{ to } HNO_3)$ and each taken to a 50 ml volume for analysis.

Food items in stomachs were identified to at least order and stomachs were assigned fractional fullness values ranging from 0 (empty) to 1 (full), based on their apparent capacity and contents. In the laboratory, food taxa in the stomachs were separated, dried for at least 20 h at 38° C in a Chromalox AR-2519 oven, and weighed (± 0.001 g) on a Mettler AC 440 balance to measure their relative contributions to the fish's diet.

Gonads were examined and degree of maturity was assigned according to the following scale:

<u>Male</u>	Female	Development
1 2 3 4 5 6	7 8 9 10 11 12	immature mature near ripe ripe ripe and running spent
0	0	sex indistinguishable

Zooplankton were collected in single vertical hauls using a 73 micron mesh Wisconsin net with a 25 cm mouth diameter. Specimens were preserved in 10% formalin and species abundances were determined by dividing the number of individuals caught by the volume of water strained. Specimens were identified by Dr. and Mrs. K. Patalas who retain the collection.

Zoobenthic organisms were collected using an Ekman dredge with a 225 cm² mouth area. Samples were sieved in a conical sieve net of 500 μ m mesh nitex and identified, where possible, to species. Representative specimens were sent to the N.M.N.S. Invertebrate Zoology Unit.

A helicopter is used to sample arctic lakes and rivers. Gillnets are set and retrieved, and water chemistry and zooplankton samples are collected, from the helicopter pontoons.

Fish moving up or downstream are caught alive in hoopnets. These hoopnets were situated at site 7 (76°24'N, 108°33'W) on Sabine Peninsula, Melville Island. Note the soil erosion.

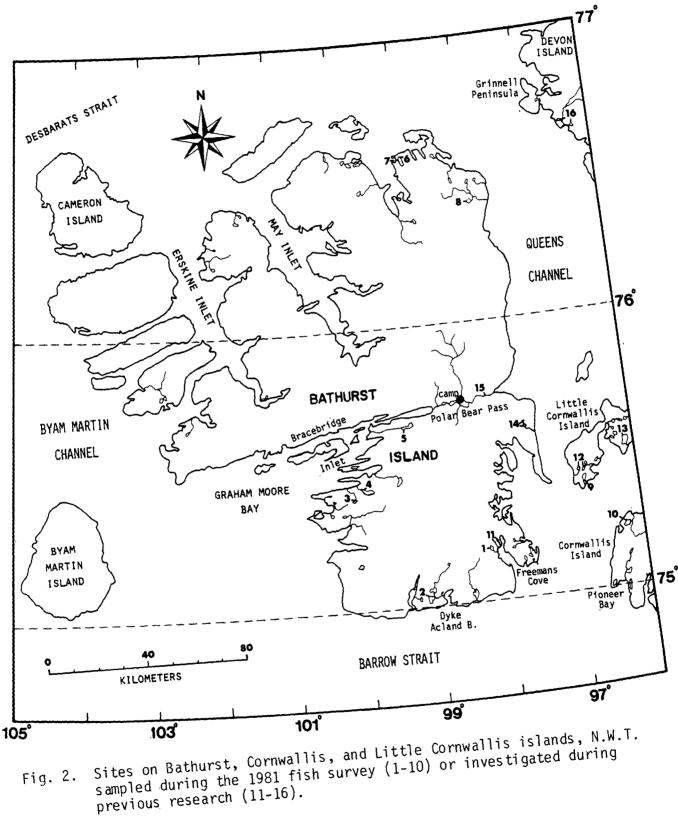
Water samples were collected in liter polyethylene bottles held below the surface. Dissolved organic carbon; particulate carbon, nitrogen, and phosphorous; calcium, magnesium, potassium, sodium, chloride, and sulphate; and chlorophyll A samples were handled and stored as per Stainton et al. (1977). Stainton's sample storage methods were not followed for dissolved nitrogen and phosphorous or for specific conductance. The nitrogen and phosphorous samples were filtered but did not undergo UV combustion; specific conductance was measured on stored samples. These deviations in technique should not have seriously altered measurements because the samples were chemically dilute (Stainton pers. comm.). Laboratory pH measurements are reported and may differ slightly from actual lake values due to storage effects. Strontium excepted, all chemical analyses were performed by the Analytical Unit at the Freshwater Institute, Department of Fisheries and Oceans, in Winnipeg. Secchi depth, secchi color, and surface water temperature $(\pm 0.1^{\circ}C)$ were measured in the field.

Wildlife and botanical observations are included in appendices. The plant collections are housed in the Department of Botany herbarium at the University of Manitoba. Lichen samples were also collected and are in the possession of Dr. W. Maass at the National Research Council of Canada laboratory in Halifax.

RESULTS

Bathurst, Cornwallis, and Little Cornwallis Islands

General Description


Bathurst Island is the largest $(16,380 \text{ km}^2)$ of a complex of islands and islets located north of Viscount Melville Sound, between Melville and Cornwallis islands (Fig. 1). It has a convoluted coastline and no part of the island is more than 24 km from the Arctic Ocean.

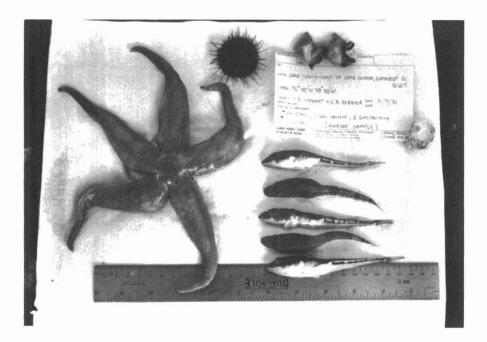
There are three main physiographic areas within the Bathurst Island group (Fig. 2; Roots 1963; Kerr 1974). A low plateau underlain by carbonate beds constitutes the area south of Polar Bear Pass. The plateau is desolate, flat and featureless in the centre but dissected by narrow steep-walled valleys to the south and along the east coast. The drainage pattern is generally dendritic and most of the island's lakes are located near the south and east coasts of this region. Lowlands, less than 100 m in elevation, comprise the central and northern parts of Cameron Island. There the land slopes gently northwards and is underlain by poorly consolidated shale and sandstone. Streams in this area are short, braided with wide gravel fans at their mouths and lack headwater lakes. The largest physiographic area is a ridged upland which is separated from the southern plateau by Polar Bear Pass. It rises over 460 m above sea level (asl) and is overlain by sandstone felsenmeer or by glacial sands and gravels. Bedrock exposures are limited to stream valleys and a few northerly trending ridges. Lakes in this region are mainly situated along the northern coast of Bathurst Island.

Bostock (1970, 1972) recognizes only two physiographic regions in the Bathurst Island group, namely: Parry Plateau, which includes both plateau and upland, and Sverdrup Lowland - both of the Innuitian physiographic region.

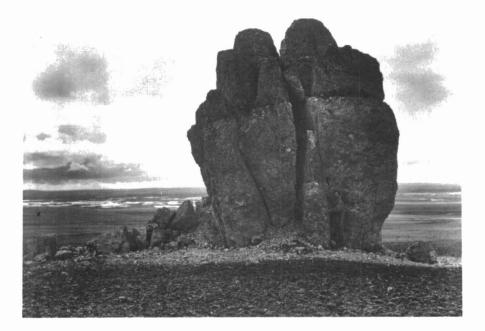
Geology of the Bathurst Island group is complex, comprised primarily of middle and upper Devonian sediments of quartz sandstone, limestone, and shale (Thorsteinsson 1958; Kerr 1974, 1981). The islands were glaciated by the Laurentide (continental) Ice Sheet, as is evidenced by the presence of erratic boulders, patches of drift, and striated bedrock surfaces (Blake 1974; Barnett *et al.* 1976). Raised beaches, surface remnants of eroded reef knolls on the central uplands, and inland post glacial marine deposits provide evidence of marine submergence followed by rebounds of 70 to 100 m above the present sea level.

The climate is high arctic with a mean annual temperature range of 37 to 39°C and mean daily temperatures of near -33°C in January and below 4.5°C in July, although shallow lakes and isolated surfaces may become much warmer during the constant summer sunlight (Danks 1980; Maxwell 1981). Daily mean temperatures annually remain below 0°C from August 25 until June 15. Annual precipitation ranges from 125 to 150 mm, 35 to 40% of which falls as rain. Runoff begins in mid-June and peak stream flows

normally occur as a result of snowmelt, although orographic precipitation may cause extreme fluctuations in stream discharges (Wedel 1979). River flow probably stops altogether after mean daily temperatures drop below freezing in early September. Lakes may freeze to a depth of over 2 m (Schindler *et al.* 1974a; Fallis and Harbicht in prep.) and some sheltered deep lakes retain their icecover year-round. Sea ice is a mixture of new and multi-year types with variable clearing from year to year. Wind is predominantly from the northwest with an average speed of about 20 km/h (Danks 1980).


Vegetation is concentrated in low lying or sheltered areas and is exceedingly sparse in the dry uplands, particularly in areas of fragmented limestone and dolomite (Barnett *et al.* 1976; Wedel *et al.* 1978; Danks 1980). Elsewhere, saxifrage-based communities are most common, with Arctic willow, Arctic poppy, or grass species as co-dominants. Arctic willow and a variety of flowering plants vegetate the less exposed areas, while mosses and sedges dominate the wetlands (Appendix V). Plant root penetration is restricted by an underlying layer of permafrost and only the top 15 to 50 cm of soil thaws annually (Guilbault and Chacko 1978).

Forty-two bird species and eight terrestrial mammal species have been recorded on Bathurst Island (Tener 1963; Nettleship and Smith 1975; Miller *et al.* 1977; Danks 1980). During this survey, geese, eider ducks, jaegers, loons, and snowy owls were the most evident bird species; muskox, Peary caribou, and Arctic hare were the most commonly seen mammals (Appendix VI).


In 1968, a high arctic research station was established on Bathurst Island by the National Museum of Natural Science. The field station overlooks Polar Bear Pass, which bisects Bathurst Island from east to west. Since 1968 a variety of research projects have been conducted on plants, invertebrates, birds, and mammals of the area. This continuing research has been summarized by Danks (1980).

Domestic Commercial, and Sport Fishing

There are no permanent settlements on Bathurst Island and the nearest domestic fishermen live 100 km to the southeast in the community of Resolute, on Cornwallis Island (Fig. 1). Residents of Resolute occasionally visit lakes on the south coast of Bathurst Island, near Freemans Cove and Dyke Acland Bay, or those adjacent to Pioneer Bay on Cornwallis Island (Fig. 2; Bissett 1967; Riewe 1976; Stevenson pers. comm.). Visits are made by snowmobile between April and June, usually in conjunction with late winter hunting trips. Arctic charr are caught by jigging through holes in the ice. No catch records are available but catches are probably small and very occasional.

Marine samples collected from an ice lead along the shore of Young Inlet (76°35'N, 99°00'W), near the outlet of a lake on Cape Sophia, Bathurst Island. The fish are ribbed sculpin (*Triglops pingelii*).

Outcrops of fossilized corals are located on the hillside of Polar Bear Pass, Bathurst Island.

There is no commercial fishing in the area, although sport fishermen from the Polaris Mine on Little Cornwallis Island occasionally angle landlocked Arctic charr from nearby Frustration Lake (Fig. 2, Site 12).

Previous Aquatic Research

Aquatic biological research on Bathurst Island has been limited to unpublished studies of freshwater invertebrates and phytoplankton (Danks 1980), and an aquatic resource survey of the proposed Polar Gas pipeline route (Hatfield *et al.* 1978). During the survey, Arctic charr were caught in three lakes near Freemans Cove (Fig. 2, sites 1 and 11) and in two lakes along the east coast (site 14). All of the lakes provide good spawning and overwintering habitat for charr and some of the lakes may support anadromous charr populations. Arctic charr fry were found in the outlet stream of one of the lakes (site 1) and fourhorn sculpin fry were caught in the Goodsir River (site 15).

Lois, Frustration, and Cominco lakes on Little Cornwallis Island (Fig. 2, sites 12 and 13) all support landlocked or lake-dwelling populations of Arctic charr (B.C. Research 1978, 1979; Hatfield *et al.* 1978). Frustration Lake on the western side of the island (site 12) serves as the water supply for the nearby Polaris lead-zinc mine. Garrow Lake (site 9), the mine tailings pond, is a meromictic lake with a distinct halocline at 20 m depth (B.C. Research 1975, 1978, 1979, 1981; Fallis and Harbicht in prep.). Fourhorn sculpin *Myoxocephalus quadricornis*, the copepod *Limnocalanus macrurus*, and the shrimp *Mysis relicta* inhabit the upper 20 m of Garrow Lake. Garrow Lake limnology has been studied in detail and water quality and biological heavy metal concentrations will continue to be monitored throughout the mines operation (Kuit pers. comm.).

Previous aquatic research on Cornwallis and Devon islands has been summarized briefly by Stewart and MacDonald (1981) who surveyed lakes on both islands. Arctic charr have been caught in two lakes on the Grinnell Peninsula of Devon Island (McAllister pers. comm.); Char, Meretta and Nelson lakes on Cornwallis Island have all been studied in detail (Johnson 1976, 1980, in press; Welch 1973; Kalff and Welch 1974; Schindler $et \ \alpha l$. 1974a, 1974b; Rigler 1975). Meretta Lake is the only known example of a high arctic lake that has been eutrophied.

Water quality and hydrological studies have been conducted along the proposed Polar Gas pipeline route across Bathurst and Cornwallis islands (Wedel and Way 1976; Guilbault and Chacko 1978; Wedel *et al.* 1978; Wedel 1979). These reports discuss the hydrological concerns associated with pipeline development. The marine environment has been studied near Little Cornwallis Island, in conjunction with the Polaris Mine development (B.C. Research 1975, 1978, 1979, 1981; Fallis and Harbicht in prep.), and in coastal bays near the community of Resolute on Cornwallis Island (Holeton 1974; Green and Steele 1975; Welch and Kalff 1975). Distribution records of marine fish species are summarized in Appendix I (Table 15).

Survey Results and Discussion

Surface waters of four lakes on Bathurst Island were chemically similar (Table 2, sites 1, 6, 8, 9). All of the lakes were situated on sedimentary strata. They were oligotrophic with surface temperatures below 4°C, and a nearly complete covering of ice in late July. Lake water pH was slightly basic and conductivities ranged from 100 to 210 μ S/cm, with calcium and magesium as the major contributing ions. The northern-most lake, which had the highest pH and conductivity, also contained moderate amounts of dissolved sodium and chloride ions. These lakes are chemically similar to other lakes with basins of sedimentary rock on Victoria Island (Table 12; sites 4, 7, 12) and on Devon, Cornwallis and Somerset islands (Stewart and MacDonald 1981).

Garrow Lake, on Little Cornwallis Island, is brackish and had much higher concentrations of potassium, calcium, chloride, and sulphate than other lakes in the area (Table 2, site 9). As a result of these ion concentrations, conductivity and pH were high. With the exception of suspended phosphorous, concentrations of dissolved and suspended carbon, nitrogen, and phosphorous were similar to those found in lakes on Bathurst Island. Chlorophyll A and suspended phosphorous were present in lower concentrations than in other lakes sampled. These surface chemistry measurements agree well with those reported by Fallis and Harbicht (in prep.).

The chemistry of Garrow Lake changed drastically with depth. In October there was a sharp halocline at a depth of about 20 m and water below that depth was anoxic and contained high concentrations of hydrogen sulphide. The bottom waters of Garrow Lake are more than twice the salinity of seawater and are warmer than the surface water. Fallis and Harbicht (in prep.) have put forward several hypotheses to explain the lake's origins.

Limnocalanus macrurus was the dominant zooplankton species in each of the lakes sampled on Bathurst and Little Cornwallis islands (Table 1). A harpacticoid species was also present in two of the lakes on Bathurst Island and in Garrow Lake, which also contained a species of marine cyclopinid. Crustacean zooplankton were less abundant in lakes on Bathurst and Little Cornwallis islands than in lakes on Victoria and Prince of Wales islands. Very large adult Limnocalanus macrurus were

Sampling Site (Fig. 2)	1	5	6	8	9
Coordinates	75°12'N, 98°12'W	75°38'N,99°19'W	76°35'N,98°55'W	76°25'N,98°00'W	75°23'N,96°47'W
Date	19/7/81	31/7/81	31/7/81	31/7/81	2/8/81, (24/10/81)
Depth (m)	28	17	6	16	5 (20)
Number of Samples	4	2	2	2	2 (1)
Ph. Arthropoda					
Cl. Crustacea SCl. Copepoda					
0. Calanoida					
Limnocalanus macrurus	0.46	1.82	0.25	0.96	0.02 (0.01 0.08
copepodids	0.37	1.46	1.70	0.04	0.08
nauplti O. Cyclopoida	0.04	0.01	0.18		0.00
Cyclopinidae					<0.01
O. Harpacticoida		0.01	<1.0	<0.01	0.47
Total ind/L	0.87	3.30	2.13	1.00	0.65 (0.01
Number of species	1	2	1	2	3 (1)

19.74

32.33

1.44 (0.02)

Table 1. Zooplankton species and their abundance (mean number of individuals per litre) in four Bathurst Island lakes and one Little Cornwallis Island lake.

37.07

Ph. Rotifera

Sampling Site (Fig. 2)	1	5	6	8	9
Date	19/7/81	31/7/81	31/7/81	31/7/81	2/8/81
Field Data					
Surface water temperature (°C)	3.0	3.0	<1.0	1.5	1.0
Depth (m)	28.0	26.0	7.5	16.5	5.5
Time of day (h)	1200	2120	1330	1245	1615
Light conditions	clear, wind	cloudy, wind	cloudy, wind	cloudy, wind	broken cloud, win
Secchi depth (m)	9.0	3.5	7.0	5.5	>5.5
Secchi color	light blue-green	dark forest green	everareen	pale emerald green	emerald green
Laboratory Data					
Number of samples (n)	4	2	2	2	2
DH	7.72	7.88	7.92	7.39	8.12
Conductivity at 25°C (µS/cm)	122	145	210	100	6375
Total dissolved nitrogen (µg/L)	152	140	130	115	150
Total dissolved phosphorus (ug/L)	7	6.5	6	7.5	7.5
Dissolved organic carbon (µMole/L)	152	125	120	210	120
Nutrients (µg/L)					
Suspended nitrogen	31	<1	36	36	30
Suspended phosphorus	4	Å	36 2	3	ĩ
Suspended carbon	462	354	310	273	324
Chlorophyll A	0.7	0.8	0.6	0.2	0.1
<u>Major Ions (mg/L)</u>					
Sodium	2.96	1.38	11.8	2.08	10.4
Potassium	0.26	0.40	0.80	0.36	35.8
Calcium	12.7	24.2	20.8	13.8	72.8
Magnestum	6.48	1.48	6.32	6.44	1.32
Chloride	5.4	2.2	23.2	4.5	2000
Sulphate	1.3	3.6	5.3	4.4	190

Table 2. Water chemistry data (means of n samples) for four Bathurst Island lakes and one Little Cornwallis Island lake.

the only crustacean zooplankters found in Garrow Lake when it was sampled through the ice in late October. Rotifers, while present in both samples, were rare in Garrow Lake.

Arctic charr and/or fourhorn sculpin were caught in all of the lakes sampled on Bathurst, Little Cornwallis, and Cornwallis islands (Appendix II, Table 16). These lakes were nearly covered by ice in late July and early August and all were deep enough to support overwintering fish populations. Six of the lakes had outlet streams that may permit charr to undertake seaward feeding migrations (Fig. 2, sites 1, 2, 4, 5, 9, 10). Catches per unit of sampling effort were very low, particularly in terms of the weight yield (11.4 to 35.9 fish/100 net m/24 h; 1.2 to 3.3 kg of fish/100 net m/24 h).

Arctic charr caught in this area were generally small and old, with condition factors below 1.0 and moderate to heavy *Diphyllobothrium* spp. infections (Table 3; Appendix II, Table 16). Three of the charr populations were kept landlocked by impassable outlet streams (Fig. 2, sites 3, 7, 8). The remainder inhabited lakes whose outlet streams had summer flows that appeared sufficient to permit fish movement to and from the Arctic Ocean (sites 1, 2, 4, 5, 9, 10). While fish caught in these lakes were likely lake dwelling, some of the lakes may also support anadromous charr. The low proportion of ripening mature fish, presence of domestic fisheries, and pilots' reports of large charr all suggest that there are anadromous charr in the lakes near Freemans Cove and Dyke Acland Bay (sites 1 and 2: Bisset 1967; Riewe 1976; Doyle pers. comm.). Since anadromous charr generally feed at sea during late July and early August, they may have been absent when the lakes were sampled (Johnson 1980; Gyselman 1982). Although it has a passable outlet, Garrow Lake is brackish and does not support Arctic charr (Fallis and Harbicht in prep.).

Length-frequency distributions of the charr populations tended towards bimodality, both in one of the landlocked lakes (Fig. 3a, site 6) and in a lake that may support anadromous charr (Fig. 3b, site 5). Bimodal length-frequency distributions are a common feature of unexploited Arctic charr populations in high arctic lakes with only one fish species (Johnson 1976, 1980, 1981, in press; Stewart and MacDonald 1981). Ages varied widely within each length class and with one exception the youngest mature fish were at least 13 years old (Table 4). This late maturation may reflect the small sample sizes since, in the largest sample individuals of both sexes matured by 7 years of age. The overall sex ratio favoured males by a ratio of 2:1 and individual charr do not appear to spawn annually since only 23% of the mature fish were entering spawning condition. In this area, spawning probably begins in mid to late August and continues into early September.

Sar	Sampling Location			Length (r	am)	Weight (9)	Conditio	- Frateri	Length-We	ight Re	lationship ²			Age (y)		
Site (Fig.		Coordi	nates	N	Mean (Range)	s.o.	Mean (Range)	S.D.	Mean	n Factor ¹ S.D.	y intercept (log a)	slope (b)	S.D. of b	r ²	n	Mean (Range)	S.D.
1	75°	°10.5'N,	98°09'W	10	375 (319 - 460)	39	517 (310 - 810)	156	0.960	0.108	-4.468	2.785	0.376	0.873	10	20.0 (15 - 24)	2.9
2	75°	°02'N,	99°09'W	27	298 (89 - 492)	109	.294 (4.5 -1040)	266	0.793	0.082	-5.289	3.076	0.047	0.994	27	17.3 (6-25)	
3	75°	°24'N,	100°06'W	16	464 (175 - 598)	121	996 (40-1920)	512	0.854	0.131	-5.290	3.082	0.104	0.984	16	22.6 (8-30)	
4	75°	°26'N,	100°00'W	7	349 (330 - 370)	14	380 (330 - 440)	43	0.895	0.036	-4.286	2.700	0.438	0.884	7	19.4 (13 - 23)	
5	75°	°38'N,	99°19'W	61	208 (103 - 450)	109	144 (9 - 660)	194	0.814	0.081	-5.187	3.042	0.025	0.996	48	10.4 (4-26)	
6	76°	°35'N,	98°55'W	31	318 (150 - 430)	66	285 (25 - 580)	145	0.792	0.132	-5.443	3.135	0.123	0.957	28	18.7 (14 - 22)	
8	76°	°25'N,	97°58'W	7	382 (310 - 542)	80	597 (270 -1900)	582	0.888	0.159	-6.016	3.372	0.372	0.943	7	22.3 (18 - 37)	
10	75°	°02.5'N,	96°17'W	8	293 (113 - 356)	88	228 (13-340)	120	0.784	0.082	-4.670	2.821	0.078	0.996	3	20.0 (18 - 22)	

Table 3. Summary of age, length, and weight data for Bathurst Island and Cornwallis Island Arctic charr-

 1 condition factor = weight in g-(fork length in mma) $^{-3}\cdot10^5$ 2 log weight in g = b-log length in mma + log a

Site # Fig. 2)				Maturity							Age of	longth of
	Date	N	Sex	Immature	Mature	Near Ripe	Ripe	Ripe & Running	Spent	Unknown	youngest mature fish (y)	Length of youngest mature fish (mm)
1	20/7/81	6 4 13	male female total		4 2 6	2 2 4				3	15 19	382 460
2	20/7/81	14 13 27	male female total	3 1 4	8 10 18	3 2 5					15 15	192 205
3	1/8/81	12 4 16	male female total	1 1 2	6 2 8	5 1 6					20 21	404 418
4	1/8/81	5 2 7	male female total		5 2 7						19 13	350 335
5	1/8/81	33 30 63	male female total	19 16 35	11 13 24	3 1 4					5 7	132 126
6	31/7/81	25 3 28	male female total		19 3 22	6 6					14 17	275 273
8	31/7/81	7 7	male female total		6 6	1 1					18	327
10	2/8/81	7 1 8	male female total	3 3	3 3	1 1 2					18	345

Table 4. Summary of sexual maturity data for Bathurst Island and Cornwallis Island Arctic charr.

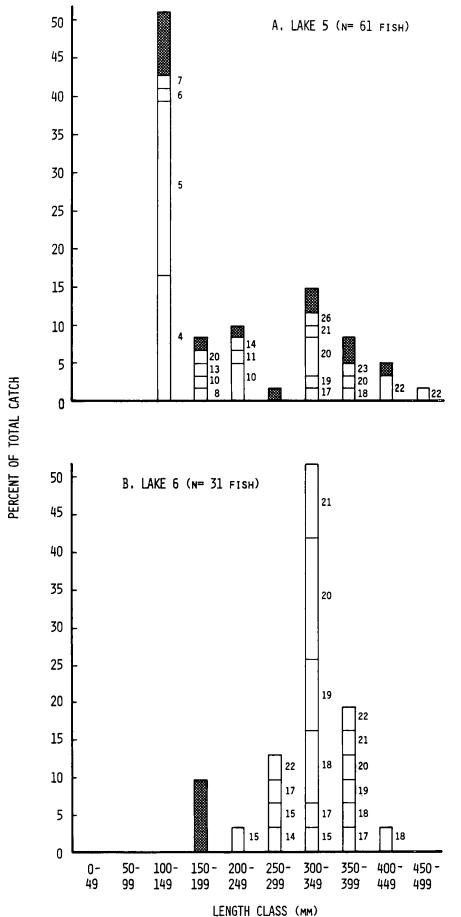


Fig. 3. Age-frequency distribution by length class in the catches of Arctic charr *Salvelinus alpinus* from (a) lake 5 (75°38'N, 99°19'W) and (b) lake 6 (76°35'N, 98°55'W) on Bathurst Island N.W.T. Stippling indicates fish that were not aged.

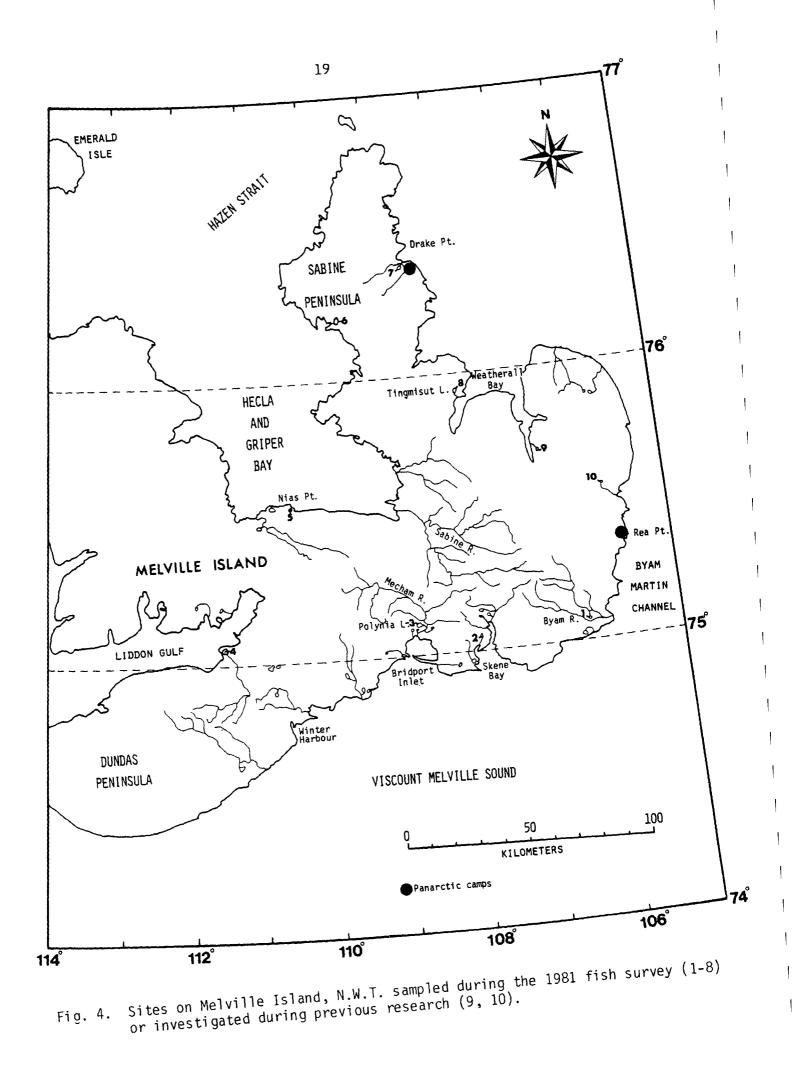
16

Charr were omnivorous although chironomid pupae constituted the bulk of their diet in most lakes with cannabalism prevalent in one landlocked lake (Appendix III, Table 20; Appendix V, Table 24). A variety of insects and crustaceans, plant material, fish eggs, and fish formed the remainder of their diets.

Most of the Arctic charr were infected with Diphyllobothrium ditremum or D. dendriticum which encysted in the gut wall (Appendix II, Table 16; Appendix IV, Table 22). Cystidicola cristivomeri, a species of nematode, was present in the swimbladders of charr in all but one lake (site 2). This may indicate that Mysis relicta, the intermediate host, is absent from the lake (site 2). Low level infections of the cestode Eubothrium salvelini were found in the digestive tracts of individual charr from all but two lakes (sites 1 and 10). Another intestinal cestode, Proteocephalus arcticus, occurred in two fish from separate lakes (sites 2 and 3). An acanthocephalan, Echinorhynchus gadi, was found in the intestine of individual fish from a variety of locations, sometimes in large numbers (sites 1, 4, 5, 10). Salmincola sp., a parasitic copepod, was found attached to the lining of the mouth cavity of charr in several lakes (sites 4, 5, 10). The presence of these parasite species, particularly Diphyllobothrium spp. and Eubothrium salvelini, and absence of marine parasites support the suggestion that these fish are from landlocked or Take-dwelling rather than searun populations (Dick and Belosevic 1981).

Fourhorn sculpin were the only other fish species inhabiting lakes in this area (Appendix II, Table 16). Those in Garrow Lake (site 9), while they have access to the sea, do not appear to feed at sea as they are smaller and slower growing than fourhorn sculpin found in the ocean (Fallis and Harbicht in prep.). Even landlocked fourhorn sculpin from northern Bathurst Island (site 6) are larger, perhaps because they eat the eggs and fry of charr which also inhabit the lake. Sculpin on western Cornwallis Island (site 10) also share their lake with charr but in addition, they have access to the sea. These fourhorn sculpin grow nearly as large as those in the ocean either from preying on charr or from undertaking seaward feeding migrations.

Marine fish caught in this area during the survey included polar cod Arctogadus glacialis and fish doctor Gymnelis viridis from Resolute Bay and ribbed sculpin Triglops pingelii from Young Inlet (Appendix II, Table 16). These fishes, together with a variety of marine invertebrates, are now housed in the National Museum of Natural Science collections in Ottawa.


Melville Island

General Description

Melville Island is situated north of Viscount Melville Sound between Bathurst and Prince Patrick islands (Fig. 1). It has a surface area of 42,000 km² but, because of the convoluted shoreline, no part of the island is more than 40 km from the Arctic Ocean.

The island is divided into three physiographically distinct areas, namely: Sverdrup Lowland and Parry Plateau of the Innuitian Region and Victoria Lowland of the Arctic Region (Bostock 1970, 1972). Sverdrup Lowland encompasses Sabine Peninsula, Emerald Isle, and Sproule Peninsula the area directly south of Emerald Isle (Fig. 4). Developed on a structural basin of generally soft, poorly consolidated, and little deformed Mesozoic rocks, the lowlands rise gently from northeastern coastal flats to plateau elevations of about 150 m above sea level (asl). For the most part, they are rolling, scarped lowlands but locally, areas of upland and dissected plateau reach elevations of 400 m asl. Two prominent gypsum domes near the north end of Sabine Peninsula relieve the monotony of the terrain. They rise about 225 m above the surrounding plain where local relief is mostly less than 30 m. Many of the small rivers and streams that drain the area only flow during the snowmelt period and ponds and lakes only occur in a few localities (Tozer and Thorsteinsson 1964; Steen and Hora 1978). Parry Plateau to the south includes the remainder of Melville Island with the exception of southern Dundas Peninsula. Topography of this area has developed on Palaeozoic sedimentary rock which is gently folded in southeastern and central Melville Island but has undergone Tertiary faulting in the north and west. A rolling plain covers the southeastern and central area. It rises gently from the coasts to over 200 m as] and local relief is generally less than 50 m. In the Weatherall Bay area, to the north and west of 111° 30' W longitude, the island's landscape is rugged with coastal cliffs rising abruptly to plateau elevations of 300 to 550 m asl. Fault line scarps are the dominant topographical feature. The Parry Plateau area is generally well drained by ephemeral rivers and streams but ponds and lakes are rare (Bengyfield et al. 1977; McLaren 1981). They are limited to a few localities along the eastern half of the south coast and near Nias Point. Victoria Lowland, which encompasses southern Dundas Peninsula, rises from the coasts to form a level, youthfully dissected plateau which is 200 to 300 m asl and has developed on essentially horizontal, Palaeozoic sedimentary rock (Tozer and Thorsteinsson 1964). There are no lakes in the area.

Much of Melville Island is covered by Mesozoic or Palaeozoic sandstones, siltstones, conglomerates, and marine shales (Tozer and Thorsteinsson 1964; Thorsteinsson and Tozer 1970; Steen and Hora 1978). Limestone, coal, and volcanic rock are also present except in southern Dundas Peninsula.

Most or all of Melville Island was glaciated in pre-Wisconsin times and local Wisconsin glaciation may have formed the fiord-like inlets that indent the island's southwestern coast (Tozer and Thorsteinsson 1964; McLaren and Barnett 1978). The last Laurentide Ice Sheet does not appear to have glaciated the island except in the Winter Harbour area which probably marked its northern limit. Today, several small ice fields cap the highlands of western Melville Island. Formed from wind drifted snow, they appear to be waning. Estimates of the maximum post glacial rebound range between 60 m asl in western Melville Island and 120 m asl in eastern Melville Island, where ice cover was either heavier or more recent. Marine shells have been collected from elevations of 90 m above the present sea level near Tingmisut Lake but evidence for marine emergence has not been found in southeastern Melville Island.

The climate is high arctic with a mean annual temperature range of 38 to 40°C and mean daily temperatures of between -35 and -33°C in January and 3 and 5°C in July (Thompson 1967; Fletcher and Young 1976; Steen and Hora 1978; Maxwell 1981). Darkness is continuous from November until early February and sunlight is continuous, albeit at a low angle of incidence, from late April until mid-August. Daily mean temperature remains below 0°C beginning August 20 to 25 and ending June 10 to 15. Annual precipitation ranges from 100 to 125 mm, between 35 and 40% of which falls as rain. River flow generally stops altogether after the mean temperature drops below 0°C and peak flows normally occur as a result of snowmelt, although orographic precipitation may cause extreme fluctuations in stream discharge (Wedel 1979; McLaren 1981). Some sheltered deep lakes may not lose their ice cover annually and multi-year sea ice dominates the channels both in summer and winter, reducing the maritime effect. Surfacebased temperature inversions are common in this region and wind is predominantly from the northwest with an average speed of about 15 km/h (Fletcher and Young 1976; Maxwell 1981).

Vegetation is concentrated in low lying or sheltered areas and is exceedingly sparse in the dry uplands, particularly in areas of limestone or dolomite and at higher elevations in white sandstone (Tozer and Thorsteinsson 1964). Vegetation is highly variable and includes lichens, mosses, flowering plants, grasses, and dwarf shrubs (Steen and Hora 1978). The extent and type of vegetation cover present in an area depends largely on the surface materials present and the microclimate. Permafrost generally lies within a meter of the surface. Plant species collected during this project are listed in Appendix V and detailed information is available in Porsild (1957, 1964), Cody *et al.* (1976), and Steen and Hora (1978).

During this survey, snow geese and black brant were the most evident bird species and muskox and Peary caribou were the most commonly seen mammals (Appendix VI). Melville Island is an important refugium for muskox and supports a modest caribou population (Tener 1963; Parker *et al.* 1975; McLaren *et al.* 1977; McLaren and Renaud 1977a; Miller *et al.* 1977; Thomas *et al.* 1981). Bird species inhabiting Melville Island have been discussed by McLaren and Renaud (1977b) and Maltby (1978).

Erosion of sedimentary strata by a seasonal stream on northeastern Bathurst Island. Similar erosion is found on Melville, Prince of Wales, Cornwallis, and Little Cornwallis islands.

South coast of Weatherall Bay, Melville Island, looking west. Note the ephemeral coastal streams and July pack ice. The only sites of habitation on Melville Island are Rea Point, a staging area for Panarctic Oil's exploratory drilling program in the area, and Drake Point, a natural gas drilling camp. Neither site has a permanent population (Arctic Pilot Project 1980). A consortium led by Petro-Canada proposes to pipe natural gas from the Panarctic wells at Drake Point to Bridport Inlet, where gas liquefaction and harbour facilities are planned. Liquified natural gas would then be shipped south year-round through Viscount Melville and Lancaster sounds. These proposed developments, called the Arctic Pilot Project, have stimulated scientific research into the environmental impacts associated with pipeline and harbour construction in the area. Several of these studies are listed above and others, dealing with a variety of subjects ranging from archaeology to oceanography, have been referenced in the report of the panel assessing the environmental aspects of the project (Arctic Pilot Project 1980).

Domestic, Commercial, and Sport Fishing

Lakes on Melville Island are not fished either domestically or commercially because their distance from permanent settlements makes such fishing impractical.

Pilots occasionally angle for the small landlocked Arctic charr in Tingmisut Lake but sport fishing on Melville Island is rare (Doyle pers. comm.). If the proposed harbour and gas liquefaction facilities are installed at Bridport Inlet, a limited sport fishery may develop in the area. Before sport fishing is permitted, further research should be conducted to determine whether anadromous Arctic charr are present and to determine the optimal sustainable yields of fish populations in the lakes.

Previous Aquatic Research

Sabine (1821) was the first to examine fish from Melville Island. His report was inconclusive as to location and species as the specimens, probably Arctic charr, had been carried in the pocket of a lost sailor for some time before they were examined. Somewhere along the south coast of Melville Island, within 20 km of the shore, is a lake where small silvery fish can be caught by hand!

Only three other researchers have reported biological sampling of lakes and streams on Melville Island. In August 1976 Hennig (pers. comm.) sampled seven stream drainage systems, none of which contained water of sufficient depth to support overwintering fish, and one lake (Fig. 4, site 7). No fish were caught or seen either in the streams or in the lake which was 15 m deep near the centre, half covered by ice at the time of sampling, and very turbid. Sixteen drainage systems between Drake Point and Bridport Inlet, and along the south coast between Winter Harbour and Skene Bay, were sampled during July and August 1977 by Bengyfield *et al.* (1977). With the possible exception of Mecham River, the streams sampled were too shallow to support overwintering fish populations and fish were not caught or seen in them. Arctic charr were present in all but two of fourteen lakes sampled along the south coast. However, data presented was not sufficient to determine whether any of the lakes contained anadromous populations. Chironomids were the main food consumed by the charr during the summer and swimbladder nematodes, stomach cysts, and intestinal tapeworms were common. Hatfield *et al.* (1978) sampled three lakes on Melville Island in 1977, along the proposed Polar Gas pipeline route. A single Arctic charr was caught in a lake north of Rea Point (site 10), and gill nets did not catch fish in Baldwin Lake (site 9) or in an unnamed lake on the west side of Sabine Peninsula (site 6).

Wedel and Way (1976) conducted water quality and hydrological studies along the proposed Polar Gas pipeline route across Melville Island and discussed the hydrologic concerns of pipeline development (Wedel 1979).

Ice biota, phytoplankton, macrophytes, zooplankton, zoobenthos, inter-tidal invertebrates, and marine fishes in Bridport Inlet were studied in 1977 by Buchanan *et al.* (1977). Their report (exclusive of mammals) contains the only detailed marine biological information available for Viscount Melville Sound and it assesses some potential effects of the Arctic Pilot Project on that environment. Smith and Hammill (1980) studied ringed seal *Phoca hispida* in Bridport Inlet and discussed the potential impacts of harbour development on marine mammals.

Survey Results and Discussion

Lakes on Melville Island all appeared to be monomictic with surface temperatures below 4°C in late July (Table 6). The deeper sheltered lakes were nearly covered by ice (Fig. 4, sites 3, 7, 8). Chemical testing showed water in Polynia Lake to be slightly acidic and to have a low conductivity and light penetration. These are probably attributable to the type of rock that forms the lake basin. It is sedimentary, soft, and appears to be sulphate rich and calcium poor. These effects are much more pronounced in the unnamed lake near Drake Point (site 7), where the light penetration is extremely low due to the erosion of unconsolidated surface material which is calcium poor and sulphate rich. The presence of chloride and sodium in higher concentrations than are generally found in Arctic lakes compensate for the low calcium concentrations so that conductivity resembles that found in most other Arctic lakes. Suspended carbon, nitrogen, and phosphorus concentrations are very high, probably reflecting the composition of surface materials, and dissolved phosphorous levels are extreme for an Arctic lake (60 μ g/L). Meretta Lake on

Table 5.	Zooplankton	species a	nd their	abundance	(mean number	of	individuals pe	r litre)	in	two Melville	Island	lakes.
									_			

Sampling Site (Fig. 4)	3	7
Coordinates	75°06'N, 108°43'W	76°23.5'N, 108°33.5'W
Date	21/7/81	22/7/81
Depth (m)	7.2	14.2
Number of Samples	4	4
Ph. Arthropoda Cl. Crustacea SCl. Copepoda O. Calanoida <i>Limnocalanus macrurus</i> copepodids nauplii O. Cyclopoida <i>Cyclops soutifer</i> copepodis nauplii	1.44 3.97 3.26	0.83 0.01 0.35 0.10 0.91
Total ind/L	8.67	1.30
Number of species	1	2
Ph. Rotifera	70.83	1.43

Table 6. Water chemistry data (means of n samples) for two Melville Island lakes.

Sampling Site (Fig. 4)	3	7		
Date	21/7/81	22/7/81		
Field Data				
Surface water temperature (°C)	2.0	0.5		
Depth (m)	7.2	14.3		
Time of day (h)	0025	1910		
Light conditions	sunny, calm	cloudy, wind		
Secchi depth (m)	1.0	0.07		
Secchi color	pale blue green	dirty grey brown		
Laboratory Data				
Number of samples (n)	4	4		
pH	6:46 ¹	6.34		
Conductivity at 25°C (µS/cm)	40	120		
Total dissolved nitrogen (ug/L)	1731	270		
Total dissolved phosphorus (ug/L)	9	60		
Dissolved organic carbon (µMole/L)	105	280		
Mutrients (µg/L)				
Suspended nitrogen	26	91		
Suspended phosphorus	6	34		
Suspended carbon	220	1090		
Chlorophyll A	0.6	0.8		
Major Ions (mg/L)				
Sodium	2.23	14.3		
Potassium	0.62	1.94		
Calcium	2.34	3.56		
Magnesium	1.40	2.70 18.3 ¹		
Chloride	3.02	18.3		
Sulphate	7.0	16.4		

1_{n = 3}

Cornwallis Island, which has been eutrophied by sewage from the Resolute airbase, contains only 38 μ g of dissolved phosphorous/L (Stewart and MacDonald 1981).

Lakes in the Bridport Inlet area likely resemble Polynia Lake chemically, while the unnamed lake on the west side of Sabine Peninsula (site 6) probably resembles the lake near Drake Point (site 7). Tingmisut Lake and the lakes near Nias Point are more transparent and situated on sandstone and limestone. Their chemistry may resemble that of lakes on the west side of Bathurst Island (Table 2, site 5). Shoreline vegetation is very sparse except around the shores of lakes near the southern coast which support small areas of sedge and moss growth.

Rotifers and the crustacean *Cyclops scutifer* were present in both lakes sampled on Melville Island, but *Limnocalanus macrurus* was only found in the lake near Drake Point (Table 5). Zooplankters were more abundant in Polynia Lake than in similar lakes on Bathurst Island (Table 1). The abundance of *Limnocalanus macrurus* in the lake near Drake Point resembled that in Bathurst Island lakes but few *Cyclops scutifer* or rotifers were present. Predation by *Mysis relicta*, which were abundant in the lake, or the extreme turbidity may have reduced the zooplankton population.

Arctic charr and fourhorn sculpin were the only fish species caught in freshwater lakes on Melville Island. Charr are present in most lakes on the south coast (site 3; Bengyfield *et al.* 1977). Exceptions were the shallow plateau lakes which freeze to the bottom in winter and cannot support fish populations (site 1), and perhaps 'Water Supply' lake (Bengyfield *et al.* 1977). Some of the southern lakes, particularly Polynia Lake, may support anadromous charr populations. Polynia Creek which joins Polynia Lake to the Mecham River had a flow rate of 0.124 m³/s on July 20. While this rate is low, fishes may have been able to navigate the channel which was a minimum of 10 cm deep and would be much higher during spring runoff or summer rains. Charr fry were caught in the stream channel. Fourhorn sculpin were caught in one freshwater and one brackish lake in this area (sites 2 and 4). Further samplings will probably discover relict populations of these marine fish in other lakes along the south coast.

Charr may be absent from the two unnamed lakes sampled on Sabine Peninsula (sites 6 and 7). Each lake has now been sampled twice, using a variety of gear types, without success. The abundance of *Mysis relicta* in the lake near Drake Point also suggests that fish may not be cropping the population. High particulate concentrations may make these lakes uninhabitable for charr, perhaps by reducing spawning success. Tingmisut Lake supports a sparse population of slow-growing, landlocked Arctic charr (Appendix II, Table 17). Three charr, weighing a total of 1.2 kg were caught per 100 m of gillnet set for 24 h. Gonad maturation suggests that these fish spawn in mid to late August. Analysis of their stomach contents showed that plant material (*Nostoc* sp.), *Mysis relicta*, and chironomid larvae and pupae were the main foods eaten during late July (Appendix III, Table 20). All of the fish caught were parasitized by *Diphyllobothrium* sp., which were encysted in the gut wall. The nematode *Cystidicola cristivomeri* was common in the swimbladders and the parasitic copepod *Salmincola* sp. was common in the mouth cavity (Table 17). *Eubothrium salvelini*, a cestode, was present in the intestine of one fish.

Limited sampling in one of the lakes on Nias Point (site 5) failed to catch fish but further sampling may discover fish in two or three of the small lakes in that area.

Prince of Wales Island

General Description

Prince of Wales Island is situated south of Viscount Melville Sound between Somerset and Victoria islands (Fig. 1). It has a surface area of 33,000 km^2 and an irregular shoreline.

The island is divided into two distinct physiographic areas, Victoria Lowland of the Arctic Region and Boothia Plateau of the Kazan Region (Bostock 1970, 1972). Victoria Lowland covers most of the island. Developed on little deformed Palaeozoic sedimentary strata, it rises in steep coastal cliffs in the north but elsewhere, it forms low rolling plateaux. Escarpments divide Victoria Lowland into three regions. North of Scarp Brook there is an upland, 100 to 200 m above sea level (asl), which has few lakes but is well drained by periodic streams (Fig. 5). East of Crooked and Fisher lakes lies another rolling upland, 100 to 200 m asl, with a similar drainage pattern. A low region, less than 100 m asl with gentle relief, covers the rest of Victoria Lowland and contains most of the lakes and rivers on the island. Boothia Plateau, which is part of the Canadian Shield, includes the eastern third of Prescott Island and a narrow coastal band of Prince of Wales Island south to Transition Bay. The area is a rugged upland which rises abruptly to over 300 m asl, contains few lakes, and is drained by periodic streams (Manning and Macpherson 1961; Bostock 1970, 1972).

Palaeozoic sandstones, siltstones, limestones, dolomites, conglomerates, shales and gypsums, often in the form of unconsolidated glacial till, cover most of Victoria Lowland (Blackadar and Christie 1963; Fortier *et al.* 1963; Craig 1964). Most of the large lakes, including Crooked and Fisher lakes, are found in this region. The rugged Boothia Plateau region along the east coast is predominantly underlain by granitic gneisses of the Precambrian Shield which are sometimes overlain by sandstones, conglomerates, limestones, and shales.

The last Laurentide Ice Sheet covered Prince of Wales Island until between 9 and 10 thousand years ago and eskers, kames, drumlins and moraines are common, especially in the Ommanney Bay area (Craig 1964; Prest *et al.* 1972; Prest 1973). Maximum post glacial rebound was between 100 and 150 m above the present sea level and virtually all areas of the island that now contain lakes were once covered by ocean (Andrews 1972; Prest *et al.* 1972). Extensive raised marine beaches surround Crooked Lake and the Dolphin River outlet area (Plate 1; Wedel and Way 1976).

The climate on Prince of Wales Island closely resembles that of Bathurst Island (Thomson 1967; Fletcher and Young 1976; Maxwell 1981). There is a mean annual temperature range of 37 to 39°C with mean daily temperatures near or slightly below -33°C in January and between 3 and 5°C in July. The mean daily temperature remains below 0°C from August 25 to June 15 annually and surface based temperature inversions are frequent. Rainfall comprises 35 to 40% of the 125 to 150 mm of annual

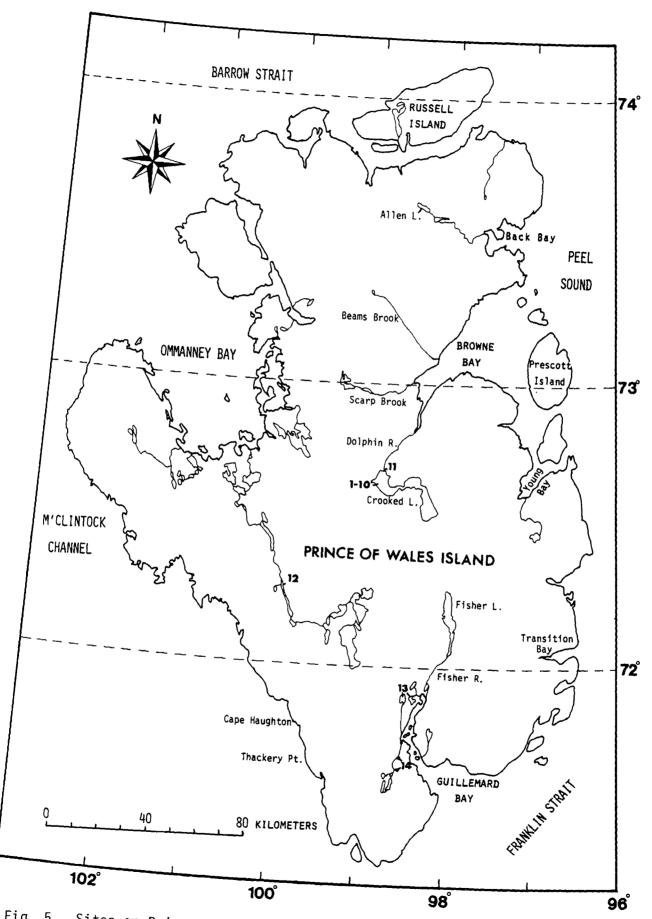


Fig. 5. Sites on Prince of Wales Island, N.W.T. sampled during the 1981 fish survey (1-11) or investigated during previous research (12-14).

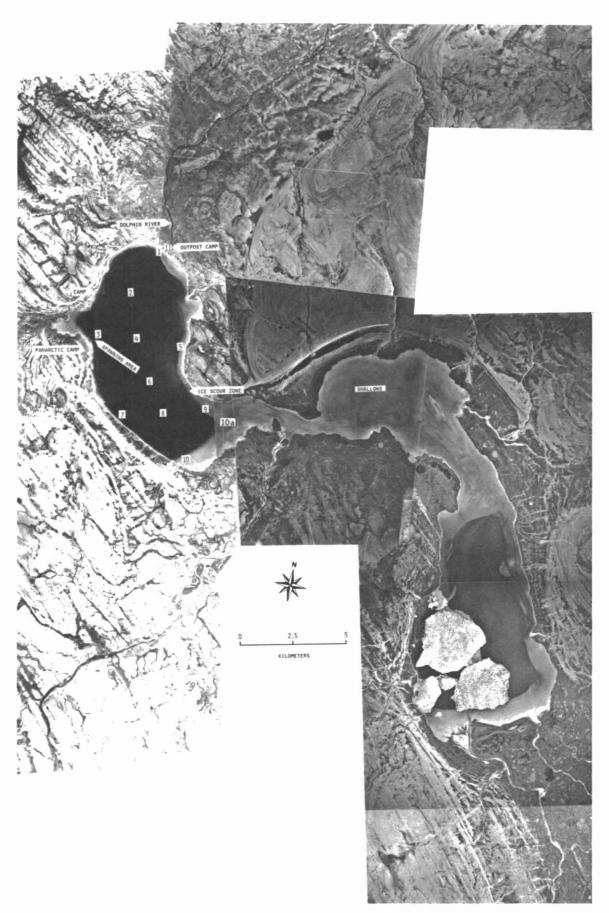


Plate 1. Photo mosaic of Crooked Lake, Prince of Wales Island, showing sampling sites and the probable area of Arctic charr *Salvelinus alpinus* spawning. Aerial photographs courtesy of the National Air Photo Library, Ottawa.

precipitation. During winter the plateaux are windswept and snow collects in sheltered low lying areas (Miller and Kiliaan 1980). Snowmelt and runoff on Prince of Wales Island occur in late June and early July. Peak stream flows normally occur as a result of snowmelt, although orographic precipitation may cause extreme fluctuations in stream discharges (Sekerak and Graves 1975; Wedel 1979). Sea ice surrounding the island is a mixture of first and multi-year types and the degree of summer clearing varies from year to year.

In 1981, lakes on the island were generally ice-free during August but shallow ponds were ice-covered by late August and edge-ice began forming on Crooked Lake in early September. Between August 20 and September 2, temperatures ranged from +13 to -12°C; there was only one frost free day; wind was generally from the southwest at 10 km/h, and it began snowing on August twenty-seventh.

Vegetation is sparse in exposed upland areas of Prince of Wales Island where lakes are nearly absent. Lichens are the main vegetative component in these areas, followed by mosses and a very few vascular plants. In dry gravelly regions, where topography offers slightly more protection, communities are dominated by Arctic avens and lichens. Saxifrages and/or Arctic willow, together with mosses and lichens dominate slopes and flats, and the sides and bottoms of valleys. Sedge-moss meadows are common in the Back Bay lowlands, throughout Allen, Crooked, and Fisher lake drainages, and on the coastal regions of southern Browne Bay (Manning and Macpherson 1961; Russell *et al.* 1979). Plants collected from the shoreline of Crooked Lake are listed in Appendix V (Table 22).

During their biological investigation of Prince of Wales Island, Manning and Macpherson (1961) found 36 bird and 8 terrestrial mammal species. Since then, muskox and caribou on the island have been studied to assess the possible impacts of the proposed Polar Gas pipeline development on their populations (Miller and Gunn 1978, 1979; Russell *et al.* 1979; Miller and Kiliaan 1980). During this survey, 6 terrestrial mammal species and 12 bird species were identified in the Crooked Lake area (Appendix VI, Table 26).

Since Polar Gas proposed the construction of a natural gas pipeline along the island's north-south axis, there have been a variety of environmental impact studies conducted (eg. Sekerak and Graves 1975; Miller and Gunn 1979; Russell *et al.* 1979).

Domestic, Commercial, and Sport Fishing

There are no permanent settlements on Prince of Wales Island but three families from Resolute have a year-round camp at Back Bay (Stevenson pers. comm.). Between June and September, they net and angle anadromous Arctic charr along the bay shore, at the outlet of Allen Lake, and occasionally from inner Browne Bay (Fig. 5). Residents of Resolute also have an outpost camp on Crooked Lake (Plate 1). The camp is used during April and May and in October as a base for hunters, trappers, and fishermen from Resolute who operate in the area. Arctic charr and least cisco are netted and, in October 1981, three men caught 450 cisco in two days. Cisco are a prized food fish that are difficult for Resolute residents to obtain. The catch success prompted a request that a 454 km commercial quota be established on Crooked Lake least cisco, so that the fish can be sold through the Resolute Co-operative. Arctic charr and least cisco are caught in Fisher Lake by hunters and trappers from Resolute who occasionally visit the area in spring or fall (Bissett 1967).

Spence Bay residents are reported to have fished lakes in the Young Bay area in conjunction with marine mammal hunting (Brice-Bennet 1976), but have not fished the area recently (Lyall pers. comm.).

Panarctic Oil Limited operated a private sport fishing camp on Crooked Lake during the summers of 1980 and 1981. Between August 29 and 30, 1981, some 66 Arctic charr, weighing between 2 and 6.5 kg apiece, were kept by eleven guests who each angled about 8 h. Total annual catch for the camp was an estimated 150 fish.

Previous Aquatic Research

There have been three previous aquatic biological surveys conducted on Prince of Wales Island. Manning and Macpherson (1961) caught anadromous Arctic charr in inner Browne Bay from July 7 until the nets were taken in on September 9, 1958. They felt that the charr came from either Scarp Brook or the Dolphin River. No fish were caught in the Dolphin River when it was sampled on July 9 and 10 or on August 12 and 13; both anadromous and lake-dwelling forms of charr were caught in Crooked Lake between July 12 and 15. Andadromous charr were caught in Young Bay and seen at the mouths of Fisher River, two streams between Thackeray Point and Cape Haughton, and at the mouth of a stream in the southeastern corner of Ommanney Bay. Sekerak and Graves (1975) investigated aquatic resources along the proposed Polar Gas pipeline, including measurements of the physical characteristics of lakes and streams, water quality, primary production in lakes, stream benthic invertebrates, and fish. They caught anadromous Arctic charr in inner Browne Bay, in Crooked Lake and at the head of Guillemard Bay. Lake-dwelling charr were caught in Beams Brook, at Crooked Lake and in several of its tributary streams, and in lakes on the west side of Guillemard Bay (sites 13 and 14). de March and Eddy (1976) conducted a synoptic survey of aquatic habitats along the proposed pipeline route and caught Arctic charr in Crooked and Fisher lakes and least cisco in Fisher Lake and Ommanney River (site 12).

Water quality and hydrologic regimes along the proposed pipeline route were studied by Wedel and Way (1976).

Survey tent camp on Crooked Lake, Prince of Wales Island, August 27, 1981.

Adult female Arctic fox (*Alopex lagopus*) in summer pelage inspecting Arctic charr netted from Crooked Lake.

Survey Results and Discussion

Crooked Lake was the only lake studied on Prince of Wales Island. It was sampled between August 20 and September 3 in order to obtain more detailed local information on fishes inhabiting the survey area.

Limnology

Crooked Lake is the catchment basin of a 2100 km² watershed which empties into the Arctic Ocean via Dolphin River (Plate 1). As its name implies, the lake is crooked, with distinct north and south basins separated by a wide shallows. It is the largest lake on the island with a surface area of 12,610 ha, length of 27.4 km, and shoreline development index of 2.336. The northwestern basin is 7 m deep with a level bottom and clear water; the southeastern basin is shallow and turbid. Bottom vegetation and sediment in the upper 2 to 2.5 m of the lake have been disturbed by ice action. In this zone of ice scouring, the bottom substrates are rocks, pebbles, and sand while below it they are mud and detritus. The largest inflowing streams enter the south end of the lake and flow only during the summer. Many of the streams draining into Crooked Lake only flow during spring runoff or heavy rains and remain dry over most of the year. The Dolphin River drops the 14 m from Crooked Lake to the Arctic Ocean over a distance of 30 km. In mid-August 1975 it had a discharge of 15.7 m^3/s (Wedel and Way 1976).

Crooked Lake is probably a cold monomictic lake and has the short open water period characteristic of high arctic lakes (Hutchinson 1957; Schindler et al. 1974b; de March et al. 1977). Breakup and freeze-up dates are unknown, but there was a 1.7 m layer of ice on Crooked Lake in late May and early June, 1974 (Sekerak and Graves 1975). The lake was ice-free before our arrival on August 20 but shore ice was beginning to form by the end of August. Shallow lakes and ponds in the area were frozen over by September 3. During a calm sunny period between August 20 and 21, the surface water temperature rose to between 5.9 and 7.2°C. As the lake is relatively shallow and exposed, the warming was transient and strong winds mixed and cooled the lake waters over the following weeks. In 1974, fall winds cooled the lake below 4°C before allowing ice to form and during the winter the lake's northwestern basin was isothermal at 1.0°C (Sekerak and Graves 1975). Patterned ground on the bottom of the shallow southwestern basin, which may indicate complete freezing, is not evident in the northwestern basin (Wedel and Way 1976). Streams entering Crooked Lake and the Dolphin River probably freeze solid in the winter.

Crooked Lake is a clear oligotrophic lake that is chemically similar to other high arctic lakes situated on sedimentary strata (Schindler *et al.* 1974b; Stewart and MacDonald 1981). Lake water pH was slightly basic in late August and calcium and chloride were the major ions

contributing to conductivity (Table 8). Dissolved organic carbon concentration was high, probably as the result of surface erosion caused by a recent snowmelt. Summer chemical composition of water in the Dolphin River was nearly identical to that in Crooked Lake (Sekerak and Graves 1975; Wedel and Way 1976).

Invertebrates

The crustacean zooplankters Limnocalanus macrurus and Cyclops scutifer were found throughout the northwestern basin of Crooked Lake during August (Table 7). Cyclops scutifer was the most abundant species with an average of 22.8 nauplii, 3.7 copepodids, and 0.5 adults per liter. Limnocalanus macrurus was less abundant with an average of 0.01 nauplii, 0.12 copepodids, and 0.12 adults per liter. Daphnia sp. were not collected in the zooplankton hauls but ephippia of the genus were found in the benthos (Appendix V, Table 23). The species may be benthic but was more likely entering winter dormancy. With mean abundances of 27.3 ind/L and 84.5 ind/L respectively, crustacean zooplankters and rotifers were abundant relative to populations in many other high arctic lakes (McLaren 1964; Rigler et al. 1974; Minns 1977; Stewart and MacDonald 1981).

The highest diversity and abundance of benthic invertebrates occurred below a depth of 6 m in the mud-detritus zone (Table 7). Ostracods and chironomids were the most abundant zoobenthic species. Two species of ostracods, one of which was scarce, and six species of chironomids were collected. Chironomids included: Abiskomyia virgo and Pseudodiamesa arctica which were most abundant, Paracladius alpicola, Protanypus mario, and two species of the genus Microspectra (Appendix V, Table 24). Foraminiferans, mermithid nematodes, the crustaceans Limnocalanus macrurus and Mysis relicta, and a trichopteran Apatania zonella were also present. Mysis relicta were abundant along the shallow sandy shores but, being strong swimmers, were probably quick enough to escape capture in the Ekman dredge that was used to collect benthic samples. There was a large emergence of chironomids, trichopterans, and tipulids during two warm windless days, August 20 and 21, but swarms soon disappeared when the weather cooled and winds rose.

Fishes

Crooked Lake contains two species of fish: Arctic charr, which are common throughout the area, and least cisco, which are at the extreme northeastern edge of their distribution. The more abundant charr occur in both lake-dwelling and anadromous forms while the cisco are strictly anadromous. They begin to spawn late in August and continue into September; spawning is not an annual event for individual fish. Both species are omnivorous and host a variety of metazoan parasites (Appendix II, Table 18).

Table 7.	Zooplanktor	ic and zoobenthic	species and their	abundance in Crooked	I Lake, Prince	of Wales Island (Fig. 5).
----------	-------------	-------------------	-------------------	----------------------	----------------	---------------------------

Sampling Sites	1	2	3	4	5	6	7	8	9	10	10a
Depth (m)	2	7	6	7	2	7	3	6.2	2.1	0.9	0.6
Secchi depth (m)	>2	5.5	3.3	6	>2	5.5	>3	4	>2.1	>0.9	>0.6
Secchi color (bright sun)		pale green	pale green	pale green		pale green		pale green			
Time of Day (h)	1420	1505	1540	1645	1638	1710	1735	1822	1757	1740	1710
Date	20/8/81	20/8/81	20/8/81	20/8/81	20/8/81	20/8/81	20/8/81	21/8/81	21/8/81	21/8/81	21/8/81
ZOOPLANKTON											
Haul depth	2.0	6.5	5.5	6.5	2.0	6.5	2.5	6.0	2.0	0.8	0.6
Surface water temperature (°C)	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	6.8	6.8	7.2
Species abundance (ind/L)											
Ph. Arthropoda Cl. Crustacea SCl. Copepoda O. Calanoida											
<i>Limnocalanus macrurus</i> copepodids	0.10	0.11	0.40	0.29	0.05	0.09	0.04 0.12	0.07 0.27	0.05	0.10	0.04
nauplii 0. Cyclopoida				0.03		0.23	0.12	0.03	0.20	0.50	
Cyclops soutifer copepodids	0.50	1.05	0.51 5.51	0.61 6.35	0.10	0.32	0.12	0.42	0.85	1.37	a 17
nauplii	20.15	20.00	39.67	42.97	1.65	32.11	1.08 5.60	4.32 31.57	4.35 29.45	5.88 23.00	0.17 5.00
Ph. Rotifera	78.70	54.32	176.38	148.75	45.30	106.18	9.16	107.62	131.05	28.62	32.17
ZOOBENTHOS											
Bottom type	sand	mud,	mud,	mud,	rock, sand	, mud,	sand,	anud,	sand	sand	sand
Species abundance (ind/m²)		detritus	detritus	detritus	algae	detritus	moss	detritus			detritu
Ph. Protozoa Q. Foraminiferida Ph. Nematoda	9								31		
F. Mermithidae Ph. Arthropoda Cl. Crustacea SCl. Copepoda		13	18	9					4		9
<i>Limnocalanus macrurus</i> SCl. Ostracoda SCl. Malacostraca		867	4 898	987		369		13 476	9	18	
Mysis reliota Cl. Insecta O. Diptera						9		18			
F. Chironomidae O. Trichoptera	36	560	524	764	80	311	18	320	4(4) ¹		22
Apatania sonslla Invertebrate eggs				13			4				

¹ larvae (pupae)

Table 8. Water chemistry data (means of n samples) for Crooked Lake, Prince of Wales Island.

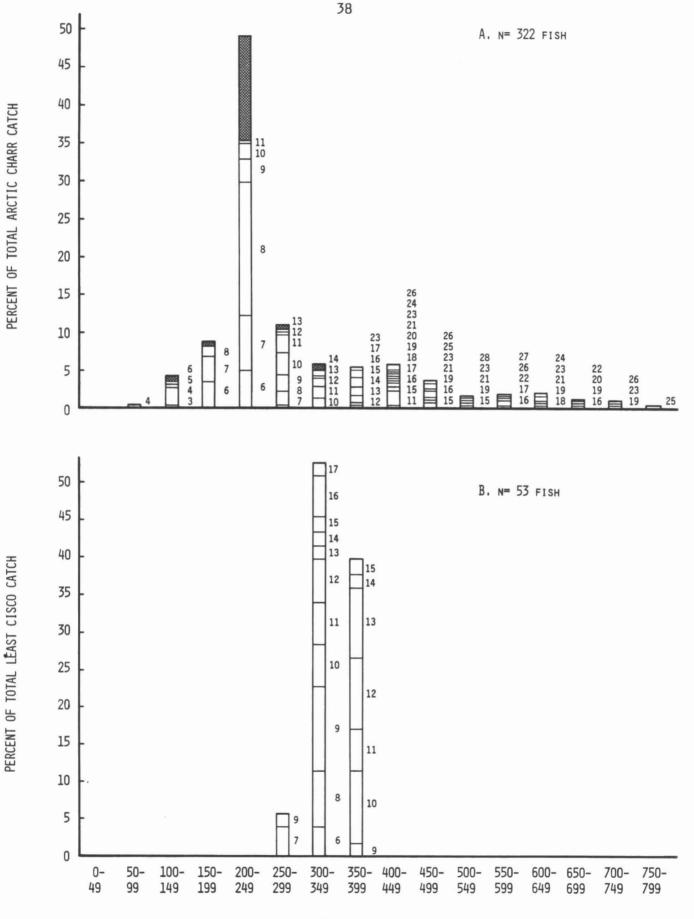
Sampling Site (Fig. 5)	4
Coordinates	73°39'N, 98°42'W
Date	2/9/81
Laboratory Data	
Number of samples (n)	4 7.69
pH	185
Conductivity at 25°C (µS/cm) Total dissolved nitrogen (µg/L)	185
Total dissolved phosphorus (µg/L)	8
Dissolved organic carbon (µMole/L)	287
Nutrients (µg/L)	
Suspended nitrogen	48
Suspended phosphorus	6
Suspended carbon	740
Chlorophyll A	0.5
<u>Major Ions</u> (mg/L)	
Socium	2.87
Potassium	0.47
Calcium	29.2 3.83
Magnestum	5.8
Chloride Sulphate	2.4

During August, charr were more abundant than cisco in Crooked Lake. An average of 38.8 charr and 6.4 cisco, weighing 16.5 and 2.6 kg respectively, were caught in 100 m of gillnet set over a 24 h period. These catch effort figures are conservative since one net was set for 160 h and anadromous fish were still re-entering the lake. The standing crop of fish in the lake was large compared with other lakes surveyed.

There were both fast and slow growing charr in Crooked Lake (Figs. 6 and 7). A 23 year old fish, for example, might be anywhere from 390 to 735 mm long. Where there was a wide range of sizes among fish of a given age, the fastest growing fish were in better condition and generally had much higher concentrations of strontium in their bones (Fig. 8; Appendix IV, Table 21). To build up strontium concentrations of 378 to 1069 μ g/g of bone tissue, the charr must have had a high dietary intake of strontium (Behrens Yamada et al. 1979). Since there was only 50 μ g Sr/L of lake water and 47.6 μ g Sr/g of lake sediment, and since dietary differences between fish in the lake cannot account for differences in their bone strontium concentrations, these fish likely fed at sea where strontium concentrations are much higher (Moreau and Barbeau 1979; Gaboury 1980). Slow growing charr, with 39 to 207 μ g Sr/g of bone tissue, were strictly lake dwelling. The exception was a large lakedwelling male charr, 26 years old and 710 mm long, with only 170 μ g Sr/g of bone tissue. Differences in growth rates were probably linked to differences in food availability between the marine and freshwater environments, but why one lake-dwelling fish outgrew its companions is unknown. High levels of Diphyllobothrium spp. in this fish suggest that it was a cannibal.

The charr population in Crooked Lake had a unimodal lengthfrequency distribution, instead of the bimodal distributions found in unexploited single species lakes (Johnson 1976, 1980, 1981, in press; Stewart and MacDonald 1981). There was a high proportion of young fish in the population (Fig. 6A, Table 9). In 1974, Sekerak and Graves (1975) caught many 1 year old fish and few fish aged 5 to 7 y. Seven years later, 40% of the charr caught were 8 year olds and the year classes between 12 and 14 y were weak (Fig. 7). The age-length relationship has remained roughly similar but there was a higher proportion of anadromous fish in the 1974 sample. The oldest and the largest charr caught were aged 29 y or 807 mm in 1974, and aged 28 y or 768 mm in 1981. Differences between the samples may be real or just sampling artifacts.

Anadromous charr were returning to Crooked Lake in late August and may have continued to return until mid-September. Some of the anadromous charr that were preparing to spawn in Crooked Lake were in moderate condition and had heavy encystations of *Diphyllobothrium* spp., suggesting that they had summered in the lake; others had few *Diphyllobothrium* spp. cysts and were in good condition, suggesting that they were recently returned from the sea (Appendix II, Table 18; Dick and Belosevic 1981).


Table 9. Summary of age, length, and weight data for fish in Crooked Lake, Prince of Wales Island.

Sampling Location		Length (mm)		Weight (Length-We	eight R	elationship ²	!	Age (y)		
Site # (Fig. 5) Coordinates	N	Mean (Range)	S.D.	Mean (Range)	S.D.	<u>Condition</u> Mean	S.D.	intercept (log a)	slope (b)	S.D. of b	r²	n	Mean (Range)	S.D.
Arctic charr														
1-10 72°40'N, 97°50'W	280	292 (97 - 768)	133	426 (6.5 -5100)	788	0.890	0.159	-5.453	3.163	0.028	0.978	269	10,9 (3 - 28)	
<u>Least cisco</u>		(37 - 700)		(0.5 -5100)									(3 - 20)	
1-10 72°40'N, 97°50'W	53	342 (285 - 376)	20	410 (230 - 605)	76	1.007	0.136	-2.135	1.869	0.269	0.486	53	11.0 (6 - 17)	2.6

i condition factor = weight in g $(fork \ length \ in \ ma)^{-3}\cdot 10^5$ 2 log weight in g = b log length in mm + log a

Table 10. Summary of sexual maturity data for fish from Crooked Lake, Prince of Wales Island.

							Maturity				Age of	Length of	
Site # (Fig. 5	(Fig. 5) Date	N	Sex	Immature	Mature	Near Ripe	Ripe	Ripe & Running	Spent	Unknown	youngest mature fish (y)	Length of youngest mature fish (mm)	
Arctic c	harr												
1-11	25/8-2/9/81	145	male	96	30	3	1	15			7	236	
		136 287	female total	89 185	31 61	7 10	6	3 18		£	8	242	
		207	cocar	105	01	10	'	10		6			
Least ci	sco												
1-10	25/8-2/9/81	46	male		1	14	6	25			6	320	
		53	female total		4	14	6	3 28			6	300	
			cotar		5	14	0	20					

LENGTH CLASS (MM)

Fig. 6. Age-frequency distribution by length class in the catches of (a) Arctic charr *Salvelinus alpinus* and, (b) least cisco *Coregonus sardinella* from Crooked Lake, Prince of Wales Island, N.W.T. Stippling indicates fish that were not aged.

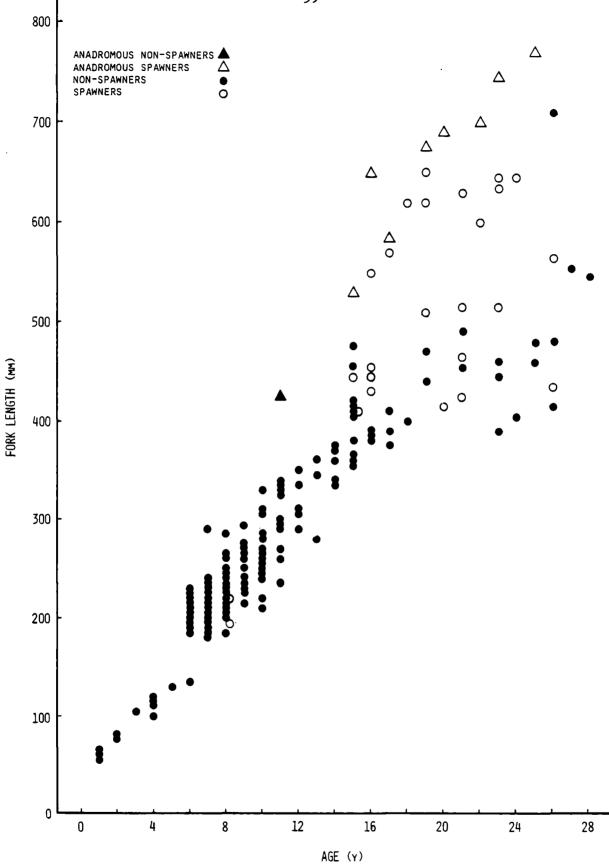


Fig. 7. Age-length distribution of Arctic charr *Salvelinus alpinus* from Crooked Lake, Prince of Wales Island, N.W.T. Anadromy was determined by bone strontium analysis; only the largest and smallest fish at selected ages were tested.

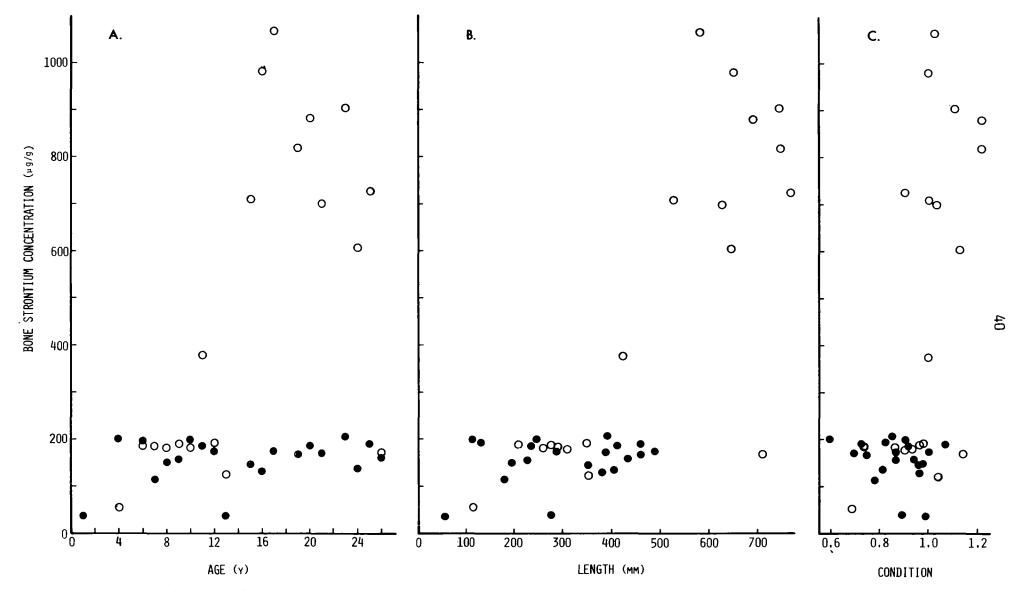


Fig. 8. Plots of (a) age, (b) length, and (c) condition versus bone strontium concentration for the largest (open circles) and smallest (closed circles) Arctic charr *Salvelinus alpinus* of each year class from Crooked Lake, Prince of Wales Island, N.W.T.

Charr caught during mid-July by Manning and Macpherson (1961) were a silvery green color. The small number of anadromous fish between the ages of 8 and 14 y, suggests that they had not yet returned to the lake (Fig. 7). Similar trends have been observed in other systems, where the largest anadromous charr are the first fish to leave the lake in spring and the first to return in fall (de March *et al.* 1977; Johnson 1980; Gyselman 1982).

Anadromous and lake-dwelling Arctic charr began to spawn during the last week of August and continued into September (Table 10). Most of the anadromous spawners were caught near the Panarctic fishing camp, on the west side of the northeastern basin of Crooked Lake (Plate 1). Bottom substrates in the area were mud. All but one of the anadromous charr were in spawning condition; they were a bright orange color and the males had well developed kypes (Fig. 7). Individual fish in the population did not spawn annually since only 36% of the mature charr were in spawning condition. The youngest mature charr were aged 7 y for males and 8 y for females and, with the exceptions of two 8 year old males, spawners were at least 15 years old (Table 10). Fish continued to spawn until at least 26 years of age so that an average lake-dwelling fish might spawn 3 or 4 times during its lifespan. The spawning frequency of anadromous charr could not be determined since not all of the anadromous charr had returned from the sea. The ratio of male to female fish caught was 1.07 to 1.0 while the ratio of male to female spawners was 1.19 to 1.0. After hatching, charr fry spent the summer in shallows where larger fish could not predate them.

Arctic charr in Crooked Lake were omnivorous (Fig. 9). Charr longer than 350 mm were cannibals and smaller charr made up 70 percent of their stomach contents. Mysis relicta, large chironomid larvae, algae balls (*Nostoc* sp.), and least cisco eggs were also important food items during late August. Smaller charr ate mostly small chironomid larvae, least cisco eggs, and algae balls. Whether algae balls were consumed for their food value or simply mistaken for eggs is unknown. Ostracods, hydracarina, trichopterans, copepods, plant material, and sand contributed little to the charr diet. Charr had not eaten and perhaps could not catch or eat the large cisco that inhabited the lake. Over 50% of the charr, including 8 of the 15 lake-dwelling spawners, had eaten before they were caught. Anadromous charr generally eat little while in freshwater (Johnson 1980; Gyselman 1982; Welch pers. comm.) and, in Crooked Lake, none of the anadromous spawners had eaten before they were caught. Charr caught in July and August 1974, ate the same foods as charr caught in August 1981 except that tipulids were also eaten (Sekerak and Graves 1975).

Metazoan parasites infected at least 65% of the charr caught in Crooked Lake. Thirty-two percent of the charr hosted Diphyllobothrium spp., 21% Cystidicola cristivomeri, 13% Salmincola carpionis, 5% Echinorhynchus gadi, 4% Eubothrium salvelini, 1% Philonema agubernaculum, and less than 1% Proteocephalus arcticus (Appendix II, Table 18;

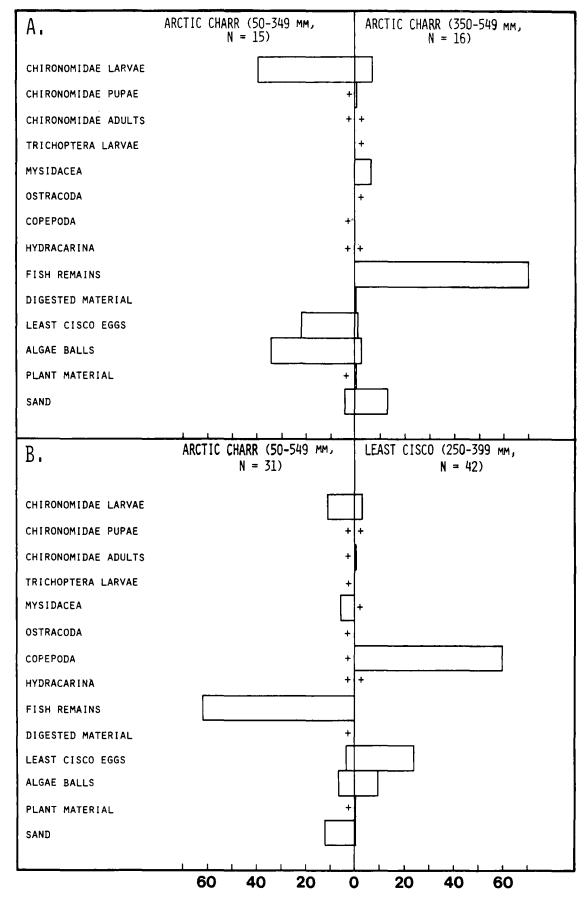


Fig. 9. Comparisons of stomach contents of (a) large and small Arctic charr Salvelinus alpinus and (b) Arctic charr and least cisco Coregonus sardinella caught in Crooked Lake, Prince of Wales Island, between 20 August and 3 September 1981.

FOOD ITEM

Appendix V, Table 22). With the exception of *S. earpionis* which has no intermediate host, the levels of parasite infection were related to the fish's diets. The only parasite species found infecting charr younger than 6 y was *Philonema agubernaculum*.

Charr were infected with the cestode *D. ditremum* either by eating *Cyclops scutifer*, the first intermediate host, or by eating smaller infected charr (Noble and Noble 1976; Henricson 1978; Dick and Belosevic 1981). Cannibalism may explain the large numbers of *Diphyllobothrium* spp. encysted in the gut walls of some of the lake-dwelling charr. The absence of *Diphyllobothrium* spp. cysts in several large anadromous charr suggests that they had recently returned from the sea, since the marine sojourn appears to cause a reduction in numbers of the parasite (Dick and Belosevic 1981). Charr that are heavily infected with this parasite are normally in poor physical condition and have shorter lifespans (Henricson 1978; Stewart and MacDonald 1981).

Charr were infected with the swimbladder nematode *Cystidicola* cristivomeri by eating Mysis relicta, a crustacean vector of the parasite that was abundant in Crooked Lake (Eddy and Lankester 1978; Black and Lankester 1981). None of the anadromous charr were infected by this parasite, suggesting that they had not fed on mysids while in freshwater. Eddy and Lankester (1978) found a similar phenomenon in Stanwell-Fletcher Lake on nearby Somerset Island (Fig. 1). Only 6% of the charr were infected with both Diphyllobothrium spp. and C. cristivomeri.

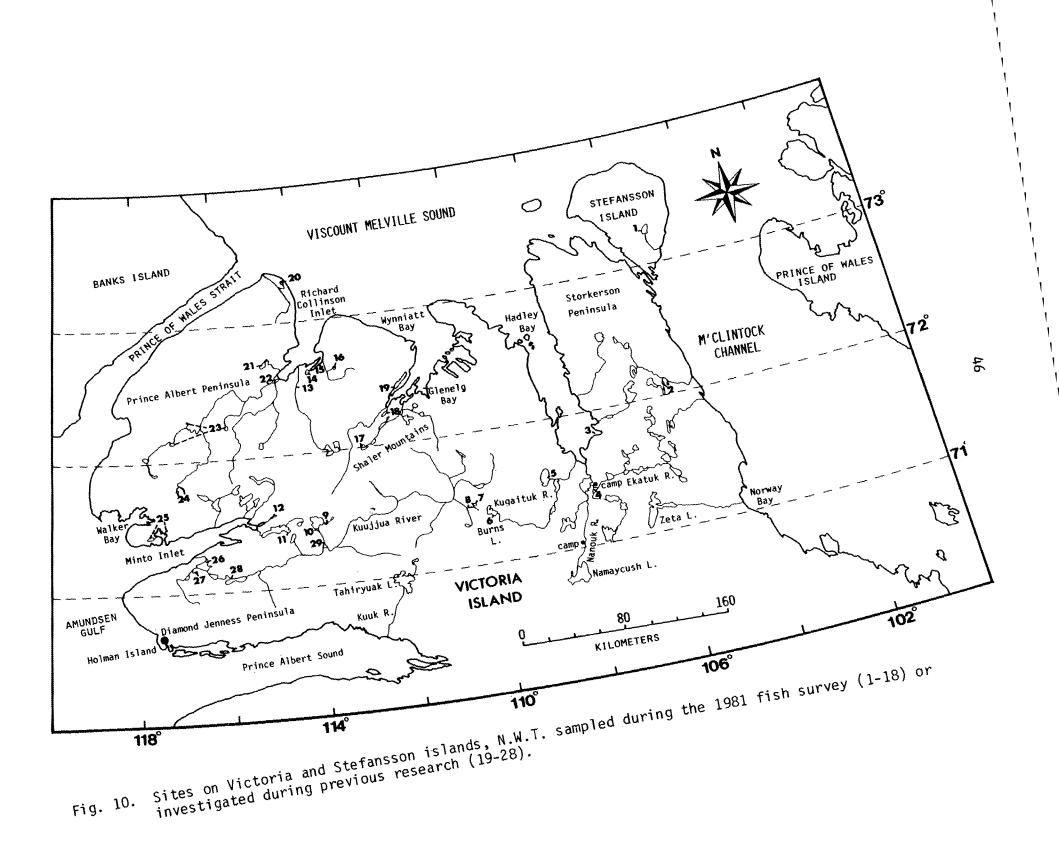
Least cisco had not been caught in three previous summer samplings of fish in Crooked Lake (Manning and Macpherson 1961; Sekerak and Graves 1975; de March and Eddy 1976). During late August and early September, only large mature cisco were caught, but Inuit fishing in October caught a wide size range of ciscos in the lake (Stevenson pers. comm.). Their apparent absence from Crooked Lake during the summer, the presence of only large mature cisco in late August, and the discovery of cisco scales along the shores of the Dolphin River, all suggest that the population was anadromous (McPhail and Lindsey 1970; Alt 1980). Fry were the only evidence of cisco in Fisher Lake and the Ommanney River (Fig. 5, site 12) during the summer of 1975 (de March and Eddy 1976).

The Crooked Lake least cisco grew larger, 376 mm, and lived longer, 17 y, than cisco in most northern populations (Table 9; McPhail and Lindsey 1970; Alt 1980; MacDonald and Stewart 1980; Chang-Kue pers. comm.). The length-frequency distribution was tightly clumped and there was a wide range of ages in each length class (Fig. 6B). The fish appeared to reach near maximum size at about age 9 y and then stop growing. There may be a barrier to further growth past age 9 y as energy is diverted from growth to reproduction. The cisco were spawning during late August and early September. Many of the adult fish were ripe and running and there were freshly spawned cisco eggs in the stomachs of both charr and cisco (Table 10; Appendix II, Table 18). The fish that had eaten cisco eggs, and 70% of the spawning cisco, were caught at three sites in the southeastern end of the northeastern basin of Crooked Lake (Plate 1, sites 5, 8, and 10). Over 90% of the cisco caught were male and the ratio of male to female spawners was fifteen to one. Male cisco were more mobile during the spawning season than females and began spawning at age 6 y. The youngest of three spawning female cisco suggests that individual fish do not spawn annually.

Whereas Alt (1980) reported that Alaskan least cisco cease feeding prior to spawning, 44 of the 48 cisco that were spawning in Crooked Lake had fed before they were captured (Appendix II, Table 18; Appendix III, Table 20). There was limited dietary overlap between the charr and cisco (Fig. 9B). Cisco fed mainly on a crustacean zooplankter, *Cyclops scutifer*, which was abundant in the lake, and to a lesser extent on eggs of their own species, algae balls (*Nostoc* sp.), and chironomids. *Mysis relicta*, hydracarina, and plant material contributed little to their diet. Only the male ciscos had eaten cisco eggs. They were more efficient egg consumers than the charr, eating more eggs and fewer algae balls. Unlike the charr, the cisco were not cannibals.

Metazoan parasites infected at least 96% of the least cisco caught in Crooked Lake (Appendix II, Table 18). Ninety-six percent of the cisco hosted either *Diphyllobothrium dendriticum* or *D. ditremum*, 8% *Proteocephalus* sp., and 6% *Echinorhynchus gadi*. The high incidence of infection with, and moderate to heavy encystations of, *Diphyllobothrium* spp. relate directly to the heavy consumption of *Cyclops scutifer*, the parasite's intermediate host (Noble and Noble 1976; Hendricson 1978). *Proteocephalus* sp. and *E. gadi* were found in few fish and at low levels of infection. Very little information is available on parasitism of least cisco (Margolis and Arthur 1979).

Victoria and Stefansson Islands


General Description

Victoria Island, with a surface area of 216,000 km², is the second largest island in the Canadian Arctic Archipelago. It is situated south of Viscount Melville Sound and neighboured by Banks Island to the west, Prince of Wales Island to the east, and the mainland to the south (Fig. 1). Stefansson Island, to the northeast, is almost an extension of Victoria Island's Storkerson Peninsula.

Victoria and Stefansson islands are divided into two physiographically distinct areas, the Shaler Mountain Belt and Victoria Lowland, both part of the Arctic Lowlands physiographic region (Bostock 1970, 1972). The Shaler Mountain Belt stretches from Amundsen Gulf to Hadley Bay (Fig. 10). It is bordered on the south by the north side of Prince Albert Sound and the west side of Hadley Bay, and on the north by the north side of Minto Inlet and the south side of Glenelg Bay; it includes the Shaler Mountains and Diamond Jenness Peninsula. This northeasterlytrending belt of Precambrian rocks is a region of plateaux and ridges, steep escarpments, linear valleys, buttes and cuestas. Summits are typically 200 to 400 m above sea level (asl) with local elevations reaching 550 m asl. Relief, particularly along the coasts, may change abruptly by over 200 m, and many of the large deep lakes in this region have precipitous outlet streams. Most of the rivers and streams are seasonal, although the Kuujjua River may flow year-round. Stefansson Island and the remainder of northern Victoria Island consist of monotonous lowlands, underlain by Palaeozoic sedimentary rock and dotted by innumerable lakes. Much of the lowlands lies within 200 m of sea-level and the highest ground is about 300 m asl. Local relief ranges from a few to over 60 m and glacial landforms dominate the landscape, causing rivers to follow irregular courses and drainage to be poor (Thorsteinsson and Tozer 1962; Fyles 1963).

Stefansson Island and much of Victoria Island are underlain by Palaeozoic dolomites, limestones, sandstones and shales (Thorsteinsson and Tozer 1962, 1970; Fyles 1963). The Shaler Mountain Belt of Victoria Island is comprised of some 3,000 m of sandstone, siltstone, shale, limestone, dolomite, and gypsum often overlain by up to 300 m of basaltic lava and conglomerate. Both the sedimentary and volcanic rocks enclose numerous gabbro sills. Quartzite, which underlies the sedimentary and volcanic layers, is only apparent in a small area near the southwest end of Hadley Bay where it has been exposed by uplift (Campbell 1981).

Victoria and Stefansson islands were covered by the Laurentide Ice Sheet and there is evidence of an older, possibly early Wisconsin glaciation (Fyles 1963). Drumlins, moraines, eskers, and raised marine beaches are all apparent when the country is viewed from the air. Together with radiocarbon dates of marine shells, found at over 80 m asl, they suggest that the last glaciers retreated in a southwesterly

direction between 8,500 and 12,500 years ago (Fyles 1963; Prest *et al.* 1972; Prest 1973). Nearly all of the southeastern half of Victoria Island was once covered by ocean and since glaciation the islands have risen between 100 and 200 m asl, from northeast to southwest (Andrews 1972).

Climatic variation is greater on Victoria Island than on most other arctic islands due in part to its large size, close proximity to the mainland barrens, and variable coastal ice conditions. Multi-year sea ice, prevalent in Viscount Melville Sound, reduces the maritime effect on Stefansson and northeastern Victoria islands, causing climate there to resemble that on Bathurst Island. There is a mean annual temperature range of 38 to 40°C, with mean daily temperatures near -33°C in January and near 5°C in July (Thompson 1967; Fletcher and Young 1976; Maxwell 1981). The mean daily temperature remains below 0°C from August 22 to June 10. Precipitation in this area is 100 to 125 mm annually of which between 35 and 40% falls as rain. Southern and central Victoria Island have a climate very similar to the nearby mainland. This is due mainly to the close proximity of the two large land masses and to the relatively narrow and shallow channel separating island and mainland. This area has a greater mean annual temperature range than the rest of the island, 42 to 45°C, with mean daily temperatures near -35°C in January and reaching 10°C in July. The mean daily temperature remains below O°C from the end of August until about the second week in June. Precipitation in this area is 100 to 150 mm annually of which between 50 and 60% falls as rain. The west coast of the island has a more moderate climate due to the maritime effect of open waters to the west. This is reflected in a smaller mean annual temperature range, 36°C, and mean daily temperatures above -30°C in January and near 8°C in July. Mean daily temperature remains below 0°C from the end of August until the last week in May. Precipitation is higher than elsewhere on the island, 125 to 175 mm, of which 45 to 55% occurs as rainfall.

Wind direction on the islands varies with location and season but the mean wind speed is generally 10 to 15 km/h. The net annual radiation received at the surface of southwestern Victoria Island, 15 kly, is nearly double that on Bathurst and Melville islands. Ice on Victoria Island's lakes and rivers begins breaking up in June, although some deep sheltered lakes in the Shaler Mountain Belt still had ice in mid-August. Freeze-up begins in late August and early September but may not be complete in some areas until October (Fletcher and Young 1976; Maxwell 1981; Dahlke pers. comm.).

Vegetation is more abundant and varied on Victoria Island than on the islands north of Viscount Melville Sound. Porsild (1957, 1964) and Porsild and Cody (1980) have described many of the plants that occur on the island. During the survey, a variety of bird species were identified, including sandhill crane, whistling swan, and yellow-billed loon (Appendix VI, Table 26). Peary caribou and muskox were the most evident mammal species. There has not been the interest in natural resource development on Victoria Island that there has been on Melville and Bathurst islands, with the consequent lack of environmental research. However, the recent proposal by Polar Gas to build a natural gas pipeline along the western side of Victoria Island has and will stimulate research on the environmental impacts of pipeline development (eg. Williams *et al.* 1981).

Holman Island, one of two communities on Victoria Island, is the only community within the study area (Fig. 1). Established in 1940, when the Hudson's Bay Company moved its post there from Fort Collinson, it has a population of 358 persons and a thriving arts and crafts industry. Hunting, trapping and fishing remain important livelihoods for the residents. Cambridge Bay, a D.E.W. Line site and community of 907 persons, is situated on the south coast of Victoria Island. Its economy is based on commercial fishing and wage employment (Government of the Northwest Territories 1982).

Domestic, Commercial, and Sport Fishing

The main domestic fishing harvest on northern Victoria Island takes place near the outlet of Tatik Lake, on the Kuujjua River (Fig. 10, site 26; Dahlke pers. comm.; Kataoyak pers. comm.; Nigiyok pers. comm.). In early October, as soon as the snow and ice conditions permit travel, Inuit families travel from Holman Island to camp on the southwest shore of the lake. Up to twenty-nine fishermen are involved in the harvest and they catch between 2000 and 4000 Arctic charr, mainly anadromous, and 200 to 600 lake trout annually (Dahlke pers. comm.). Fish are caught using short gill nets set under the ice. They are frozen intact and either taken to the community or stored in ice houses for use later in the winter. In the spring, Tahiryuak Lake and a variety of smaller lakes (eg. sites 25 and 27) are fished, usually in conjunction with hunting or trapping activities (Farguharson 1976; Nigiyok pers. comm.). Arctic charr and lake trout are caught by jigging through holes cut in the ice. Summer fishing is generally coastal and Arctic charr, sculpin and cod are angled or caught in gill nets at the Kuujjua River mouth, along the shores of Minto Inlet, and offshore the community in July. Sculpin are not utilized or sought after, since they tangle the nets and have little food value, but the Holman Islanders value cod for their tasty livers (Nigiyok pers. comm.).

There are quotas on the number of anadromous Arctic charr that can be harvested commercially in the Norway Bay area (71°05'N, 104°48'W; 4500 kg round weight) and in the Kuujjua River-Minto Inlet area (71°16' N, 116°48'W; 600 kg round weight; Manual of Fisheries Acts and Regulations 1981). There is no record of commercial fishing in the Norway Bay river area, but the Kuujjua River-Minto Inlet area quota has been opened regularly and fish caught are sold through the Holman Island Co-operative. Arctic Char Lodge and High Arctic Sportfishing Camps both operate outpost sport fishing camps near Hadley Bay on northern Victoria Island (Fig. 10). Both camps operate between mid-July and the last week of August and guests angle for trophy lake trout and Arctic charr. In 1981, during 679 man-hours fishing, guests of the High Arctic Sportfishing outpost camp angled 150 Arctic charr and 64 lake trout from the Nanouk River system (Carder pers. comm.). Forty-nine charr and 14 trout were kept and the remainder were released.

Inuit employees of Arctic Char Lodge, from Cambridge Bay, angle in the Nanouk and Ekatuk river systems for lake trout and Arctic charr. Fish are eaten fresh or dried for winter use (Amagonalk pers. comm.; Avaligak pers. comm.).

Until 1975, operators of the Great Bear Lodge, on Sawmill Bay of Great Bear Lake, flew anglers to an outpost fishing camp at the mouth of the Kuujjua River. Angling began in mid-July and continued through August. Between 1966 and 1975, 809 anglers kept 2479 anadromous Arctic charr (Dahlke pers. comm.). The outpost camp closed in 1976 as a result of poor catches the previous year and high travel costs.

There is no domestic or commercial fishing on Stefansson Island, but the largest lake on the island is occasionally fished by pilots and passengers of aircraft flying through the area. Large lake trout and Arctic charr can be caught in the lake (Fig. 10, site 1).

Previous Aquatic Research

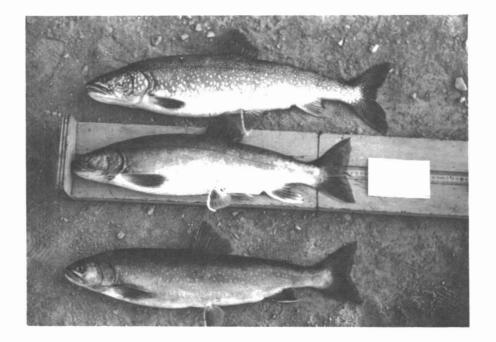
Interest in the commercial potential of Arctic charr stocks has prompted several detailed, long term studies of charr biology in the Cambridge Bay area (Fig. 1). Anadromous charr, which have a greater commercial potential than landlocked and lake-dwelling charr, have had their life history and general biology studied with a view toward optimizing commercial yields through better understanding of the populations involved (Johnson 1975, 1976, 1980, in press; Kristofferson and Carder 1980; Carder 1981; Kristofferson and McGowan 1981; Gyselman 1982). Landlocked charr stocks in this area are often unexploited and provide valuable examples of fish populations that are free from human interference. For this reason, they have been studied with a view toward gaining a wider understanding of fish population ecology (Johnson 1962, 1975, 1976, 1980, 1981, in press; Hunter 1970).

While there is a wealth of information available on aquatic ecosystems immediately to the south, research within the study area on Victoria Island is scant. Johnson (1973, 1975, 1976, 1980, in press, pers. comm.) caught lake trout, lake whitefish *Coregonus clupeaformis*, Arctic cisco *C. autumnalis*, least cisco, and ninespine stickleback *Pungitius pungitius* in Namaycush Lake and lake trout that had eaten both Arctic charr and fourhorn sculpin in Zeta Lake (Fig. 10). Williams *et al.* (1981) caught Arctic charr and lake trout in Tahiryuak Lake and at three other locations along the proposed Polar Gas pipeline route through the study area (sites 20, 21, 29). Arctic charr, lake trout, least cisco, whitefish (*Coregonus* sp.), ninespine stickleback, and fourhorn sculpin have all been reported to occur in the Kuujjua River (sites 26 and 28; McAllister pers. comm.; Nigiyok pers. comm.). Maurice Nigiyok (pers. comm.) of Holman Island reported catching Arctic charr (sites 22, 23, 25) or Arctic charr and lake trout (sites 19, 24, 26) in a variety of lakes and rivers on Prince Albert Peninsula. At present, both the domestic fishery at Tatik Lake and the sport fisheries near Hadley Bay are being monitored by researchers from the Freshwater Institute in Winnipeg (Carder pers. comm.; Dahlke pers. comm.).

A few species of marine fishes have been collected from within the study area off the west coast of Victoria Island (Appendix I, Table 15). As with the freshwaters, there has been far more marine research along the south coast of Victoria Island, near Cambridge Bay.

Survey Results and Discussion

Lakes sampled on Victoria Island were oligotrophic and had surface temperatures below 8.5°C in mid-August (Table 12). Six of the lakes tested were situated on sedimentary strata while the lake basin of a seventh was composed of igneous rock. All were ice free in mid-August, but several of the deep sheltered lakes in the Shaler Mountain Belt remained nearly ice covered (sites 9, 10, 11, 18). Surface waters of the lakes were chemically similar.


Lake water pH was slightly basic and ion concentrations were generally low (Table 12). In lakes on sedimentary strata conductivities ranged from 120 to 200 μ S/cm, with the exception of a low lying coastal lake which had a conductivity of 350 μ S/cm (site 14). Calcium and magnesium were the major contributing ions except in the coastal lake where higher sodium and chloride concentrations also contributed to the conductivity. The lake on igneous rock had a low conductivity, 60 μ S/cm, probably because it lacked the calcium, magesium, and sulphate inputs from sedimentary erosion. Potassium concentrations were greatest in the low coastal lake (site 14, 7 m asl) and least in the high plateau lakes (sites 16 and 17, 170 to 200 m asl). Johnson (1964) found very similar ionic concentrations in Washburn (70°05'N, 107°30'W) and Zeta lakes. Concentrations of dissolved and suspended carbon, nitrogen and phosphorous, and chlorophyll A were similar to those found in lakes with sedimentary basins on Bathurst (Table 2), Cornwallis, and Devon islands (Stewart and MacDonald 1981). One shallow silty lake (site 2) had a relatively high dissolved organic carbon concentration, perhaps as a result of the erosion of unconsolidated surface materials.

Sampling Site (Fig. 10) Coordinates	2 72°06'N, 105°37'₩	4 71°24'N, 107°41'W	7 71°27.5'N, 110°25'W	12 71°32'N 114°57'W	14 72°37'N, 113°50'W	16 72°33'N, 113°16'W	17 72°00'N, 112°41'W
Date	13/8/81	13/8/81	11/8/81	8/8/81	8/8/81	8/8/81	9/8/81
Depth (m)	1.5	2	10.5, 17	22	9	5	2.5
Number of Samples	2	2	2	2	2	2	2
Ph. Arthropoda							
Cl. Crustacea							
SC1. Copepoda							
0. Calanoida							
Limnocalanus maorurus		0.04			0.23		
copepodids					0.62		
nauplii	1.00	0.22	3.94	0.51	0.03 0.19	0.76	0.12
Diaptomus sicilis copepodids	3.26	2.93	1.46	2.66	1.97	2.78	2.40
nauplii	1.33	0.36	0.72	1.28	1.61	0.14	2.28
0. Cyclopoida	1.55	0.50	0.72	1.20	1.01	0.14	2.20
Cyclope scutifer	1.60	0.67	3.00	1.28		0.10	0.44
copepodids	4.67	1.42	12.06	17.62		0.90	4.28
nauplii	4.40	5.69	1.60	1.01		0.06	6.04
Cyclopinidae			<0.01				
SC1. Branchiopoda							
0. Cladocera							
Daphnia longiremis		0.58	0.32	0.77			0.01
Daphnia longispina mioroosphala			0.05	0.18			
Daphnia middendorffiana			0.06	0.50			
Daphnia middendorffiana x pulex (?)			0.08	0.01			
Daphnia sohodleri Chydorus sphaericus				0.01			0.04
•							
Total ind/L	16.26	11.91	23.29	25.82	4.65	4.74	15.61
Number of species	2	4	7	6	2	2	4
Ph. Rotifera	32.86	56.89	10.48	35.03		1.70	26.08

Table 11. Zooplankton species and their abundance (mean number of individuals per litre) in seven lakes on Victoria Island.

Table 12. Water chemistry data (means of n samples) for seven Victoria Island lakes.

Sampling Site (Fig. 10)	2	4	7	12	14	16	17
Date	13/8/81	13/8/81	11/8/81	8/8/81	8/8/81	8/8/81	9/8/81
Field Data							
Surface water temperature (°C)	6.0	8.4	7.6	7.7	4.8	8.0	8.2
Depth (m)	2.0	3.0	28	23	11	6.5	3.0
Time of day (h)	1730	1620	1845	1515	1750	1710	2005
Light conditions	overcast, fog	overcast, fog	cloudy. wind	overcast	overcast	overcast	overcast
Secchi depth (m)	>2	>3	11	11	4	>6.5	>3
Secchi color	pale green	pale green	pale blue	pale green	pale green	pale green	liaht gree
Laboratory Data							
Number of samples (n)	2	2	2	2	2	2	2
pH	7.83	8.05	7.86	7.91	8.04	7.91	7.54
Conductivity at 25°C (µS/cm)	150	120	200	140	350	150	60
Total dissolved nitrogen (µg/L)	200	210	145	140	120	90	120
Total dissolved phosphorus (ug/L)	7	8	6	6	8	6	8
Dissolved organic carbon (µMole/L)	420	250	215	215	190	180	130
Nutrients (ug/L)							
Suspended nitrogen	40	26	46	36	42	21	36
Suspended phosphorus	4	3	6	2	4	2	2
Suspended carbon	380	254	440	320	396	220	333
Chlorophyll A	0.7	0.4	0.2	0.4	0.8	0.2	0.3
Major Ions (mg/L)							
Sodium	1.15	0.76	2.26	1.76	25.2	0.62	0.78
Potassium	0.31	0.26	0.28	0.51	1.15	0.13	0.16
Calcium	17.4	15.7	21.1	20.8	23.8	16.50	5.98
Magnesium	7.90	6.32	11.4	11.6	13.4	2.73	2.95
Chloride	2.0	1.2	6.1	3.0	50.5	1.0	1.1
Sulphate	2.0	1.6	1.4	4.6	3.5	1.2	0.8

Possible hybrid (center) between lake trout (*Salvelinus namaycush*, top) and Arctic charr (*S. alpinus*, bottom) from a lake on Stefansson Island (75°15'N, 105°12.5'W).

George Benoit angled lake trout from the lake on Stefansson Island near the northeastern edge of the species range.

Crustacean zooplankton on Victoria Island were least abundant in the northern lakes (sites 2, 14, 16; Table 11; Appendix V, Table 23). They contained Diaptomus sicilis and Limnocalanus macrurus (site 14) or Cyclops scutifer (sites 2 and 16). In mid-August more of the individuals were in the copepodid stage of development than were adults or nauplii. Travelling in a southwesterly direction, both the abundance and diversity of species increased. Daphnia longiremis and the three previously mentioned species were all present in a lake on the Nanouk River (site 4); most of the Cyclops scutifer were nauplii. Further to the west, in the Shaler Mountains, Chydorus sphaericus appears and again, nauplii and copepodids were the dominant stages (site 17). In the lakes draining into Minto Inlet five other pelagic species occur, Daphnia longispina microcephala, D. middendorffiana, D. middendorffiana x pulex and D. schodleri (site 17) or Chydorus sphaericus (site 12). These lakes have the greatest diversity of planktonic crustacean species so far reported from the Canadian Arctic Archipelago (Patalas pers. comm.). Cyclops scutifer copepodids were the most abundant crustacean zooplankters in mid-August. Keyhole Lake, on southern Victoria Island (69°22'45"N, 106° 14'W), had a species composition similar to the lake sampled in the Shaler Mountains, except the diaptomid species reported was Diaptomus tyrellii (Hunter 1970). Cyclops capillatus and Eurycercus lamellatus, which are not readily succeptible to net capture, were found in the stomachs of lake trout (site 18) and Arctic charr (site 13) respectively. Harpacticoid crustaceans were conspiciously absent from the samples and rotifers were not abundant. Asplanchna sp., a genus of large predatory rotifers, was found inhabiting two lakes in the Shaler Mountain Belt (sites 12 and 17).

Representatives of a marine cyclopinid species were found in one lake which had an elevation of over 650 m asl and was well inland (site 7). Cyclopinids were also found in Garrow Lake on Little Cornwallis Island (Table 1) and, like *Limnocalanus macrurus*, may be a glacial relict species. Johnson (1964) reported *Limnocalanus macrurus* from several lakes near Cambridge Bay but did not find them in Zeta or Namaycush lakes.

Arctic charr and/or lake trout were caught in all but two of the lakes sampled on Victoria and Stefansson islands (Appendix II, Table 19). A shallow silty lake on the Storkerson Peninsula (site 2) and an isolated hilltop lake near Richard Collinson Inlet (site 16) both appeared to lack fish. Reasons why one lake contained charr or trout while another contained both species remain unclear. The species seem to occur together in lakes where charr have, or recently had, access to the ocean, or in small, deep isolated lates (sites 1, 4, 5, 9, 14). Fish with morphological characters intermediate between lake trout and Arctic charr were caught on Stefansson Island and may have been trout-charr hybrids. While whitefish, cisco and stickleback inhabit southern Victoria Island they were not caught in northern lakes (Johnson 1975, 1976). Catches per unit of sampling effort were highest when both trout and charr inhabited a lake but in general fish were neither abundant nor large. Where both species were present, between 5 and 21 fish or between 9 and 27 kg of fish were caught per 100 meters of net set in 24 h; when a single fish species was present, catches ranged from 4 to 16.5 fish or between 0.6 and 9.7 kg of fish/100 net m/24h. Anadromous fish inhabiting a system would substantially increase the yields.

Whether charr and trout occur together or alone, the trout appear to live longest and grow larger than all but the largest anadromous charr (Table 13). Only the Nanouk and Ekatuk river systems, Tatik Lake, and two rivers which drain into Richard Collinson Inlet (sites 13 and 22) are known to contain anadromous charr. Anadromous charr may also enter the Kugaituk River, perhaps as far as Burns Lake, lakes on the north side of Minto Inlet (site 25), and some of the river systems on the east side of Storkerson Peninsula.

On northern Victoria and Stefansson islands, spawning probably begins in early September and continues into October for both lake trout and Arctic charr. The low ratio of spawning to mature fish, 0.22 for charr and 0.55 for trout, suggests that individual fish do not spawn annually (Table 14; Appendix II, Table 19). The overall sex ratio favoured males by a margin of 1.7 to 1.0 in charr and 1.06 to 1.0 in trout. Males and females of both species began to mature by age 6 to 10 y, although some precocious males matured by 4 years of age.

Both charr and trout fed on a wide variety of items (Appendix II, Table 19; Appendix III, Table 20). Diet appears to be related both to habitat type and to size of the fish. Whether they were together or apart the diets of both species were quite similar in lacustrian environments. During mid-August, chironomids and fish formed the bulk of the diet for both species. Plant material, algae balls (*Nostoc* sp.), small mammals, and a variety of insects and crustaceans made up the remainder of their diets. The smaller fish favored smaller food items like dipterans and notostracans while larger fish were often piscivorous, sometimes cannibalistic. In river environments, where chironomids were scarce, charr ate trichopterans, notostracans, and tipulids (site 13). In one slightly brackish lake the lake trout ate mostly Mysis relicta while charr ate the isopod *Mesidotea entomon*. Amphipods, trichopterans, and chironomids made up the bulk of the remaining food. Both of these glacial relict species were abundant in the lake and the isopods, which may have lived in a more saline deeper layer of the lake, were generally smaller than their marine counterparts. Charr and trout caught in the deeper nets set in the lake were silver in color.

Table 13. Summary of age, length, and weight data for fish from Victoria and Stefansson islands.

Sa	mpling Locations	_	Length (ma)	Weight	(g)			Length-We	ight Rela	ationship 2	_	Age (y)	
Site (Fig. 1		N	Mean (Range)	S.D	Mean . (Range)	S.D.	<u>Conditio</u> Mean	<u>n Factor</u> l S.D.	y intercept (log a)	slope (b)	S.D. of b	r2	Mean n (Range)	S.D.
Arctic	charr													
6	'71°23'N, 109°55'W	17	379 (145 - 440)	65	522 (27.5- 640)		0.914	0.115	-4.802	2.914	0,128	0.972	17 15.8 (4-29)	5.7
14	72°37'N, 113°50'N	10	392 (288 - 444)	45	569 (240 - 850)		0.923	0.074	-4.320	2.723	0.1 99	0.959	10 15.3 (10 - 24)	4.3
lake tr	out													
1	75°15'N,105°12.5'N	13	599 (461 - 902)		2590 (1020-8440)	2242	1.023	0.083	-4.900	2.967	0.114	0.984	12 26.5 (21 - 50)	
5	71°31'N, 108°33'N	9	369 (107 - 688)		1249 (9.5 -3100)		0.904	0.138	-5.460	3.169	0.031	0.999	7 18.6 (6-31)	
7	71°27.5'N,110°25'N	20	478 (103 - 665)	151	1362 (9 -2900)	735	0.997	0.155	-5.249	3.092	0.075	0.990	19 36.8 (6-56)	
11	71°25.5'N,114°37'N	10	567 (483 - 756)	88	2030 (1000-4400)	965	1.073	0.186	-3.818	2.579	0.379	0.853	10 27.4 (14 - 36)	7.4
12	71°32'N, 114°57'N	19	554 (99 - 844)	150	1763 (10 -3100)	677	1.049	0.459	-4.058	2.648	0.213	0.901	18 32.6 (21 - 50)	
14	72°37'N, 113°50'	1 6	488 (450 - 507)		1447 (1100-1680)	228	1.248	0.171	-2.060	2.142	1.663	0.293	6 26.8 (19 - 32)	
17	72°00'N, 112°41'1	i 10	295 (103 - 591)	222	747 (7-2150)		0.908	0.188	-5.601	3.235	0.041	0.999	6 17.2 (7-32)	

 1 condition factor = weight in g-(fork length in mm) $^{-3}\cdot10^5$ 2 log weight in g = b-log length in mm + log a

Table 14.	Summary	of	sexual	maturity	data	for	fish	from	Victoria	and	Stefansson	islands,	
-----------	---------	----	--------	----------	------	-----	------	------	----------	-----	------------	----------	--

Site # (Fig. 10)	Date	N	Sex	Maturity							Age of	Length of
				Immature	Mature	Near R1pe	R1pe	Ripe & Running	Spent	Unknown	youngest	youngest mature fish (mm)
Arctic char	r											
6	12/8/81	12 5 17	male female total	1 1	9 4 13	2 1 3					13 12	382 376
14	9/8/81	8 2 10	male female total		7 2 9	1 1					10 14	288 390
lake trout												
1	2/8/81	8 5 13	male female total		1 1	8 4 12					22 21	462 451
5	12/8/81	4 4 8	male female total	3 2 5	1	1 1 2					26 28	610 688
7	12/8/81	12 8 20	male female total		3 3 6	9 5 14					8 6	238 103
11	7/8/81	8 2 10	male female total		3 2 5	5 5					14 31	483 582
12	8/8/81	8 10 18	male female total		4 9 13	4 1 5					23 20	400 440
14	9/8/81	4 2 7	male female total		2 2	4 4				1		
17	10/8/81	2 8 10	male female total	1 1 2	3 3	1 4 5					19 7	532 115

When lake trout and Arctic charr inhabit the same lake, the trout appear to host more parasite species and have higher levels of infection than the charr (Appendix II, Table 19; Appendix V, Table 22). Proteocephalus arcticus, an intestinal cestode that commonly occurs in charr, was only found in the trout on Victoria Island. This is the first report of lake trout in North America hosting Proteocephalus arcticus. Salmincola edwardsii parasitized both charr and trout. Most trout and charr were parasitized by Diphyllobothrium spp. and individual fish of both species hosted Echinorhynchus gadi or Eubothrium salvelini, but seldom both. An intestinal trematode, Crepidostomum farionis, was also found in one lake trout. In the slightly brackish lake (site 14), although Diphyllobothrium spp. were present, none of the six trout caught were infected. Fish in the lake were heavily infected with Cystidicola cristivomeri.

Marine sampling in Viscount Melville Sound captured fourhorn and Arctic staghorn sculpin, Arctic cod *Boreogadus saida*, and slender eelblenny *Lumpenus fabricii* (Appendix II, Table 19, sites 3 and 15).

SUMMARY

Samples of water, aquatic biota, and terrestrial plants were collected between July 19 and September 3, 1981, from islands bordering Viscount Melville Sound in the Canadian Arctic Archipelago. Marine fishes and invertebrates were collected from the island's coastal waters and wildlife observations were recorded. Domestic, commercial and sport fishing activities and previous aquatic research in the area were summarized.

Deep sheltered lakes thoughout the area may not annually lose their ice cover and many of the lakes still had floating ice in mid-August. Only the largest rivers on Victoria Island flow year-round and stream flows on the other islands were either seasonal or ephemeral. New and/ or multi-year sea ice was present along all of the coastlines.

Chemistry of surface water samples reflected the basin type of the lakes where they were taken. Most of the lakes were situated on sedimentary rock and were cold and oligotrophic. They had basic pHs and conductivities in the range of 100 to 350 μ S/cm, with calcium and magnesium as the major contributing ions. The ratios of total dissolved nitrogen to total dissolved phosphorus ranged from 15.0 to 28.5 and the lakes were nutrient poor. The highest conductivities in these lakes were due to higher sodium and chloride concentrations while the lower conductivities reflected low calcium concentrations. One lake in the Shaler Mountains of Victoria Island was situated on igneous rock; it was chemically similar to the lakes on sedimentary rock that had low calcium inputs. Two lakes sampled on Melville Island were situated on sedimentary rock with a high chloride and sulphate content. They had slightly acidic pHs and one lake was chemically dilute, with a conductivity of only 40 μ S/cm. The other had high suspended carbon, nitrogen and phosphorus concentrations and was very turbid, probably as a result of surface erosion. The ratio of total dissolved nitrogen to total dissolved phosphorus was 4.5; suspended phosphorus concentrations were even higher than Meretta Lake, a eutrophied lake on Cornwallis Island.

Garrow Lake on Little Cornwallis Island_was very different chemically than the other lakes sampled. It was meromictic with high concentrations of potassium, calcium, chloride, and sulphate and a conductivity of 6375μ S/cm. There was a halocline at a depth of 20 m, below which the lake was anoxic. Suspended phosphorus and chlorophyll A concentrations were low but dissolved solid concentrations were similar to other lakes with sedimentary rock basins.

Zooplankters in the study area were more abundant in lakes south of Viscount Melville Sound and more diverse on western Victoria Island. *Limnocalanus macrurus* and a harpacticoid species were the only crustacean zooplankters found on Bathurst Island; L. macrurus and/or Cyclops scutifer were found in lakes on Melville Island; and Garrow Lake, on Little Cornwallis Island, had L. macrurus, a harpacticoid species and a species of marine cyclopinid. Crooked Lake, on Prince of Wales Island, contained C. scutifer, L. macrurus, and a species of the genus Daphnia. Cyclops scutifer nauplii were the most abundant species and only ephippia of the Daphnia sp. were found. Crustacean zooplankters and rotifers were abundant in Crooked Lake relative to other populations sampled. Victoria Island had the greatest diversity of crustacean zooplankters. The northern lakes contained Diaptomus sicilis and L. macrurus or C. scutifer. They were joined by Daphnia longiremis and Chydorus sphaericus in lakes to the west and south. In lakes draining into Minto Inlet, five other pelagic species occurred: Daphnia longispina microcephala, D. middendorffiana x pulex, D. middendorffiana, D. schodleri, and Chydorus sphaericus. Diaptomus sicilis and/or Cyclops scutifer were the most abundant crustacean zooplankters in the Victoria Island lakes sampled and the majority were copepodids. Cyclops capillatus and Eurycercus lamellatus, which are not readily susceptible to net capture, were found in fish stomachs in lakes along the north coast. A marine cyclopinid species was found well inland in the headwaters of the Kuujjua River. Harpacticoid crustaceans were absent and rotifers were not abundant in samples from Victoria Island. Asplanchna sp., a large predaceous rotifer, was found in two lakes in the Shaler Mountain Belt of Victoria Island.

With few exceptions, lakes that did not winterkill contained fish. Landlocked and lake-dwelling Arctic charr *Salvelinus alpinus* and/or fourhorn sculpin *Myoxocephalus quadricornis* were caught in lakes on Bathurst, Little Cornwallis, and Cornwallis islands. Lake trout *S. namaycush* and lake-dwelling, landlocked and anadromous Arctic charr were caught in lakes and rivers on Stefansson and northern Victoria islands. Anadromous least cisco *Coregonus sardinella* and anadromous and lakedwelling Arctic charr were caught in Crooked Lake on Prince of Wales Island.

Charr caught on the islands north of Viscount Melville Sound generally grew slower, reached a smaller maximum size, and lived longer than those caught to the south. Where anadromous and lake-dwelling charr were present in the same system, for example in Crooked Lake, the anadromous charr generally grew faster and to a larger size. Lake trout generally grew larger and lived longer than the charr and the least cisco grew larger and lived longer than those living further south. The charr, trout and cisco were all spawning or preparing to spawn by late August. Charr began spawning in mid-August on Bathurst Island, in late August on Prince of Wales Island and in early September on Victoria Island. Least cisco in Crooked Lake were spawning in late August. In none of the species did individual fish appear to spawn annually.

All of the freshwater fish species were omnivorous, opportunistic feeders. Arctic charr throughout the survey area fed primarily on chironomid larvae and pupae and on smaller charr. Trichopterans, an isopod *Mesidotea entomon*, a crustacean *Mysis relicta*, plant material and fish eggs were also important foods depending on availability. Cannibalism was common among charr. Lake trout ate primarily chironomid larvae and pupae and fish. *Mysis relicta*, plant material and small mammals were also important foods. Least cisco ate large numbers of the crustacean zooplankter *Cyclops scutifer*, and algae balls (*Nostoc* sp.) and chironomids. Cisco eggs were eaten by the males of the species. Lake-dwelling Arctic charr and anadromous least cisco fed during spawning but anadromous charr did not.

Charr were parasited by Cystidicola cristivomeri, Philonema agubernaculum, Diphyllobothrium dendriticum, D. ditremum, Eubothrium salvelini, Proteocephalus arcticus, Echinorhynchus gadi, Salmincola edwardsii, and S. carpionis. Lake trout hosted all of the above parasites with the exceptions of D. dendriticum, Philonema agubernaculum, and S. carpionis. In addition trout hosted Crepidostomum farionis a species of trematode. When lake trout and Arctic charr were found to inhabit the same lake, trout in the lake had higher incidences and levels of metazoan parasite infections than did charr. Proteocephalus arcticus, which has hitherto only been reported from charr, was found in the lake trout. Least cisco hosted four species of metazoan parasites: D. ditremum, D. dendriticum, Proteocephalus Sp. and E. gadi. Incidences and levels of infection by Diphyllobothrium spp., for which Cyclops scutifer and Diaptomus spp. serve as intermediate hosts, were high in all three fish species.

Seven species of marine fishes were caught during the survey, including: polar cod Arctogadus glacialis, Arctic cod Boreogadus saida, slender eelblenny Lumpenus fabricii, fish doctor Gymnelis viridis, Arctic staghorn sculpin Gymnocanthus tricuspis, fourhorn sculpin, and ribbed sculpin Triglops pingelii.

Most of the domestic fishing in the survey area takes place in Tatik Lake on the west side of Victoria Island. Anadromous Arctic charr are caught in nets set under the ice in early October by the residents of Holman Island. Least cisco are also sought after, by residents of Resolute who fish Crooked Lake, and cod are prized by Holman Islanders for their tasty livers. Lake trout are not as popular a food fish. There are sport fishing camps on Crooked Lake and south of Hadley Bay on northern Victoria Island. Anadromous charr are angled at both locations and trophy trout are also caught at the Hadley Bay camps. Small numbers of anadromous Arctic charr are caught annually in Tatik Lake for commercial sale through the Holman Island Co-operative. Residents of Resolute, on Cornwallis Island, are currently investigating the possibility of establishing a commercial quota on least cisco in Crooked Lake.

A great deal more needs to be learned before we can effectively protect and manage aquatic resources in the Viscount Melville Sound area.

ACKNOWLEDGEMENTS

We thank Dr. G. Hobson and the Resolute Polar Continental Shelf personnel for their able and generous support in the field; Dr. S. D. MacDonald for accommodation at the National Museum of Canada's Polar Bear Pass research station; Quasar Helicopters and Bradley Air Services personnel for safe flying; and staffs of the Lands Directorate, in Ottawa, and the Freshwater Institute, in Winnipeg, for their prompt responses to our many requests for help both in the field and the laboratory.

Dr. and Mrs. K. Patalas; Mrs. G. Keleher; Drs. T. A. Dick and D. E. McAllister; Messrs. B. Bilyj, B. Hunt, M. Stainton, and J. Stevenson; and personnel of the Resource Impact Assessment Section of the Freshwater Institute provided welcome support of equipment and expertise, we thank them.

Thanks to Mr. B.W. Fallis, Mr. J. N. Stein, and Dr. H. E. Welch for their constructive criticism of the manuscript and Messrs. G. Carder, K. T. J. Chang-Kue, L. Dahlke, G. Ironside, M. Lawrence, E. Marshall, G. McLean, and R. B. Stewart and Drs. T. A. Dick and L. Johnson for constructively criticizing parts of the manuscript falling within their fields of expertise.

Special thanks to Mrs. S. Ahlgren and Miss B. Cohen for typing the manuscript.

REFERENCES

- Able, K.W., and D.E. McAllister. 1980. Revision of the snailfishes, genus *Liparis*, from Arctic Canada. Can. Bull. Fish. Aquat. Sci. 208: 52 p.
- Alt, K.T. 1980. Life history study of sheefish in Alaska. Alaska Department of Fish and Game, Sport Fish Division. Annual report of progress, 1979-80. Federal Aid in Fish Restoration, Project R-11: 31 p.
- Andrews, J.T. 1972. Post-glacial rebound, p. 35-36. *In:* The National Atlas of Canada. Department of Energy, Mines and Resources, Ottawa.
- Arctic Pilot Project. 1980. Report of the environmental assessment panel. Arctic Pilot Project (Northern Component). Federal Environmental Assessment Review Office, Ottawa. 125 p.
- Bain, H., and A.D. Sekerak. 1978. Aspects of the biology of Arctic cod Boreogadus saida, in the central Canadian Arctic. L.G.L. Limited for Polar Gas Project. 104 p.
- Bain, H., D. Thomson, M. Foy, and W. Griffiths. 1977. Marine ecology of fast-ice edges in Wellington Channel and Resolute Passage, N.W.T. L.G.L. Limited for Polar Gas Project. 262 p.
- Barnett, D.M., L.A. Dredge, and S.A. Edlund. 1976. Terrain inventory: Bathurst, Cornwallis, and adjacent islands, Northwest Territories. Geol. Surv. Can. Pap. 76-1A: 201-204.
- B.C. Research. 1975. Environmental study of Polaris Mine, Little Cornwallis Island. B.C. Research for Cominco Ltd. 133 p.
- B.C. Research. 1978. Polaris Mine: aquatic environmental studies, 1977. B.C. Research for Cominco Ltd. 63 p.
- B.C. Research. 1979. Polaris Mine: summary of environmental information. B.C. Research for Cominco Ltd. 39 p.
- B.C. Research. 1981. Polaris Mine: aquatic studies, 1980; Garrow Lake, Pullen Strait. B.C. Research for Cominco Ltd.
- Beak Consultants Limited. 1975. Biological investigations, Panarctic Gulf et al. East Drake I - 55. Report for Panarctic Oils Ltd., Calgary, Alberta.
- Behrens Yamada, S., T.J. Mulligan, and S.J. Fairchild. 1979. Strontium marking of hatchery-reared coho salmon (*Oncorhynchus kisutch*, Walbaum). J. Fish Biol. 14(3): 267-275.

- Bengeyfield, W., G.R. Peterson, C.T. Hatfield, G. Smith, and G. Williams. 1977. Environmental assessment of selected freshwater resources near the proposed Petro-Canada LNG project, Melville Island, N.W.T. Report by Hatfield Consulting Ltd. for Petro-Canada. 35 p.
- Bissett, D. 1967. Resolute, an area economic survey of the Lancaster Sound area, Vol. II of the Lancaster Sound Survey. Can. Dep. Ind. Affairs N. Develop. A.E.S.R. Rep. 67/1: 175 p.
- Black, G.A., and M.W. Lankester. 1981. The transmission, life span, and population biology of *Cystidicola cristivomeri* White, 1941 (Nematoda: Habronematoidea) in char, *Salvelinus* spp. Can. J. Zool. 59(3): 498-509.
- Blackadar, R.G., and R.L. Christie. 1963. Geological reconnaissance, Boothia Peninsula, and Somerset, King William, and Prince of Wales islands, District of Franklin. Geol. Surv. Can. Pap. 63-19: 15 p.
- Blake, W., Jr. 1974. Studies of glacial history in Arctic Canada. II. Interglacial peat deposits on Bathurst Island. Can. J. Earth Sci. 11(8): 1025-1042.
- Bostock, H.S. 1970. Physiographic subdivisions of Canada. II, p. 11-30. In: R.J.W. Douglas (ed.) Geology and economic minerals of Canada. Geol. Surv. Can. Econ. Geol. Rep. No. 1.
- Bostock, H.S. 1972. Physiographic regions, p. 5-6. In: The National Atlas of Canada. Department of Energy, Mines and Resources, Ottawa.
- Boulva, J. 1972. Morphometrics of sympatric Arctic codfishes of the genera *Arctogadus* and *Gadus*. J. Fish. Res. Board Can. 29(3): 243-249.
- Bradstreet, M.S.W. 1980. Thick-billed murres and black guillemots in the Barrow Strait area, N.W.T., during spring: diets and food availability along ice edges. Can. J. Zool. 58(11): 2120-2140.
- Brice-Bennett, C. 1976. Inuit land use in the east-central Canadian Arctic, p. 63-82. In: M.M.R. Freeman (ed.) Inuit land use and occupancy project, Vol. 1. Department of Indian and Northern Affairs, Ottawa.
- Buchanan, R.A., W.E. Cross, and D.H. Thomson. 1977. Survey of the marine environment of Bridport Inlet, Melville Island. L.G.L. Limited for Petro-Canada. 265 p.
- Campbell, F.H.A. 1981. Stratigraphy and tectono-depositional relationships of the Proterozoic rocks of the Hadley Bay area, northern Victoria Island, District of Franklin, p. 15-22. In: Current Research, Part A. Geol. Surv. Can. Pap. 81-1A.

- Carder, G.W. 1981. Data from the commercial fishery for Arctic charr, Salvelinus alpinus (Linnaeus), in the Cambridge Bay area, Northwest Territories, 1979-80. Can. Data Rep. Fish. Aquat. Sci. 284: v + 22 p.
- Cody, W.J., G.R. Parker, and D.B.M. Lamperd. 1976. Additions to the vascular flora of Melville Island, Franklin District, Northwest Territories. Can. Field-Nat. 90(1): 70-72.
- Craig, B.G. 1964. Surficial geology of Boothia Peninsula, and Somerset, King William, and Prince of Wales islands, District of Franklin. Geol. Surv. Can. Pap. 63-44: 8 p.
- Danks, H.V. 1980. Arthropods of Polar Bear Pass, Bathurst Island, Arctic Canada. Syllogeus 25: 68 p.
- Davis, R.A., K.J. Finley, and W.J. Richardson. 1980. The present status and future management of Arctic marine mammals in Canada. L.G.L. Limited for Science Advisory Board of the Northwest Territories, Yellowknife. 93 p.
- de March, L., B. de March, and W. Eddy. 1977. Limnological, fisheries and stream zoobenthic studies of Stanwell-Fletcher Lake, Canada. Can. Dep. Ind. N. Affairs - ESCOM Report A1-04: 84 p.
- de March, L., and W. Eddy. 1976. A preliminary investigation of aquatic habitats along the route of the proposed arctic islands pipeline. Department of the Environment for the Arctic Islands Pipeline Project. 46 p.
- Dick, T.A., and M. Belosevic. 1981. Parasites of arctic charr Salvelinus alpinus (Linnaeus) and their use in separating sea-run and non-migrating charr. J. Fish Biol. 18(3): 339-347.
- Eddy, S.B., and M.W. Lankester. 1978. Feeding and migratory habits of Arctic char, *Salvelinus alpinus*, indicated by the presence of the swimbladder nematode *Cystidicola cristivomeri* White. J. Fish. Res. Board Can. 35(11): 1488-1491.
- Fallis, B.W., and S.M. Harbicht. in prep. A preliminary study of the limnology and biology of Garrow Lake, N.W.T. Can. J. Fish. Aquat. Sci. Tech. Rep.
- Farquharson, D.R. 1976. Inuit land use in the west central Arctic, p. 33-62. In: M.M.R. Freeman (ed.) Inuit land use and occupancy project, Vol. 1. Department of Indian and Northern Affairs, Ottawa.
- Fletcher, R.J., and G.S. Young. 1976. Climate of Arctic Canada in maps. Occas. Publ. 13. Boreal Inst. N. Stud. Univ. Alta.

- Fortier, Y.O., R.G. Blackadar, B.F. Glenister, H.R. Greiner, D.J. McLaren, N.J. McMillan, A.W. Norris, E.F. Roots, J.G. Souther, R. Thorsteinsson, and E.T. Tozer. 1963. Geology of the north-central part of the Arctic Archipelago, Northwest Territories (Operation Franklin). Geol. Surv. Can. Mem. 320: maps 1098A-1103A.
- Fyles, J.G. 1963. Surficial geology of Victoria and Stefansson islands, District of Franklin. Dept. Mines and Technical Surveys, Geol. Surv. Can. Bull. 101: 38 p.
- Gaboury, M.N. 1980. A report on the 1979 study of brook trout (Salvelinus fontinalis) populations in the lower Nelson River system. Man. Dep. Nat. Resour. MS Rep. 80-23: 45 p.
- Government of the Northwest Territories. 1982. Explorers' guide '82. Department of Information, Government of the Northwest Territories, Yellowknife. 64 p.
- Grainger, E.H. 1953. On the age, growth, migration, reproductive potential and feeding habits of Arctic charr (Salvelinus alpinus) of Frobisher Bay, Baffin Island. J. Fish. Res. Board Can. 10(6): 326-370.
- Green, J.M., and D.H. Steele. 1975. Observations on marine life beneath sea ice, Resolute Bay, N.W.T., p. II 77- II 86. In: Proceedings Circumpolar Conference on Northern Ecology, National Research Council, Ottawa.
- Guilbault, R.A., and V.T. Chacko. 1978. Water quality survey of Snowbird Creek Basin, Bathurst Island, N.W.T., 1976. Can. Dep. Ind. N. Affairs - ESCOM Rep. A1-06: 64 p.
- Gyselman, E.C. 1982. Seasonal movements of anadromous Arctic charr at Nauyuk Lake, Northwest Territories, Canada. In: L. Johnson et al. (eds.) Proceedings International Symposium on Arctic Charr. (in prep.).
- Hatfield, C.T., G.R. Peterson, W. Bengeyfield, G.L. Willams, G.M. Smith, and M.B. Winsby. 1978. Survey of selected living aquatic resources along the proposed Polar Gas pipeline route from Melville Island, N.W.T. to Longlac, Ontario, 1977. Hatfield Consulting Ltd. Report for the Polar Gas Project. 3 Vols.
- Henricson, J. 1978. The dynamics of infection of Diphyllobothrium dendriticum (Nitzsch) and D. ditremum (Creplin) in the char Salvelinus alpinus (L.) in Sweden. J. Fish Biol. 13(1): 51-71.
- Holeton, G.F. 1974. Metabolic cold adaptation of polar fish: fact or artifact. Physiol. Zool. 47(3): 137-152.

- Hunter, J.G. 1970. Production of Arctic char (Salvelinus alpinus Linnaeus) in a small arctic lake. Fish. Res. Board Can. Tech. Rep. 231: 190 p.
- Hutchinson, G.E. 1957. A treatise on limnology. I. Geography, Physics, and Chemistry. John Wiley & Sons, Inc., New York. 1015 p.
- Johnson, L. 1962. The relict fauna of Greiner Lake, Victoria Island, Northwest Territories, Canada. J. Fish. Res. Board Can. 19(6): 1105-1119.
- Johnson, L. 1964. Marine-glacial relicts of the Canadian Arctic islands. Syst. Zool. 13(2): 76-91.
- Johnson, L. 1973. Stock and recruitment in some unexploited Canadian Arctic lakes. Rapp. P.V. Reun. Cons. Int. Explor. Mer 164: 219-227.
- Johnson, L. 1975. The dynamics of Arctic fish populations, p. III 79 -III 90. In: Proceedings Circumpolar Conference on Northern Ecology, September 15-18, 1975. National Research Council, Ottawa.
- Johnson, L. 1976. Ecology of arctic populations of lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), Arctic char (S. alpinus), and associated species in unexploited lakes of the Canadian Northwest Territories. J. Fish. Res. Board Can. 33(11): 2459-2488.
- Johnson, L. 1980. The arctic charr, *Salvelinus alpinus*, p. 15-98. *In:* E.K. Balon (ed.) Charrs, salmonid fishes of the genus *Salvelinus*. Dr. W. Junk Publishers, The Hague.
- Johnson, L. 1981. The thermodynamic origin of ecosystems. Can. J. Fish. Aquat. Sci. 38(5): 571-590.
- Johnson, L. in press. Organizational characteristics of single species fish stocks in Arctic lakes. Can. J. Fish. Aquat. Sci.
- Kalff, J., and H.E. Welch. 1974. Phytoplankton production in Char Lake, a natural polar lake, and Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. J. Fish. Res. Board Can. 31(5): 621-636.
- Kerr, J.W. 1974. Geology of Bathurst Island Group and Byam Martin Island, Arctic Canada (Operation Bathurst Island). Geol. Surv. Can. Mem. 378: 152 p.
- Kerr, J.W. 1981. Bathurst Island, N.W.T., p. 64-65. In: V.R. Slaney (ed.) Landsat images of Canada - a geological appraisal. Geol. Surv. Can. Pap. 80-15.

- Kristofferson, A.H., and G.W. Carder. 1980. Data from the commercial fishery for Arctic char, Salvelinus alpinus (Linnaeus), in the Cambridge Bay area, Northwest Territories, 1971-78. Can. Data Rep. Fish. Aquat. Sci. 184: v + 25 p.
- Kristofferson, A.H., and D.K. McGowan. 1981. Data on Arctic charr, Salvelinus alpinus (Linnaeus), collected from test fisheries in the Baffin Region, Northwest Territories, 1975-79. Can. Data Rep. Fish. Aquat. Sci. 255: vi + 43 p.
- MacDonald, G., and D.B. Stewart. 1980. Arctic Land Use Research Program 1979: a survey of the aquatic resources of the central Keewatin Region of the Northwest Territories. Environmental Studies No. 17, Department of Indian Affairs and Northern Development. 111 p.
- MacDonald, S.D. 1954. Report on biological investigations at Mould Bay, Prince Patrick Island, N.W.T., in 1952. Nat. Mus. Can. Bull. 132: 214-238.
- Maltby, L.S. 1978. Birds of the coastal zone of Melville Island, 1973-1975. Can. Field-Nat. 92(1): 24-29.
- Manning, T.H., and A.H. Macpherson. 1961. A biological investigation of Prince of Wales Island, N.W.T. Trans. Roy. Can. Inst. 33(2): 116-239.
- Manual of Fisheries Acts and Regulations. 1981. Section 16: Northwest Territory fishery regulations. Department of Fisheries and Oceans, Ottawa. 55 p.
- Margolis, L., and J.R. Arthur. 1979. Synopsis of the parasites of fishes of Canada. Fish. Res. Board Can. Bull. 199: 269 p.
- Maxwell, J.B. 1981. Climatic regions of the Canadian Arctic Islands. Arctic 34(3): 225-240.
- McAllister, D.E. 1959. The origin and status of the deepwater sculpin, Myoxocephalus thompsonii, a nearctic glacial relict. Nat. Mus. Can. Bull. 172: 44-65.
- McAllister, D.E. 1963. Systematic notes on the sculpin genera Artediellus, Icelus, and Triglops on Arctic and Atlantic coasts of Canada. Nat. Mus. Can. Bull. 185: 50-59.
- McAllister, D.E., and J. Aniskowicz. 1976. Vertebral number in North American sculpins of *Myoxocephalus quadricornis* - complex. J. Fish. Res. Board Can. 33(12): 2792-2799.

- McLaren, I.A. 1964. Zooplankton of Lake Hazen, Ellesmere Island, and a nearby pond, with special reference to the copepod Cyclops scutifer Sars. Can. J. Zool. 42(4): 613-629.
- McLaren, M.A., and W.E. Renaud. 1977a. Number and distribution of birds on eastern Melville Island, July-August 1977. L.G.L. Ltd. for Petro-Canada.
- McLaren, M.A., and W.E. Renaud. 1977b. Numbers and distribution of marine mammals along the coasts of southeastern Melville Island, July-August 1977. L.G.L. Ltd. for Petro-Canada. 18 p.
- McLaren, M.A., W.E. Renaud, R.A. Davis, and J.C. Truett. 1977. Studies of terrestrial mammals on eastern Melville Island, July-August 1977. L.G.L. Ltd. for Petro-Canada. 111 p.
- McLaren, P. 1981. River and suspended sediment discharge into Byam Channel, Queen Elizabeth Islands, Northwest Territories, Canada. Arctic 34(2): 141-146.
- McLaren, P., and D.M. Barnett. 1978. Holocene emergence of the south and east coasts of Melville Island, Queen Elizabeth Islands, Northwest Territories, Canada. Arctic 31(4): 415-427.
- McPhail, J.D., and C.C. Lindsey. 1970. Freshwater fishes of northwestern Canada and Alaska. Fish. Res. Board Can. Bull. 173: 381 p.
- Miller, F.L., and A. Gunn. 1978. Inter-island movements of Peary Caribou south of Viscount Melville Sound, Northwest Territories. Can. Field-Nat. 92(4): 327-331.
- Miller, F.L., and A. Gunn. 1979. Responses of Peary caribou and muskoxen to turbo-helicopter harassment, Prince of Wales Island, Northwest Territories, 1976-77. Can. Wildl. Serv. Occas. Pap. 40: 90 p.
- Miller, F.L., and H.P.L. Kiliaan. 1980. Some observations on springtime snow/ice conditions on 10 Canadian high arctic islands - and a preliminary comparison of snow/ice conditions between eastern Prince of Wales Island and western Somerset Island, N.W.T., 5 May-2 July 1979. Can. Wildl. Serv. Progr. Note 116: 11 p.
- Miller, F.L., R.H. Russell, and A. Gunn. 1977. Distributions, movements and numbers of Peary caribou and muskoxen on western Queen Elizabeth Islands, Northwest Territories, 1972-74. Can. Wildl. Serv. Rep. 40: 55 p.
- Milne, A.R., and B.D. Smiley. 1976. Offshore drilling in Lancaster Sound: possible environmental hazards. Institute of Ocean Sciences. Canada Department of Fisheries and Environment, Sidney, B.C. 95 p.

- Minns, C.K. 1977. Limnology of some lakes on Truelove Lowland, p. 569-585. In: L.C. Bliss (ed.) Truelove Lowland, Devon Island, Canada: a high arctic ecosystem. Univ. of Alberta Press, Edmonton.
- Moreau, G., and C. Barbeau. 1979. Différenciation de populations anadromes et dulcicoles de Grands Corégones *(Coregonus clupeaformis)* par la composition minérale de leurs écailles. J. Fish. Res. Board Can. 36(12): 1439-1444.
- Nettleship, D.N., and P.A. Smith (eds.). 1975. Ecological sites in northern Canada. Canadian Committee I.B.P., Panel 9: 330 p.
- Noble, E.R., and G.A. Noble. 1976. Parasitology: the biology of animal parasites. 4th ed. Lea & Febiger, Philadelphia. 566 p.
- Parker, G.R., D.C. Thomas, E. Broughton, and D.R. Gray. 1975. Crashes of muskox and Peary caribou populations in 1973-74 on the Parry Islands, Arctic Canada. Can. Wild. Serv. Progr. Note 56: 10 p.
- Porsild, A.E. 1957. Illustrated flora of the Canadian Arctic Archipelago. Nat. Mus. Can. Bull. 146: 209 p.
- Porsild, A.E. 1964. Illustrated flora of the Canadian Arctic Archipelago. Nat. Mus. Can. Bull. 146: 218 p. (amended reprint 1957).
- Porsild, A.E., and W.J. Cody. 1980. Vascular plants of Continental Northwest Territories, Canada. National Museums of Canada, Ottawa. 667 p.
- Prest, V.K., D.R. Grant, and V.N. Rampton. 1972. Glacial geology, p. 33-34. In: The National Atlas of Canada. Department of Energy, Mines and Resources, Ottawa.
- Prest, V.K. 1973. Glacier retreat, p. 31-32. *In:* The National Atlas of Canada, Department of Energy, Mines and Resources, Ottawa.
- Riewe, R. 1976. Inuit land use in the high Canadian Arctic, p. 173-184. In: M.M.R. Freeman (ed.) Inuit land use and occupancy project, Vol. I. Department of Indian and Northern Affairs, Ottawa.
- Rigler, F.H. 1975. The Char Lake project, p. 171-198. In: T.W.M. Cameron and L.W. Billingsley (eds.) Energy flow - its biological dimensions, a summary of the IBP in Canada 1964-74. Royal Society of Canada, Ottawa.
- Rigler, F.H., M.E. MacCallum, and J.C. Roff. 1974. Production of zooplankton in Char Lake. J. Fish. Res. Board Can. 31(5): 637-646.
- Robinson, K.E. and D.E. McAllister. 1981. Bibliography of the marine fishes of Arctic Canada, 1771-1979. National Museum of Canada. 114 manuscript pages.

÷

- Roots, E.F. 1963. Bathurst Island group physiography, p. 580-585. In: Y.O. Fortier (ed.) Geology of the north-central part of the Arctic Archipelago, Northwest Territories (Operation Franklin). Geol. Surv. Can. Mem. 320.
- Russell, R.H., E.J. Edmonds, and J. Roland. 1979. Caribou and muskoxen habitat studies. Can. Dep. Ind. N. Affairs - ESCOM report A1-26: 140 p.
- Sabine, (Sir) E. 1821. Fishes, p. CCXI-CCXV. In: W.E. Parry. Journal of a voyage for the discovery of a north-west passage from the Atlantic to the Pacific, Appendix X, Zoology. John Murray, London.
- Schindler, D.W., H.E. Welch, J. Kalff, G.J. Brunskill, and N. Kritsch. 1974a. Physical and chemical limnology of Char Lake, Cornwallis Island (75°N lat.). J. Fish. Res. Board Can. 31(5): 585-607.
- Schindler, D.W., J. Kalff, H.E. Welch, G.J. Brunskill, H. Kling, and N. Kritsch. 1974b. Eutrophication in the high arctic - Meretta Lake, Cornwallis Island (75°N lat.). J. Fish Res. Board Can. 31(5): 647-662.
- Sekerak, A.D., and F.F. Graves. 1975. Investigation of aquatic resources along proposed Polar Gas Pipeline routes north of Spence Bay, N.W.T. 1974, Vol. 1 and 2. Aquatic Environments Limited for Petro-Canada.
- Smith, T.G., and M.O. Hammill. 1980. Ringed seal, Phoca hispida, breeding habitat survey of Bridport Inlet and adjacent coastal ice. Can. MS Rep. Fish. Aquat. Sci. 1577: VII + 31 p.
- Stainton, M.P., M.J. Capel, and F.A.J. Armstrong. 1977. The chemical analysis of fresh water. Can. Fish. Mar. Serv. Misc. Spec. Publ. 25: 180 p.
- Steen, O.A., and Z.D. Hora. 1978. Landscape survey, eastern Melville Island, N.W.T. R.M. Hardy & Associates Ltd. for Petro-Canada. 180 p.
- Stewart, D.B., and G. MacDonald. 1981. An aquatic resource survey of Devon, Cornwallis, Somerset and northern Baffin islands, District of Franklin, Northwest Territories, 1980. Department of Indian and Northern Affairs, Environmental Study 20: in press.
- Templeman, W. 1963. Distribution of sharks in the Canadian Atlantic, (with special reference to Newfoundland waters). Fish. Res. Board Can. Bull. 140: 1-77.

- Tener, J.S. 1963. Queen Elizabeth Islands game survey, 1961. Can. Wildl. Serv. Occas. Pap. 4: 50 p.
- Thomas, D.C., F.L. Miller, R.H. Russell, and G.R. Parker. 1981. The Bailey Point region and other muskox refugia in the Canadian Arctic: a short review. Arctic 34(1): 34-36.
- Thompson, H.A. 1967. The climate of the Canadian Arctic, p. 55-74. In: Canada Year Book, 1967. Queen's Printer, Ottawa.
- Thorsteinsson, R. 1958. Cornwallis and Little Cornwallis islands, District of Franklin, Northwest Territories. Geol. Surv. Can. Mem. 294: 134 p.
- Thorsteinsson, R., and E.T. Tozer. 1962. Banks, Victoria, and Stefansson islands, Arctic Archipelago. Geol. Surv. Can. Mem. 330: 85 p.
- Thorsteinsson, R., and E.T. Tozer. 1970. Geology of the Arctic Archipelago, p. 549-590. *In:* R.J.W. Douglas (ed.) Geology and economic minerals of Canada. Geol. Surv. Can. Econ. Geol. Rep. 1.
- Tozer, E.T., and R. Thorsteinsson. 1964. Western Queen Elizabeth Islands, Arctic Archipelago. Geol. Surv. Can. Mem. 332: 242 p.
- Walters, V. 1953. Notes on fishes from Prince Patrick and Ellesmere islands, Canada. Amer. Mus. Novitates (1643): 1-17.
- Wedel, J.H. 1979. Hydrologic investigations along the Arctic islands pipleline route. Can. Dep. Ind. N. Affairs - ESCOM Rep. AI-23: 104 p.
- Wedel, J.H., G.A. Thorne, and P.C. Baracos. 1978. Site-intensive hydrologic study of a small catchment on Bathurst Island. Can. Dept. Ind. N. Affairs - ESCOM Report AI-17: 122 p.
- Wedel, J.H., and J.G. Way. 1976. Interim report (1975) hydrologic regimes, freshwater project no. 1 - Eastern Arctic Islands pipeline project: Spence Bay to Sabine Peninsula. Report to AIPP Study Board, Environmental Management Service, Department of Fisheries and Environment, Ottawa. 252 p.
- Welch, H.E., Jr. 1973. Emergence of Chironomidae (Diptera) from Char Lake, Resolute, Northwest Territories. Can. J. Zool. 51(11): 1113-1123.
- Welch, H.E., and J. Kalff. 1975. Marine metabolism at Resolute Bay, Northwest Territories, p. II 67- II 75. In: Proceedings Circumpolar Conference on Northern Ecology, September 15-18, 1975. National Research Council, Ottawa.
- Williams, G.L., G.M. Smith, and C.T. Hatfield. 1981. Summary of selected living aquatic resources along the proposed Polar Gas pipeline route on Victoria Island, N.W.T., 1980. Hatfield Consultants Ltd. for Polar Gas Project. 120 p. + 10 maps.

PERSONAL COMMUNICATIONS

- Amagonalk, Y. Arctic Char Lodge Outpost Camp, Cambridge Bay, N.W.T., XOE OCO.
- Avaligak, J. Arctic Char Lodge Outpost Camp, Cambridge Bay, N.W.T., XOE OCO.
- Carder, G.W. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba. R3T 2N6.
- Chang-Kue, K.T.J. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba. R3T 2N6.
- Dahlke, L. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba. R3T 2N6.
- Doyle, P. Bradley Air Services Ltd., Resolute, N.W.T. XOA OVO.
- Hennig, R.D. Beak Consultants Limited, 3530 11A Street N.E., Calgary, Alberta. T2E 6M7.
- Hunt, R. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba. R3T 2N6.
- Johnson, L. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba. R3T 2N6.
- Kataoyak, S. Holman Island Eskimo Co-operative, Holman Island, N.W.T., XOE OSO.
- Kuit, W. Cominco Technical Research Laboratory, Trail, B.C., V1R 4L8.
- Lyall, E. Spence Bay, N.W.T., XOE 1BO.
- MacDonald, S.D. National Museum of Natural Sciences, Ottawa, Ontario, K1A OM8.
- McAllister, D.E. Icthyology unit, National Museum of Natural Sciences, Ottawa, Ontario, K1A OM8.
- Nigiyok, M. Holman Island, N.W.T., XOE OSO.
- Patalas, K., and J. Patalas. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba, R3T 2N6.
- Stainton, M.P. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba, R3T 2N6.

Stevenson, J. Wildlife Officer, Resolute, N.W.T., XOA OVO.

Welch, H.E. Department of Fisheries and Oceans, 501 University Cr., Winnipeg, Manitoba, R3T 2N6.

l

APPENDIX I. MARINE FISH SPECIES DISTRIBUTIONS

5. Distribution records of marine fish species caught in the Viscount Melville Sound study area.

Species Name		
Scientific	Common	Catch Location (Fig. 11) and Reference
tiidae		
<i>tiosus microœphalus</i> (81och & Schneider) 1801	Greenland shark	l (Templeman 1963).
nonidae		
gonus sardinella Valenciennes 1848	least cisco	19, 23 (McAllister pers. comm.).
elinus alpinus (Linnaeus) 1758	Arctic charr	18, 19, 23 (McAllister pers. comm.).
dae		23 (Nigiyok pers. comm.), 15 (Sabine 1821).
cogadus glacialis (Peters) 1874	polar cod	i (this report); 18, 19, 22 (Boulva 1972); 13 (Buchanau 7 (MacDonald pers. comm.); 9, 10, 17, 18 (McAllister p
юдадия sp.	cod	8, 12, 18 (McAllister pers. comm.).
<i>eogadus saida</i> (Lepechin) 1774	Arctic cod	25 (this report); 1, 2, 3, 26, 27 (Bain and Sekerak 19 et al. 1977); 14 (Beak 1975); 1 (Green and Steele 1975 1974); 18 (MacDonald 1954); 7 (MacDonald pers. comm.); 12, 15, 18, 20 (McAllister pers. comm.); 18 (Walters 19
us ogac (Richardson) 1836	Greenland cod	22 (McAllister pers. comm.).
rhichadidae		
hichas denticulatus Krøyer 1845	northern wolffish	18 (MacDonald 1954, McAllister pers. comm., Walters 19
oen i dae		
<i>penus fabric</i> ii (Valenciennes) 1836 rchidae	slender eelblenny	21 (this report).
<i>nelis virid</i> is (Fabricius) 1780	fish doctor	l (this report); 13 (Buchanan <i>et al</i> . 1977); 1 (Green a Holeton 1974); 1, 2, 5 (McAllister pers. comm.).
odes mucosus Richardson 1855	saddled eelpout	13 (Buchanan <i>et al.</i> 1977); 1 (Green and Steele 1975); and Macpherson 1955); 1, 2, 4, 26 (McAllister pers. co
des pallidus Collett 1878	pale eelpout	18 (MacDonald 1954, McAllister pers. comm., Walters 19
des polaris (Sabine) 1824	Canadian eelpout	1 (Green and Steele 1975, McAllister pers. comm.).
<i>des turneri</i> Bean 1878	polar eelpout	1 (Holeton 1974).
dytidae		
<i>'utes</i> sp.	sand lance	20, 24 (McAllister pers. comm.).
dae		22, 24 (McAllister pers. comm.).
lellus scaber Knipowitsch 1907	rough hookear	13 (Buchanan et al. 1977), 20 (McAllister pers. comm.)
'ellus uncinatus (Reinhardt) 1835	Arctic hookear sculpin	1 (Holeton 1974).
culus sp.	sculpin	7 (McAllister pers. comm.).
<i>mthus tricuspis</i> (Reinhardt) 1832	Arctic staghorn sculpin	16, 21, 25 (this report); 13 (Buchanan <i>et al.</i> 1977); 1 Steele 1975, Holeton 1974); 1, 18, 20 (McAllister pers
nthus sp.	sculpin	18 (McAllister pers. comm.).
<i>icornis</i> Reinhardt 1841	twohorn sculpin	1 (Green and Carry C

1115art and Burke 1012

76

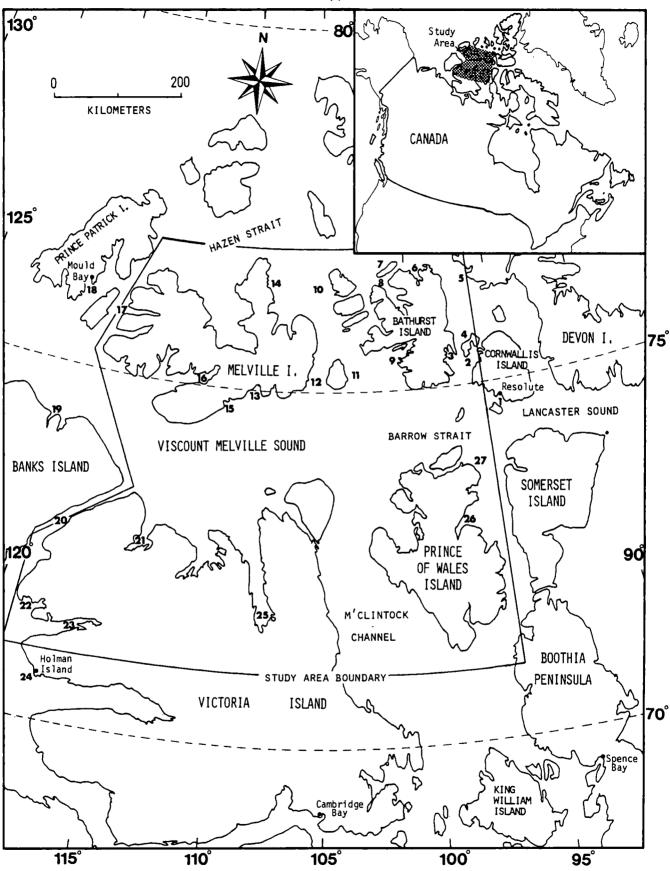


Fig. 11. Map of marine fish species catch locations (1-27) near islands bordering Viscount Melville Sound.

77

Distributions of Marine Fish Species

Little information is available on the distribution and biology of marine fish species occurring in the survey area, and often that information remains unpublished. Dr. D. E. McAllister, Curator of Fishes at the National Museum of Natural Sciences in Ottawa, has prepared a <u>Bibliography of the</u> Marine Fishes of Arctic Canada, 1771-1979 (Robinson and McAllister 1980) and, together with Dr. J. G. Hunter, is preparing a book on <u>Marine Fishes of Arctic Canada</u>. Dr. McAllister kindly supplied the authors with a pre-publication copy of his bibliography, and with information on specimens housed in the museum's collection.

A list of marine species in the survey area, together with approximate catch locations (Fig. 11) and references, has been included in Table 15. The expense and logistical difficulties connected with deep sea and/or long term sampling in the high arctic have limited studies to comparatively shallow, short term test fishing. Only at Mould Bay (Site 18), Bridport Inlet (Site 13) and Resolute Bay (Site 1) has there been concerted sampling.

One marine fish species that has been studied is the Arctic cod *Boreogadus saida*, a major food species for searun Arctic charr and a variety of seabirds and marine mammals (Milne and Smiley 1976; Bain and Sekerak 1978; Bradstreet 1980; Davis *et al.* 1980). Further sampling is needed to elucidate the distributions and biology of other marine fish species.

APPENDIX II. FISH DATA

ı.

EXPLANATION OF TABLES 16 TO 19

Symbols used in the tables:

* Water chemistry and zooplankton taken at this site.
1 Specimens available at National Museum of Natural Sciences, Ottawa.
4 Age : fish aged to last countable otolith ring but is older than
5 specified.
4 Stomach : presence of most abundant food items.
Parasites : presence of parasite species.

Number classification for stomach contents and parasite levels of infection:

dry weight (g)	number	number of parasites
< 0.001	1	1 - 25
0.001 - 0.005	2	26 - 50
0.006 - 0.010	3	51 - 100
0.011 - 0.050	4	101 - 200
0.051 - 0.100	5	201 - 500
0.101 - 0.500	6	501 - 1000
0.501 - 1.000	7	1001 - 2000
1.001 - 5.000	8	> 2000
> 5.000	9	

Fullness of fish stomachs (apparent):

- o empty
- 1 full

Miscellaneous category for Tables 16 to 19 includes:

	item	<u>site</u>	contribution to diet
Table 16.	digested remains crustacea remains Arctic charr eggs sand	1, 2 8 1, 2 5	5,4 2 1 2
Table 17.	sand	8	4
Table 18.	digested remains least cisco eggs least cisco eggs least cisco eggs least cisco eggs and/or sand	6 5 8 8 10	4 Arctic charr 4, 5, 6 Arctic charr 3, 6, 6 Arctic charr 3, 7 least cisco 2, 2, 6 least cisco

	item	<u>site</u>	contribution to diet
Table 19.	other Diptera Hymenoptera unidentified insects Copepoda Ostracoda Hydracarina Sphaeriidae Nematoda (Mermithidae) small mammal bird feathers and/or sand	8, 10, 11, 13, 14 17 13 6, 8, 18 9, 17 1, 9, 10, 11, 18 13, 18 8 5 14	1 - 3 2 1 1 1 1 1 9 1

										5	tom	ich (conte	en ts					_			P	aras	1 tes			
Site	Sampling location, Date, Set time, Gear	Length (m)	Weight (g)	Sex	Age (y)	fullness	Chtronomidae larvae	Chironomidae pupae	Chironomidae adults	other Diptera	Trichoptera	Hymenoptera	Hydracarina	Mys I dacea	Os tracoda	Copepoda	fish remains	plant material	mt s ce 1 1 aneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidos tomen farionis	Philonema agubernaculum	Cystidicola cristivomeri	Echinorhynchus gadi	Salmincola sp.
\rctic	charr				·																						
1+1	stream 75°10.5′N, 98°09′H 19-20/7/81, 24 h hoopnet (BH 1)	27 49 31 55 57 52	0.1 1.0	0	0+ 2																						
	lake 75°12′N, 98°12′W 19-20/7/81, 23 h gillnet (B1)	104	7.0	0	4	0																					
	75°127N, 98°127W 19-20/7/81, 23 h gillnet (82)	367 392 460 388 359 382 396 333 353 353 319	410 640 810 520 420 640 600 340 480 310	2 3 9 2 2 3 8 8 9 2	21 20 19 23 15 21 22 24 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ + 1 1 2 1 1	+ + 3 7 7 7 6	3	1		1		4			•	1 1 2 1 1	5 1	+ 1 + 1 4 2 1					+ ++++ +++++++++++++++++++++++++++++++	1	
2	lake 75°02-N, 99°09-W 19-20/7/81, 24.5 h gillnet (83)	338 248 358 427 417 492 375 447 328	310 120 410 510 550 1040 450 700 270	1 8 8 8 2 8 2 8 1	16 15 19 15 16 22 15 20 14	05500500	+ + + 1	+ + +	1	1							4	1	4	+ + + + + + + 5							
	75°02′N, 99°09′n 19-20/7/81, 25 h gillnet (84)	436 374 425 385 275 214 234 230 240 205 255 192 189 200 89 212 100 89	660 440 360 640 145 85 85 100 120 75 135 65 60 55 80 6.5 4.5	2 2 8 9 2 2 9 8 3 2 8 8 3 3 2 8 1 7	18 20 25 23 16 21 21 21 19 16 15 17 15 22 6 6	0 M,	+ + + + + 1 1 + + + + + 1 1	+++++54++++4					1		1	I			1	+ + + + + + + + + + + + + 1		1					
3*	lake 75°247N, 100°067W 31/7-1/8/81, 15 h gillnet (813)	480 458 469 175 598 588 491 404	960 810 960 40 1520 1920 980 820	2 2 1 3 3 2	27 21 21 8 24 23 27 20	I	2 + + 1	1 3 4 + 5	1 2 1	2	1		1			1	9 +	2		6 6 1 1 4 6	1 1 1 1 1 1 1	1			7		
	75°24′N, 100°06′N 31/7-1/8/81, 15 h gillnet (814)	525 580 520 520 520 418 475 199	1360 1700 1030 1070 1280 530 900 60	2 3 8 9 8 3 7	29 26 22 30 25 21 26 11	0 1 0 4 1 1	1 + + + +	7 + + + +		1	1		1					1		6 + + + + + + + + +							

Table 16. Raw data from Arctic charr Salvelinus alpinus, polar cod Arotogadus glasialis, fish doctor Cymmelis viridis, fourhorm sculpin Myozosephalus quadricornis, and ribbed sculpin Triplops pingelii caught in 1981 on or near Bathurst, Little Cornwallis, or Cornwallis islands.

		_	<u>-</u>								Stom	ich (conte	ents									aras	ite	5		
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomidae adults	other Diptera	Trichoptera	Hymenoptera	Hydracarina	Mysidacea	Os tracoda	Copepoda	fish remains	plant material	miscellàneous	Diphyllobothriwm spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidos tomen farionis	Philonema agubernaculum	Cystidioola cristivomeri	Echinorhynchus gadi	Salmincola sp.
4	lake 75°26°N, 100°00°W 31/7-1/8/81, 15.5 h gillnet (B11)	350 330 360 350 335	410 330 420 370 340	2 8 2 8	19 19 20 21 13		1 2 5	6 4 1 2	1	2							-	2		+ + 1 2	1				+ + + +		+ +
	75°26′N, 100°00′W 31/7-1/8/81, 15.5 h gillnet (812)	345 370	350 440	2 2	21 23		+ +	* +												1					5 7	1 3	+
51	stream 75°38'N, 99°22'W 31/7-1/8/81, 15.5 h	62 128	1.6 21.5	7 9	8																						
	hoopnet (BH 2)	163 134 116 145 77 142 132 143 128 117 121	40 19 14 27.5 2.8 25 21 25 18 14.5 15	1	2																						
	lake 75°38~N, 99°19 % 30/7-1/8/81, 38.5 h gillnet (B9)	119 126 132 188 123 187 212 337 400 395 335 326 205 220 215 237 237	13.5 14.5 19 60 14.5 50 500 570 500 340 220 70 80 80 80 80 80	78281882 82828117882	5 7 5 10 14 19 22 20 22 20 26 10 11 10 20 10		1 + 2 2 2	7 + 1 7 7 6		1			1					2		1 5 1 2 4 + + +	1				* * * 4 * * * * *	ı	
		165 125 127 117 125 152 114 120 131 125 122 118	40 17 16.5 13.5 15 40 12.5 16.5 17 15 14	3 7 7 1 7 3 7 1 7 8	8 5 5 5 5	0 1 0 0	2 6 2 4 5	2 2 2	6 5 1	2			1	4 1 2 3	1			1 2	2 2 2	+					+		
		122 118 105 114 112 123 111 103 113 112 105 117	14 9 12 11 13 11 9 12 10 10 12	7 7 1 1 7 1 1 7 1	55454444555	0 0 1 1 1 1 1 0 0	* * *	+ +	-					5	-												

									_		Stom	ach (:on te	ents									Paras	si te	5		_
Site	Sampling location, Date, Set time, Gear	Length (am)	Weight (g)	Sex	Age (y)	fullness	Chtronomidae larvae	Chironomidae pupae	Chironomidae adults	other Diptera	Trichoptera	Hymenop te ra	Hydracarine	Mysidacea	Os tracoda	Copepoda	fish remains	plant material	ai sce i l aneous	Diphyllobothrium spp.	Bubothrium saluelini	Proteocephalus arcticus	Crepidos tomen farionis	Philonema agubernaculten	Cystidicola oristivomeri	Lehinorhynchus gadi	Salminoola sp.
5	75°38'N, 99°19'W 30/7-1/8/81, 38.5 h gillnet (810)	386 337 227 263 320 405 120 117 360 345 370 358 329 450 317 116 117 138 117 110	560 340 90 150 220 580 13 14 410 370 460 370 660 270 660 270 12 12 12 12 13 10	3 2 1 8 8 2 1 7 1 2 2 2 8 1 1 7 1 1 1 1	4 18 21 20 23 17 22 20 4 4 4 5 5 5	1 1 1 1 1 0 0 1 1 5 1 1 0 1 1 1 0 1 1	* * * * * * * * * * * * * * * * * * *	+ + + + +				_								* * * *					* * * * * * * * * * * * * * * *		+ + +
P=1	lake 76*35*N, 98*55*W 30-31/7/81 21.5 h gillnet (87)	273 369 384 275 340 347 348 285 300 337 345 390 337 319 296 313 317 319 296 313 241 306 325 380 380 380 380 380 380 380 380 380 380	160 440 200 310 400 220 180 270 340 260 240 270 150 240 260 240 270 150 240 260 240 250 240 250	8222222223232883322322232222	17 21 20 20 15 20 18 21 18 22 15 20 18 21 15 22 21 18 22 17 18 19 18 22 17 18 19 18 22 17 18 22 21 15 22 21 15 22 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 20 15 20 15 20 20 20 15 20 20 15 20 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 20 15 20 20 15 20 20 15 20 20 15 20 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20		+ + + + 1 1 1	+ + + + 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6						4		1		1		211+23124++1++++++++++++++++++++++++++++	1				366++++++++++++++++++++++++++++++++++++		
8*	lake 76°25′N, 97°58′W 30–31/7/81, 21.5 h gilinet (85)	542 330 378 420	1900 320 490 490	3 2 2 2	23 18 22 37		+ 6 3 4	+ 2 2 7		2							6	1	2	4 1 6	1				5 + + +		
	76°25′N, 97°58″W 30–31/7/81, 21.5 h gillnet (B6)	310 327 370	270 290 420	2 2 2	19 18 19		6 6	4 6 4		Z			1		1			2 2 1		1 1 5					+ + +		
101	lake 75°02.5°N, 96°17°W 1-2/8/81, 17 h gillnet (C1)	356 343 315 204 113	340 270 275 70 13	1 2 9 1 1		1 1 1 1 0														+ + +					•		•
	75*02.5*N, 96*17*W 1-2/8/81, 17 h gillnet (C2)	351 316 345	300 250 310	2 2 3	22 20 18		* * *													3 3 3					5 5 5 2	2	

Table 16 Cont'd.

						_					Stom	ach d	conte	en ts					_	_		F	aras	ite			
Site	Sampling location, Date, Sat time, Gear	Length (ann)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironocaidae pupae	Chiromocaidae adults	other Diptera	Trichoptera	Hymenop te ra	Hydracarina	Mys i dacea	Os tracoda	Copepoda	fish remains	plant material	mí sce l l aneous	Diphyl lobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidos tomun farionis	Philonema agubernaoulum	Cystidicola cristiveneri	Echinorhynchus gadi	Salmincola SD.
Polar	cod ¹														-												
	Resolute Bay 74°41′N, 94°50′W 28/7/81 weasal trawl	57 63 71 62	1.2 1.7 2.3 1.6																								
Fish (doctor ¹																										
	Resolute Bay 74°41′N, 94°50′N 28/7/81 weasel trawl	130	9.4																								
Fourth	orn sculpin																										
6* ¹	lake 76°35′N, 98°55′W 30–31/7/81, 21.5 h gillnet (87)	175 150 163	29 25.5 28	2 8 8																							
9*1	Garrow Lake 75*23*N, 96*47 % 1-2/8/81, 17 h gillmets (LC1, LC2)	132 125 156 157 113 125 137 148 128 115 123 131 112 104 102 119 133	11 8.5 20.5 19.5 7 10 16.5 16 10.5 7.5 8 9 5.5 4.5 4 9.5 15																								
10* ¹	laka 75°02.5'N, 96°17 7 1-2/8/81, 17 h gillnet (Cl)	200 183 199 185 185	60 40 50 40 40																								
	75°02.5′N, 96°17′W 1-2/8/81, 17 h gillnet (C2)	188 179 208	50 35 70																								
	d sculpin																										
71	Young Inlet 76°35′N, 99°00′N 30–31/7/81, 21.5 h gilinet (88)	116 119 122 112 107	8.0 6.5 10.0 8.0 7.5	8 2 8 8																							

*1 See start of Appendix II for table explanation.

								Stom	ach co	ntents				Para	sites	
i te	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Mysidacea	fish remains	plant material	miscellaneous	Diphyllobothrium spp.	Eubothrium salvelini	Cystidicola cristivomeri	Salmincola sp.
rctic	charr							_							-	
1	lake 75°04'N, 106°18'W 20-21/7/81, 14 h gillnets (M1, M2)	no fish i	in either ne	t												
2	lake 75°03*N, 107°51*W 20-21/7/81, 13.5 h gillnets (M3, M4)	no charr	in either r	let												
3#1	Polynia Creek 75°01'N, 108°39'N 20-22/7/81, 34 h hoopnets (MH 1)	27	0.1	0	0+											
	Polynia Lake 75°06′N, 108°43′N 20-22/7/81, 35 h gillnet (M5)	108	9	8												
	75°06′N, 108°43′N 20-22/7/81, 34.5 h gilinet (M6)	102	6	7	3											
5	lake 75°337N, 111°27.57W 21-22/7/81, 23 h gilinet (M10)	no fish														
6	lake 76°12′N, 109°35′W 22-24/7/81, 43 h gillnets (M11, M12)	no fish i	in either ne	rt												
7 •	stream 76°24′N, 108°33′W 22-24/7/81, 41.5 h hoopnets (MH2)	no fish														
	lake 76°23.5′N, 108°33.5′W 22–24/7/81, 41 h gillnets (M13, M14)	no fish i	n either ne	t												
8 ¹	Tingmisut Lake 75°56°N, 107°53°W 22-24/7/81, 39 h gillnet (M15)	360 383 342	350 510 380	2 2 9	21 18	0	÷	* *		٠			1 1 +	1	6 5 +	+
	75°56′N, 107°53′N 22-24/7/81, 39 h gillnet (M16)	385 35 3 39 3	420 360 400	8 3 2			2 2	2 1	2 2 4		4 1	4	+ + +		+	+ + +
rctic	staghorn sculpin															
41	brackish lake 75°03'N, 111°30'W 21-22/7/81, 23.5 h gillnets (M7, M8, M9)	181 147	80 40	8 8							•					
ourhor	m sculpin															
21	lake 75°03″N, 107°51″W 20-21/7/81, 13.5 h gillnet (M3)	138 141 133	13.5 13.5 8.0	8 8 2												
41	brackish lake 75°03'N, 111°30'W 21-22/7/81, 23.5 h gillnets (M7, M8, M9)	152 170 135	30 40 20	2 2 2												

Table 17. Raw data from Arctic charr Salvelinus alpinus, Arctic staghorn sculpin Gymnocanthus tricuspis, and fourhorn sculpin Myozocephalus quadricornis caught in 1981 on Melville Island, Northwest Territories.

*1 see start of Appendix II for table explanation.

										-	5 toma	sch o	conte	en ts								Par	asi	tes		
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironocidae larvae	Chironomidae pupae	Chironomidae adults	Trichoptera	Hydracarina	Mysidacea	Os t racoda	Copepoda	mernaithid nematodes	fish remains	plant məterial	algae balls	ats cellàneous	Diphyllobothrium spp.	Rubothrium salvelini	Proteocephalus aroticus	Philonema agubernaculum	Quetidicola cristivomeri	Echinorhynchus gadi	Salmincola carpionis
Arcti	c charr			-			_																			_
1.	Crooked Lake 72°41-N, 98°49-W 24-25/8/81, 14 h gillnet (PWI)	291 675 460 334 335 258 242 236 245 245 223 216 214 205 226 200 203 199 197 192 197 192 197 197 197 197 197 197 197 197 197 197	220 3100 820 540 300 280 120 120 130 120 130 80 80 65 65 65 60 60 45 50 60 415 60 11 9 7	1 5 8 8 2 2 7 8 2 7 7 1 1 7 7 1 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 7	11 19 23 12 10 10 8 7 6 6 6 6 6 7 8 8 8 7 6 6 6 6 7 7 7 8 8 4 4 3	00000 001001001001001001001000	4 16 5 5 + + + + +		1		1						1 1 1		4 3 2 2	+ 4 1 + 1	1			* * * 2		* *
2*	Crooked Lake 72*40~N, 98*51~W 24-25/8/81, 14 h gillnet (PW2)	570 408 407 415 386 246 195 202 208 208 200 208 207 208 207 207 228 207 207 207 207 207 207 202 202 202 202	1740 630 540 515 130 130 80 80 70 80 95 70 80 95 70 80 55 50 55 50	352222117777777777711712	17+ 15 17 26 7 8 7 7 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 6 8 8 7 7 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 6 6 + + + + 2	1		2	1	2					1 2 2		2 1 2	1 1 + + + + 1	1			5 + + + +		•
3*	Crooked Lake 72°39'N, 98°53'W 24-25/8/81, 14 h gillnet (PW3)	644 277 632 650 745 768 423 643 643 643 698 643 698 644 643 644 619 202 201 618 400 230 240 235	2850 190 2800 2750 4600 4100 3500 2050 2550 2050 2550 60 75 2500 550 550 550 110 110	5 8 11 5 5 8 5 5 5 10 11 1 7 7 10 8 1 7 7	23 13 23 16 23 25 11 24 22 19 17 21 8 6 8 8 19 18 9 9 9 9	000001000111000011	+ + +												•	1 3 1 5 3 1 2 1 1	1			•		* * * * * * * * *

Table 18. Raw data from Arctic charr Salvelinus alpinus, and least cisco Coregonus sardinella caught in 1981 on Prince of Wales Island, N.W.T.1

											<u>stom</u>	ich d	:on te	nts								Par	rasii	tes		
i te	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomidae adults	Iri choptera	Hydracarina	Mys i dacea	Os tracoda	Copepoda	mermithid nematodes	fish remains	plant material	algae balls	miscellaneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteosephalus arcticus	Philonema agubernaculum	Oystidicola cristivoneri	Echinortynchus gadi	Salmincola carpionis
3*	Crooked Lake 72°39′N, 98°53′W 24-25/8/81, 14 h gillnet (PW3)	196 214 207 564	60 90 70 1800	1 1 1 5	7 7 7 26	5 0 0 0	+					_								1				+		
4*	Crooked Lake 72°39-N, 98°49-W 24-25/8/81, 14 h gillnet (PW4)	275 334 253 710 478 513 383 221 208 208 208 208 208 208 208 208 208 208	200 340 140 1040 1620 550 80 170 160 65 90 420 90 420 95 85 95 85 85 95 85 95 85 95 85 95 85 95 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 95 85 90 85 85 95 85 90 85 85 90 85 85 90 85 85 90 85 85 90 85 85 90 85 85 90 85 85 85 90 85 85 90 85 85 90 85 85 85 85 90 85 85 85 85 90 85 85 85 85 90 85 85 85 85 85 85 85 85 85 85	2 8 1 2 8 5 2 1 7 7 1 7 1 1 1 8 1 7 7 8	9 14 10 26 23 16 8 7 8 11 9 6 8 7 8 6 6 7 8 6 6 7 8 6 23	- - - - - - - - - - - - - - - - - - -	+ 1 + + + + + + + + 7	4	1		1	÷	1			7	1			1 6 3 2 1 1 1 1 2	1 1 1	1		+ ++++.+ ++ + +	1	+ +
*	Crooked Lake 72*39*N, 98*46*W 26-28/8/81, 35 h gillnet (PW5)	444 514 290 256 416 477 598 325 330 261 260 232 315 252 252 223 120 115 117 117 118	860 1300 240 50 760 930 2000 320 330 170 170 100 330 140 13 12 11 14 14	5 5 7 2 2 2 5 8 8 7 1 7 8 7 7 1 7 1 1 7	16 21 11 9 15 26 22 11 10 10 10 8	0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	1 + 2 + 1	1	1		1	7					2	4 6 7	5 5	1 1 1 1 1 1	1			+ 8 + + + + +	14	*
6*	Crooked Lake 72°38'N, 98°47'W 26/8-2/9/81, 160 h gillnet (PW6)	507 425 356 337 467 455 388 368 345 388 308 293 205 185 197 202 190 210 211 211 266 207	1290 705 900 445 420 850 850 540 410 420 305 540 410 420 305 220 130 120 80 60 75 80 90 185 85	9998882288187111711711711711	$\begin{array}{c} 19\\ 21\\ 21\\ 15\\ 11\\ 14\\ 19\\ 15\\ 12\\ 9\\ 8\\ 8\\ 7\\ 7\\ 7\\ 7\\ 6\\ 8\\ 9\\ 10\\ \end{array}$	000015010010001000000000000000000000000	•		1			5							4	1 3 1 2 2				* * * * * * *	21	* * *

											toma	ch d	on te	nts								Par	asit	es		
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	ful lness	Chironomidae larvae	Chircnomidae pupae	Chirronomidae adults	Trichoptera	Hydracarina	Mys i dacea	Os tracoda	Copepoda	mermithid nematodes	fish remains	plant material	algae balls	misce]laneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Philonema agubernaculum	Oystidicola cristivomeri	Echinorhynchus yadi	station of a second
<u>6*</u>	Crooked Lake 72°38'N, 98°47'W 26/8-2/981, 160 h gillnet (PW6)	211 205 194 218 280 211 214 258 236 265 288 197 200 217 350 216 224 204 217 350 216 224 204 2195 242 242 242 242 373 356	90 75 60 100 185 70 90 155 110 170 240 70 80 100 420 100 420 105 90 80 70 130 720 130 470	7 7 1 1 1 7 7 1 1 1 1 7 7 1 1 1 7 7 2 2 7 8 2	9 6 8 10 7 8 8 8 9 9 12 8 8 12 8 8 9 7 6 8 12 8 8 12 8 9 7 7 6 8 12 8 8 12 12 8 8 12 12 12 12 14 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14		+									7	1		2	3 1 1 1 1 1 1 1 1 1	1			+ + + +		
7*	Crookad Lake 72°37'N, 98°49'W 26-28/8/81, 35 h gillnet (PW7)	453 429 364 412 432 405 390 256 237 235 247 233 247 189 337 221 224 210 225 224 210 225 236 210 225 236 210 225 197 246 236 183 127 107	920 860 380 760 610 520 130 100 110 120 110 120 110 130 60 330 90 90 100 100 100 75 105 100 60 135 115 45 15.5 8	938598227771117721177111711111	16 15 20 15 15 15 17 11 9 8 8 9 8 8 6 14 8 8 9 8 8 8 7 6 10 8 6 5 4		1 + + +					7 4 +	1							1 3 2 2 2 1 2 1 3 2	1		1	++++55++1+3 + + + + 2	1 1 3 1 1 3	
8*	Crooked Lake 72°37.5°N,98°45°W 29-30/8/81, 22 h gillnet (PW8)	333 550 373 453 334 487 414 305 223 235 295 282 207 218 251 191 193 216 258 290 225 282 238	365 1700 460 810 400 640 290 95 100 220 200 75 90 120 60 70 80 145 180 180 180	7 10 8 2 2 8 2 7 1 1 1 1 7 1 4 7 1 1 1 1	16 17 21 11 21 15 12 7 8 11 8 10 7 8 10 8 10 8 7 8 10 8 7 8	0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1 2 1 + + + + + + + + + + + + + + + + +	1									1	6 4 6 + +	6 3 +	1 2 2 1 1 1 2 2 1 1				+ + +	ı	

											Stoma	ich (conte	en ts						_		Pai	rasti	tes		_
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chtronomidae pupae	Chironomidae adults	Tri choptera	Hydracarina	Mysidacea	Os tracoda	Copepoda	mernaithid nema to des	fish remains	plant material	algae balls	aiscellaneous	Diphyllobothrium spp.	Bubothrium salvelini	Proteocephalus aroticus	Philonema agubernaculum	Qustidicola cristivomeri	Echinorhynchus gadi	Salmincola carpionis
9*	Crooked Lake 72°38°N, 98°42.5°H 29-30/8/81, 22 h gillnet (PW9)	268 272 261 260 299 457 617 328 246 552 205 189 190 238 194 238 194 221 201 204 225 212 212 218 218 217 216 248 235 300 286 108 232 213	200 200 175 165 240 690 2250 360 130 1050 60 60 60 70 60 60 70 90 60 70 90 90 90 90 90 90 90 90 90 90 90 90 90	8 8 2 2 7 2 9 2 7 8 7 1 1 1 1 7 7 7 1 1 1 8 1 1 7 7 7 1 1 1 8 1 7 7 7 7	10 9 8 8 11 25 18 12 10 27 7 6 7 8 6 8 6 6 9 8 7 7 6 11 11 11 11 4 8 8	00000 111000 30 500 50000000000000000000	1 + + + + + + + + + + + + + + + + + + +		1 1 +							•			+	1 2 3 4 1 3 2 2 2 1 1 1 1 1 1 1 1	1	1	1	+	1	* *
10*	Crooked Lake 72°36,5°N, 98°43°W 29-30/8/81, 22 h gillnet (PW10)	690 295 443 545 528 221 230 235 264 310 233 282 241 241 241 247 305 110 132 97 243 473	4000 230 980 1760 1480 85 110 100 120 150 280 110 195 125 110 80 175 125 240 9 19 6.5 1360	5 10 20 17 7 1 7 7 7 7 1 1 7 7 7 1 1 7 1 1 7 1 1 7 1 8	20 11 15 28 15 8 7 7 7 7 7 9 10 8 10 10 8 10 10 8 10 10 8 10 4 6 4 8 15	001 0010 00010 00010 10 50	+ + + + 5+		1					4		9	1	2	*	1 1 2 2 1 1 1 2 1 3 3	1		1	* * *	1	•
11*	Dolphin River 72*42-N, 98°47-W 25-30/8/81, 122 h minnow traps (PWT1-3)	78 82 57 64 61 58 63 61 54 64 59 51 56 58 73 64 60	3.8 4.5 1.7 2.3 2.1 1.8 2.2 1.9 1.3 2.1 1.8 1.1 1.5 1.8 3.0 2.5 1.7	7 0 0 0 0 0 0 0	2 1 1 1 2 1 1	0	2 2 3 1 1	1 1 1 2	11						1 1 2								1			

											Stom	h ch	conte	en ts			_					Par	asit	es		
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironualdae larvae	Chironomidae pupae	Chironomidae adults	Iri choptera	Hydracarina	Mysidacea	Os tracoda	Copepada	mermithid nematodes	fish remains	plant material	algae balls	miscellaneous	Diphyllobothrium spp.	Eubothrium saluelini	Proteocephalus sp.	Philonena agubernaculun	Quetidicola cristivomeri	Echinorhynchus gadi	Salmincola carpionis
Least	cisco				· — ··							_										_				
1•	Crooked Lake 72°41′N, 98°49′W 24-25/8/81, 14 h gillnet (PW1)	372 347 350 342	420 340 510 400	11 5 5 3	12 17 11 16	0	1 1	1	2					4 4 4					1	4 3 2 2						
2*	Crooked Lake 72°40°N, 98°51°W 24-25/8/81, 14 h gillnet (PM2)	349 352 353 345 285	440 420 470 390 230	5 11 4 3 5	14 15 13 16 9	0 0	2 1 1	1						4 4 3						2 2 3 4 3						
3*	Crooked Lake 72°39°N, 98°53°W 24-25/8/81, 14 h gillnet (PW3)	360 345	420 320	4 5	12 12		1	1 1	1					3						1 4						
4-	Crooked Lake 72°39°N, 98°49°W 24-25/8/81, 14 h gillnet (PW4)	292	250	8	7	0														2						
5*	Crooked Lake 72*397N, 98*467N 26-28/8/81, 35 h gillnet (PNS)	376 375 332 334 335 305 320 337	570 605 400 340 400 300 380 420	5 8 5 3 4 3 5	10 13 8 10 10 8 6 15	1	1	1	1					4 2			1		2 +	2 2 2 1 1 3		2				
6*	Crooked Lake 72°38″N, 98°47″W 26/8-2/9/81, 160 h gillnet (PW6)	371	470	8	10		2	1				1					1			3						
7•	Crooked Lake 72°37-N, 98°49-W 26-28/8/81, 35 h gillnet (PW7)	356 300 331 361	490 280 350 360	3 8 2 3	13 6 9 10	0 0	1 +	1				2		4						2 1 2 4		1 2			1	
8*	Crooked Lake 72*37.5*N, 98*46 m 29-30/8/81, 22 h gillnet (PW8)	347 337 353 350 339 320 344 343 363	430 400 470 480 380 350 400 410 460	5 4 3 5 3 4 4 3	11 9 9 11 16 9 12 11 10		1 1 1	1	1 1 1 1 1 1 2		1	1		4 5 4 2 4 4 4			1	1 1	1 3	1 1 1 1 1 2 4						
9•	Crooked Lake 72°38-N, 98°42.5-W 29-30/8/81, 22 h gillnet (PW9)	365	380	11	10		1	1	2					3			1			5						
10-	Crooked Lake 72°36.5°N, 98°43°N 29-30/8/81, 22 h gillnet (PW10)	350 355 344 342 344 355 354 293 362 326 324 352 367 342 333 336	500 500 410 420 320 410 500 480 240 480 240 480 500 500 500 500 420 415 380	5535353555555555555	12 12 11 9 12 13 11 14 7 13 8 9 12 13 10 9 8	1		1	1 1 1 2 1			1		524535445436465 24			1 1 1 1	1 3	2 6 2 1	3 2 1 2 1 2 2 2 2 3 3 2 1 3 3 1 3 3 1		1			1	

*1 See start of Appendix II for table explanation.

	Sampling location, Date, Set time, Gear											5	stoma	ich d	ion te	nts						_			Paras	site	5		
Site		Length (mma)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomidae adults	Tipulidae	Tri choptera	No tos traca	Isopoda	Mysidacea	Amphi poda	Cl adocera	fish remains	plant material	algae balls	misce i laneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidostomen farionis	Philonema agubernaculum	Cystidioola cristivomeri	Echinorhynchus gadi	Salminoola edwardsii	
Arctic	: charr												-																
1	lake 75°15′N, 105°12.5′W 2/8/81, 4 man h rod and reel	558 557 574 240	2000 1900 1900	3 9 9	20 23 21	0	+ 1	+ 7	+								2			1	1 3	1							
2*	lake 72*06~N, 105*37~W 12-13/8/81, 16 h gfllnets (V29, V30)	no fi	lsh																										
5	lake 71°31~N, 108°33~W 10-12/8/81, 39.5 h gillnet (V23)	660	3300	9	21		2		5												+								
6	lake 71°23′N, 109°55′W 10−12/8/81, 40.5 h gillnet (V21)	410 409 376 413 375	600 510 550 610 440	2 2 8 2 8	14 29 12 13 13		1 1 3 2	3 4 2 4 4										4	1	1	1 2 2								
	71°23~N, 109°55~W 10-12/8/81, 40.5 h gillnet (V22)	410 420 375 440 145 382 366 400 420 378 362 358	610 620 550 620 27.5 610 520 520 640 510 520 420	222312232898	14 20 15 19 4 13 14 26 17 18 13 14	ار الا الا الا الا الا	* ******	* *******												÷	+ + + +								
8	stream 71°27.5'N, 110°28'W 11-12/8/81, 27.5 h hoopnet (VH2)	120 46 77 70	16.5 0.6 2.5 1.5	8 0	4 1		1 1	ı	1			2				1		1		3 1									
9	lake 71°28′N, 113°45′W 6-7/8/81, 14.5 h gilînet (V1)	574 562	2100 1750	2 2	19 17		2 3	6 6			2				2 3			4 2	4	6 2	1 1							+ +	
131	river 72°31′N, 114°05′W 8-9/8/81, 24 h gillnet (V16)	275 408 315 527	260 840 390 1240	1 8 7 9	11 8 15	0	2 2	1 2		5 4	8	6 7				2		5 3		6 1	+ 2							12	
14*	lake 72°37°N, 113°50°W 8°978781, 20 h gillnet (V14)	410 444 415 422 288 420	620 850 620 640 240 640	2 3 8 2 2 2	16 13 24 14 10 14	0 13 1	1	2	1				8 + 7	4				3		5 6	1					+ + + + + + +			
	72°37′N, 113°50′W 8-9/8/81, 20 h gillnet (V15)	390 342 395 392	630 380 570 500	8 2 2 2	14 13 13 22	0 0			2	4			6		6 6			1		2	1 1 2					3 + + +	1		
16*	lake 72°33′N, 113°16′W	no f	lsh																										

Table 19. Raw data from Arctic charr Salvelinus alpinus, lake trout S. namayoush, Arctic cod Boreogadus saida, slender eelblenny Lumpenus fabricii, Arctic staghorn sculpin *Cymnocanthus tricus*pis, and fourhorn sculpin Myozooephalus quadricornis caught in 1981, on or near Stefansson or northern Victoria islands, Northwest Territories.

6" lake 72°33'N, 113°16'W 8-9/8/81, 20.5 h gillnets (V11, V12)

<u></u>						_					S	toma	ch c	onte	nts						_		P	aras	ites			_
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomídae adults	Tipulidae	Trichoptera	No tos traca	Isopoda	Mysidacea	Amphi poda	Cladocera	fish remains	plant material	algae balls	miscellaneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidostomen farionis	Philonema agubérnaculum	Cystidicola cristivomeri	Echinordiynchus gadi	Salminoda edurindes
Lake	trout																											_
jî	lake 75°15′N, 105°12.5′W 2/8/81, 4 man h rod and reel	870 902 538 513 461 509 562 616 711 578 526 545	6330 8440 1530 1390 1020 1020 1400 1920 2300 3050 2250 1430 1590	3 3 3 9 3 9 9 9 9 3 3 3 8	50+ 22 24 21 22 23 27 23 26 26 22 32	0	4 + + +	6 + 8 4 + 8	++8+4		2						9 8 9 9			1 1	2 1 1 3 2 2	1 1 1 1 1 1 1	1 2 1 1 1 1 3 4 1 4 1					1 1 1
4*	lake 71°24′N, 107°41′W 12-13/8/81, 13 h gillnet (V31)	525	1540	8	19	1											+				3	2	3			2	1	
	71°24-N, 107°41-W 12-13/8/81, 13 h gillnet (V32)	550 555 525	1820 1740 1560	8 8 3	28 28 25		+ +										+				1 1	1 1	1 1 5	1		8 6 2	1 1 1	
51	lake 71°31-N, 108°33-W 10-12/8/81, 39.5 h gilinet (V23)	634 655 688 107 109 110	2600 2900 3100 9.5 10 9	9 8 9 7 1 1	30 31 28 3	0	2 4 2	2				2 2				1	7 8			2 9 1 2	+ 1 1	1 1	1					
	71°31′N, 108°33′W 10–12/8/81, 39.5 h gillnet (V24)	610 219 190	2450 100 60	3 7 1	26 6 6	1		1 +													1 + +							
7*	leke 71°27.5′N, 110°25′W 11-12/8/81, 24 h gillnet (V25)	103 548 486 514 495 540 497 554 527 484 555 483 515 538	9 7 1500 1360 1350 1420 1360 1480 830 1220 1570 1300 1480 1480	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 44 52 38 28 34 53 39 48 40 27 26	00 5 5 5 5 0 5 5 0 0 5 5 0 0 5 5 0 0 0 5 0	2 2 1 + + + + +	1 + + + + + +			1						4 5 4	1	+ + +	1	1 + 1 2 2 + + + + + + + + + + + + + + + + + +		1					
	71°27.5′N, 110°25′W 11-12/8/81, 24 h gillnet (V26)	530 560 665 628 238	1640 1900 2750 2900 140	3 8 2 2	48 31 49 44 8	1 0 0 1 1	ł	+									+ +				+ + + +							
91 <u>.</u>	lake 71°28'N, 113°45'W 6-7/8/81, 14 h gillnet (V2)	653 113 497 539	2500 11 1340 1540	8 8 2	40 21 23		1 6 1	2 1 5			1 1				2 2		4	1 1	1		1 1 1	1 1	1				1	+
	71°28′N, 113°45′W 6-7/8/81, 14 h gillnet (V1)	695	3800	3	40	ų	i										+				+							
10	lake 71°25′N, 113°58′W 6-7/8/81, 14.5 h gillnet (V3)	551 465	2100 1200	8 2	41 19		8 8	4 6			1					1		5 4	4	5 5	1		1					
	71°25′N, 113°58′W 6-7/8/81, 14.5 h gillnet (V4)	573	2650	8	43		9	5										1	6	8								

											S	toma	ch c	onte	nts								P	aras	ites			_
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomidae adults	Tipulidae	Trichoptera	No tos traca	ls opoda	Mysidacea	Amphi poda	Cladocera	fish remains	plant material	algae balls	miscellaneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidos tomum farrionis	Philonama ayubermaculum	Cystidicola cristivomeri	Echinorhynchus gadi	Salminoola vikuvisii
11	lake 71°25.5°N, 114°37°W 6-7/8/81, 16.5 h gillnet (V5)	687 540 521 484 557	2850 1750 1800 1550 1600	2 3 3 3 3	23 28 37 36 25		2 8 6 8	6 8 6 7 8	+ + + +		3					-	6 2	7 6 5 5	6 6 4 5	1 6 5 4 2	+ 1 1 1	1	1 1 1			+		_
	71°25.5′N, 114°37′W 6-7/8/81, 16.5 h gillnet (V6)	582 756 483 541 517	1900 4400 1000 2100 1350	8 8 2 3 2	31 33 14 28 19	1 4 1 1	+	+ + +									+				+ + + +							
12* ¹	lake 71°32′N, 114°57′W 7-8/8/81, 18 h g1llnet (V7)	99 472 463 545	10 1080 1120 1920	8 2 3	21 22 29	a	4	5 3			2 3					4	1		2		+ + +	1				+		
	71°32~N, 114°57~W 7-8/8/81, 18 h gilinet (V8)	555 684 440 585 575 664 844 615 558	1740 2900 1920 1570 2000 2200 1300 1880	8 8 2 3 8 9 2 2	38 29 20 43 29+ 26 40 50 26	ور مر مر مر	1 2 1 + +	4 6 + +++			1					4 6 1		2	2		1 + 1 + + + + + +		1					
	71°32′N, 114°57′W 7-8/8/81, 18 h gillnet (V9)	685 619 610 400	3100 2200 1680 1390	8 8 3	48 31 37 23	0 5 0 1	+ +	+ +													+ + +							
	71°32′N, 114°57′W 7-8/8/81, 18 h gillnet (VIO)	599 510	2100 1380	8 3	32 42	0 1	+	+											+		+ +							
1 4 *I	lake 72°37′N, 113°50′W 8-9/8/81, 20 h gillnet (V15)	507 488 485 500 495 450	1540 1680 1100 1500 1620 1240	3 3 8 3 8	26 28 29 32 19+ 27	0					1			+ 8	3			2								5 5 + 7 +	1 5 8	+ ²
	stream 72°37.5′N, 113°45′W 8-9/8/81, 20 h hoopnets (VH1)	61		0																								
17*1	lake 72°00'N, 112°41'W 9-10/8/81, 27.5 h gillnet (¥19)	115 130 118 112 544 537 591 168	12.5 18.5 13.5 10 1860 1520 2150 40	8 9 8 9 8 9 9	7 7 19 19 32	1 1 1 1	2	1			2				3		9 6		1	2	+ + 1 2	1						
	72°00′N, 112°41′W 9-10/8/81, 27.5 h g1]]net (V20)	532 103	1 840 7	3 7	19		1	1									4	4	2	2	1					+		
18 ¹	lake 72°09′N, 112°08′W 9-10/8/81, 27.5 h gillnet (V17)	270 364	200 470	2 2	f1 13		7 6	3 3								1		1 3		1 1	1 1		1					
	72°09'N, 112°08'W 9-10/8/81, 27.5 h gillmet (V18)	115 105	17 10	9 9	6																							

Table 19 Cont'd.

Table 19 Cont'd.

						_					S	toma	ch c	onte	en ts						_		P	aras	ites			
Site	Sampling location, Date, Set time, Gear	Length (mm)	Weight (g)	Sex	Age (y)	fullness	Chironomidae larvae	Chironomidae pupae	Chironomidae adults	Tipulidae	Tri choptera	Notos traca	Isopoda	Mys i dacea	Amphi poda	Cl adocera	fish remains	plant material	algae balls	miscellaneous	Diphyllobothrium spp.	Eubothrium salvelini	Proteocephalus arcticus	Crepidostomum farionis	Philonema agubernaculum	Cystidicola cristinomeri	Echinorigneine gadi	Sabrinche alconintes
Arcti	c cod																											
31	Hadley Bay 71°49'N, 107°28'W 12-13/8/81, 16.5 h gillnet (V27)	182	45	2																								
Slenda	er eelblenny																											
151	Richard Collinson Inlet 72°38'N, 113°40'W 8-9/8/81, 20 h gillnet (V13)	153 170	8.5 11																									
Arcti	c staghorn sculpin																											
31	Hadley Bay 71°49′N, 107°28′W 12-13/8/81, 16.5 h gillnet (V27)	116	19	2											6													
	71°49′N, 107°28′W 12-13/8/81, 16.5 h gillnet (V28)	87	6																									
15 ¹	Richard Collinson Inlet 72°38'N, 113°40'W 8-9/8/81, 20 h gillnet (V13)	139 174 124 137 129	40 70 22 40 27 .5																									
Fourho	ern sculpin																											
31	Hadley Bay 71°49-N, 107°38-W 12-13/8/81, 16.5 h gillnet (V27)	174	60	2																								
151	Richard Collinson Inlet 72°38'N, 113°40'n 8-9/8/81, 20 h gillnet (V13)	181 224 202 171 185 94 153 135	60 110 75 45 60 3 35 21				-																					

*1See start of Appendix [] for table explanation. 2 Salminoola Sp.

APPENDIX III. SUMMARY OF FISH STOMACH CONTENTS

.

· · · · ·	Catch Data							-			<u>F</u>	ood I	tems (% Tota	1 Dry	Weid	<u>ht)</u>						
Species	Sampling Site	Number of Stomachs Sampled	Total Fish Catch	Chironomidae larvae	Chironomídae pupae	Chironomidae adults	Tipulidae	other Diptera	Tri choptera	Hymenoptera	Hyracarina	Notostraca	I sopoda	Mysidacea	Amphi poda	Os tracoda	Copepoda	Cladocera	Nema toda	fish remains	plant matter	algae balls	miscellaneous ³
Arctic charr	Bathurst Is. (Fig. 2) 1 2 3 4 5 6 8	5 4 6 5 11(1) 6 6	11(2) ¹ 27(11) 16(3) 7 61(29) 31 7	< < 2.9 7.7 < 49.1	96.5 75.8 8.7 91.2 74.7 98.2 40.2	< < 16.4	<	< 3.6 <	۲	< <	< < <			< < 1.8		< < <	< < <			8.2 91.2	< < 2.2 < <		2.4 15.5 <
	Melville Is. (Fig. 4) 8	4(1)	6(1)	4.3	2.2									32.6						•	37.0		23.9
	Prince of Wales Is. (Fig. 5) 1-10 11	43(12) 5	322(185) 17(1)	10.8 81.8	، 9.1	< <			<		<			5.6		۲	<		9.1	61.8	۲	6.4	15.3
	S tefansson Is. (Fig. 10) 1	1	10	<	99.7						<									ĸ			
	Victoria Is. (Fig. 10) 5 6 8 9 13 14	1 5 2 3(1) 7(2)	1 17(1) 6 2 4(1) 10(3)	2.6 10.8 1.5 、	79.2 63.3 、	97.4 < <	3.9	58.3 «	65.22		<	41.7 22.5	78.1	<	1.8 13.6	٢	< <	< <	<		10.0 4.7 1.8	< 2.6	25.7 6.2 6.5
Lake trout	Stefansson Is. (Fig. 10) 1	6	48	۲	5.8	1.6			<		<									92.6			
	Victoria Is. (Fig. 10) 5 7 9 10 11 12 14 17 18	6(1) 5 3 5 5 5 5(3) 4 2	9(2) 20(7) 5 3 10 19(6) 6(3) 10 4	<pre></pre>	< 51.0 1.6 31.5 69.5 < 1.6	•		۲ ۲	< < 1.1 < <	<		<		99.1	< < <	¢		< < 21.8		43.3 98.4 7.8 < < 99.7	8.7 < <	< 1.0 5.2 1.1	56.1 ~ 7.5 3.0
Least cisco	Prince of Wales Is. (Fig. 5) 1-10	46(4)	53(5)			<					`			<			62.1	۲			•	Q A	< 24.2
Arctic stag- horn s <u>culpin</u>	Victoria Is.	1	2								-				100.0		U2.1					7.4	24.2

Table 20. Stomach contents of fish caught in the survey area during July and August, 1981.

 mammal remains
 Victoria Is., site 5.

 bird feathers
 Victoria Is., site 14.

 digested remains
 Bathurst Is., site 1, 2.

 crustacean remains
 Bathurst Is., site 8.

 unidentified insects
 Victoria Is., site 13.

 charr eggs
 Prince of Wales Is., site 5, 8. 10.

 mollucs
 Sphaerifdae

 and/or sand.
 Victoria Is., site 13, 18.

Food items found only during field examinations.

APPENDIX IV. BONE STRONTIUM MEASUREMENTS

•

Age (y)	Length (mm)	Weight (g)	Condition Factor ¹	Bone Strontium (µg/g)
1	58	1.8	0.992	39 -
4	115	9	0.592	201
	117	11	0.687	56
6	132	19	0.826	195
	210	80	0.864	186
7	179	45	0.785	117
	290	180	0.738	183
8	193	70	0.974	152
	258	155	0.903	182
9	226	100	0.866	158
	275	200	0.962	190
10	2 46	135	0.907	202
	310	280	0.940	182
11	235	120	0.925	187
	423	760	1.004	378
12	288	240	1.005	174
	350	420	0.980	192
13	277	190	0.894	41
	356	470	1.042	126
15	352	420	0.963	147
	528	1480	1.005	710
16	380	530	0.966	131
	650	2750	1.001	986
17	388	505	0.865	172
	584	2050	1.029	1069
19	467	760	0.746	168
	748	5100	1.219	820
20	412	750	1.072	188
	690	4000	1.218	883
21	487	800	0.693	171
	627	2550	1.034	702
23	390	490	0.826	207
	745	4600	1.112	906
24	404	540	0.819	138
	643	3000	1.128	609
25	457	690	0.723	193
	768	4100	0.905	728
26	432	760	0.943	160
	710	4100	1.146	170

Table 21. Length, condition, and bone strontium concentration of the smallest and the largest Arctic charr of a given age found in Crooked Lake, Prince of Wales Island.

 1 condition factor = weight in g $\cdot (fork length in mm)^{-3} \cdot 10^5$

APPENDIX V. GEOGRAPHICAL DISTRIBUTIONS OF:

Fish parasites Zooplankton Chironomidae Plants

.

Table 22. Metazoan parasites of fish caught in the Viscount Melville Sound study area, 1981.

hàrr Cy Ph un <u>Ce</u> Di, Di, Di, Eu Di, Eu Eu Eu Ea Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	Species Parasite Parasite paraidoda paraidoda oristivomeri White 1941 milonema agubernaculum Simon & Simon 1936 midentified estoda identified estoda iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 rotsooephalus aroticus Cooper 1921 eanthocephala chinorhynchus gadi Zoega in 0.F. Muller 1776 opepoda ulmincola sp. ulmincola edwardsii (Olsson 1869) Wilson 1915 ulmincola carpionis (Krøyer 1837)	<u> </u>	thurst ig. 2) 3 4 5	6 8 • • •	Cornwallis (Fig. 2) 10	Melville (Fig. 4) 8 •	Prince of Wales (Fig. 5,6) 1-10 • •		<u>5 6 7</u> ●	(F1	toria g. 10) 11	•	•	17 1
rctic Ne harr Cy Ph un <u>Ce</u> Di Di Di Di Eu Di Eu Eu Eu Eu Eu Eo Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	Parasite <u>ematoda</u> ystidioola oristivomeri White 1941 nilomema agubernaculum Simon & Simon 1936 nidentified <u>estoda</u> iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvalini (Shrank 1790) Nybelin 1922 roteooephalus aroticus Cooper 1921 <u>canthocephala</u> chinorhynchus gadi Zoega in 0.F. Müller 1776 <u>opepoda</u> ilmincola sp. ilmincola schardeii (Olsson 1869) Wilson 1915			6 8 • • •					6 7 •				•	17 1
hàrr Cy Ph un <u>Ce</u> Di, Di, Di, Eu Di, Eu Rr A <u>C</u> Ea Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	ystidiaola oristivomeri White 1941 hilonema agubernaculum Simon & Simon 1936 hidentified estoda iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteocephalus arcticus Cooper 1921 eanthocephala chinorhynchus gadi Zoega in 0.F. Wuller 1776 ppepoda ulmincola sp. ilmincola sp. Wilson 1915				•	•	•	•	••	•		•	•	
hàrr Cy Ph un <u>Ce</u> Di, Di, Di, Eu Di, Eu Eu Eu Ea Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	ystidiaola oristivomeri White 1941 hilonema agubernaculum Simon & Simon 1936 hidentified estoda iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteocephalus arcticus Cooper 1921 eanthocephala chinorhynchus gadi Zoega in 0.F. Wuller 1776 ppepoda ulmincola sp. ilmincola sp. Wilson 1915				• •	•	•	•	•	•		•	•	
Ph um <u>Ce</u> Di Di Di Eu Pr <u>Ac</u> Ea Ea Ea Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Di Qu Un Un Di I Di Di Di Di Di Di Di Di Di Di Di Di Di	nilonama agubernaculum Simon & Simon 1936 nidentified estoda iphyllobothrium ditramum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium aalvelini (Shrank 1790) Nybelin 1922 roteooephalus arcticus Cooper 1921 eanthocephala chinorhynchus gadi Zoega in 0.F. Müller 1776 ppepoda ilmincola sp. ilmincola sp. Nilson 1915				•	•	•	•	• •	•		•		
Ce Di, Di, Eu Di, Eu Pr Ac Ea Sa Sa Sa Sa Sa Sa Sa Sa UN Co UN Co UN Co UN Co UN Co UN Co UN Co UN Co UN CO CO CO CO CO CO CO CO CO CO CO CO CO	estoda iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteocephalus arcticus Cooper 1921 canthocephala chinorhynchus gadi Zoega in 0.F. Wuller 1776 ppepoda ulmincola sp. ilmincola sp. Wilson 1915				•	•	•	•	•	•		•		
Di, Di, Di, Eu Pr <u>Ac</u> Ea Sa Sa Sa Sa Sa Sa Sa Sa Di, Coj U U U U U U U U U U U U U U U U U U U	<pre>iphyllobothrium ditremum (Creplin 1825) iphyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp.² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteooephalus aroticus Cooper 1921 canthocephala chinorhynchus gadi Zoega in</pre>				•	•	•	•	• •	•		•	•	
ke Di Ga Fru Ea Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Di Ju Ju Ju Ju Ju Ju Ju	phyllobothrium dendriticum (Nitzsch 1824) iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteocephalue aroticus Cooper 1921 <u>canthocephala</u> schinorhymchus gadi Zoega in 0.F. Müller 1776 <u>opepoda</u> ulmincola sp. ulmincola sp. ulmincola eduardeii (Olsson 1869) Wilson 1915				•	•	•	•		•		•	•	
ke Nu Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Da Ja Ja Da Ja Da Ja Da Ja Da Ja	iphyllobothrium sp. ² ubothrium salvelini (Shrank 1790) Nybelin 1922 roteooephalus aroticus Cooper 1921 <u>canthocephala</u> chinorhynchus gadi Zoega in 0.F. Müller 1776 <u>opepoda</u> ulmincola sp. ulmincola sp. ulmincola sduxardsii (Olsson 1869) Wilson 1915	• •	• • •	• • •	•	•	•	• •	•	•				
Pr <u>Ac</u> Ea Sa Sa Sa Sa Sa Sa Sa Sa Di Ju Di Ji Di Ji	Nybelin 1922 roteooephalus arotious Cooper 1921 <u>canthocephala</u> chinorhynohus gadi Zoega in O.F. Muller 1776 <u>opepoda</u> ulmincola sp. ulmincola sdwardsii (Olsson 1869) Wilson 1915	•	•••	•••		•	•					-	•	
A <u>c</u> Eo. Sa Sa Sa Sa Sa Sa Ca Sa Di Qu Di Di Di	canthocephala phinorhymohus gadi Zoega in O.F. Wüller 1776 oppepoda ulmincola sp. ulmincola schwardsii (Olsson 1869) Wilson 1915	•	••					•						
ike <u>Ne</u> Sa Sa Sa Sa Sa Sa Di Di Di Di Di	chinorhynchus gadi Zoega in O.F. Muller 1776 spepoda slmincola sp. slmincola edwardsii (Olsson 1869) Wilson 1915	•	• •				•							
Co Sa Sa Sa Sa Sa Sa Ca Cu Cu Cu Di Ji Di Di	O.F. Müller 1776 opepoda ulmincola sp. ulmincola edwardeii (Olsson 1869) Wilson 1915	•	• •											
sa Sa Sa Sa Sa Sa C <u>e</u> Dij Dij	ılmincola sp. ılmincola edwardəii (Olsson 1869) Wilson 1915			•	٠		٠						•	
Sa Sa Sa Out Cy Un Dij Dij	almincola edwardsii (Olsson 1869) Wilson 1915													
Sa bout Cy. Un Dij Dij	Wilson 1915		• •)	•	٠						•		
ke <u>Ne</u> out Cy un <u>Ce</u> Di _i Di							-			•				
out Cy. un <u>Ce</u> Dij Dij	Wilson 1915						•							
Cy, un <u>Ce</u> Dij Dij	ematoda													
Di Di	<i>stidicola oristivomeri</i> White 1941 Mdentified							٠		•	•	•	•	•
Di	<u>estoda</u>													
	iphyllobothrium ditremum (Creplin 1825) iphyllobothrium sp. ²							••	•			•		•
	bothrium saluslini (Shrank 1790) Nybelin 1922							• • •		•	•			•
Pre	oteoosphalus arcticus Cooper 1921							•••	•	• •	٠	•		•
In	rema toda													
Cr	<i>epidostomum farionis</i> (O.F. Müller 1780) Lühe 1909							٠						
Ac	canthocephala													
Eci	<i>hinorhynchus gad</i> i Zoega in O.F. Müller 1776							٠		•			٠	
<u>Co</u>	pepoda													
Sa	lmincola sp.												•	
Sa	ilmincola edwardsii (Olsson 1869) Wilson 1915							•		•				
ast <u>Ne</u> sco	ema toda													
un	nidentified						•							
<u>Ce</u>	estoda													
	phyllobothrium ditremum (Creplin 1825) phyllobothrium dendriticum (Mitzsch 1824)						•							
Dria	-						•							
	iphullobothrium SD.4						•							
Ac	phyllobothrium sp. ² roteocephalus arcticus Cooper 1921													
Ec														

¹ sample site
² plerocercoids
• species present

								Isla	nd		_										
Species ^L		Bathu (Fig.		_	Little Cornwallis (Fig. 2)		111e (. 4)	Prince of Wales (Fig. 5)	_						۷	1cto	ria (Fig.	10)		
	1 2	2 5	6	8	9	3	7	1-10	2		4 !	5	6	7	8 10	12	134	14	16	17	10
Copepoda													_								_
Cyclops capillatus Sars 1963													?2								
Cyclope ecutifer Sars 1853						•	٠	٠	•		•			•		•			•	•	•
Cyclope vermalie Fischer 1853															7						
Cyclopinidae					•									•							
Diaptomus sicilis Forbes 1882									•		•		,	•		•		•	•	•	,
Limno calanus macrurus Sars 1863	•	٠	•	•	٠		•	٠		•	•							•			
Harpacticoida	l I	•		•	•																
Cladocera																					
Chydorus sphaericus (O.F. Muller) 1785																				•	,
Daphnia longiremis Sers 1861											•			•		•				•	,
Daphnia longispina miorocephala Sars 1891											1			•		•					
Daphnia middendorfflana Fischer 1851														•		•	,				
Daphnia middendorffiana x pulex (?)														•							
Daphnia schédleri Sars 1862																•					
Daphnia sp.								●1								3					
Surgeerous lamellatus (0.F. Huller) 1785																					

Table 23. Distribution of crustacean zooplanktom in selected lakes in the Viscount Melville Sound study area, 1981.

I Specimens identified by and housed in the collection of Dr. and Mrs. K. Patalas at the Freshwater Institute in Winnipeg. ² specimens from fish stomachs, species identifications not certain. ³ adults with ephippium or ephippia only ⁴ river ⁴ species caught in zooplankton hauls ⁸ species found in fish stomachs

Table 24. Distribution of Chironomidae (Order Diptera) in the Viscount Melville Sound study area, 1981.

Spectes ¹	Bathurs t	Island	lakes (Ftg. 2)	Prince of Wales Island (Fig. 5) <		YI	ctor	1.1	iland	اعلاه	(Fig	L 10)	
	12	5	6	8	1-10	5	6	7	9	10	11	12	133	18
Abiakomyia virgo Edw.					•				٠		٠			
Clyptotendipes sp.								٠						
Heterotrissocladius oliveri Saeth.	•	٠								•		٠		٠
Nicropsectra Sp.	٠		٠		•	٠	•				٠			
Orthooladius (S.S.) charensis Sop.			٠				•							
Paracladius alpicola (lett.)	٠				•						٠			
Phaenopeestra sp.							•		٠					
Procladius (s.s.) sp.													٠	
Protanypus morio lett.					•				٠	٠	٠			
Peestrooladius (S.S.) Sp.													٠	
Preudodiamena arotica (Mell.)	٠	•	٠	٠	•					•		٠		٠
Smittia sp.												٠		
Stistochironomus (f. rosenchöldi													٠	
Thionomonimyia SP.									٠					

I Type specimens identified by and available from Mr. Bohdan Bilyj at the Freshwater Institute in Winnipeg. 2 sample site 3 river 4 two species present • species present

Species	s and classification	Common Name		Loc	ation, habitat ty	pe, and date		
			<u>Bathurst Is.</u>	<u>Melvil</u>	le is.	Pr. of Wales Is.	Devon Is.	Baffin Is.
			Fig. 2, Site 1 75°10.5′N, 98°09′W moist soil 19/7/81	Fig. 4, Site 3 75°01′N, 108°39′W sandy, dry 20/7/81	Fig. 4, Site 5 75°33'N, 110°26.5'W shale, dry 22/7/81	Fig. 5, Site 1 72°40°N, 98°53°W rocky, moist 31/8/81-2/9/81	Maxwell Bay 74°52.5°N, 91°17 W rocky, dry 3/8/80	Erichsen Lake 70°37.5-N, 80°55-W sand esker 26/8/80
CĪ. 1	n Fungi Ascomycetes <i>Thamonlia</i> sp.				•	•		
Kingdor	n Plantae							
D1v. I	Bryophyta Musci							
	Bryum		•			•		
	Cirriphyllum cirrosum Rhachomitrium Sp.		•		•	•		
S. D1 C1.	Spermatophyta v. Anglospermae Monocotyledoneae Gramineae							
	Alopecurus alpinus Arctagrostis latifolia	foxtail	•	٠		•		:
	Feetuca brachyphylla	fescue						ě
	Poa arctica Poa sp.	blue grass blue grass		•				•
F.	Cyperaceae							
	Eriophorum sp. Carex misandra	cotton grass sedge						
F.	Juncaceae Luxula confusa	wood rush	-		٠			٠
	Dicotyledoneae							
F.	Salicaceae Salix arotica	Arctic willow	•			•		•
	Salix sp.		•				•	•
F.	Saxifragaceae Saxifraga caespitosa							
	SSP. uniflora S. casspitosa SSP. casspitosa	tufted saxifrage tufted saxifrage	•	٠		•		
	S. cermua S. flagellaris SSP. platysepala	nodding saxifrage	•					
	5. Hirculus var. propinqua	yellow marsh	•			•		
	S. nivalie	saxifrage alpine saxifrage	•		٠			•
	S. oppositifolia S. tricuspidata	pumple saxifrage prickly saxifrage	•			•	٠	•
	Saxifraga sp.	,,	•					
F.	Caryophyllaceae						•	
	Lychnis apetala ² Silene acaulis var. execapa	bladder-campion campion					•	•
	Stellaria sp.	chickweed		•				
F.	Polygonaceae Oxyria digyna	mountain sorrel		•				•
F.	Cruciferse Cardamins bellidifolia Cochlearia officinalis Draba alpina var. nana ³ Parnya sp.	bitter cress scurvy-grass	•	•		:	•	
F.	Papaveraceae Papaver radicatum	Arctic poppy	•	•	•	٠	•	•
F.	Rosaceae Dryas integrifolia Potentilla sp.	mountain avens cinquefoil		•			•	
F.	Ericaceae	Anotio utito						
	Cassiops tetragona	Arctic white heather						•
	Vaccinium uliginosum	bilberry						•
F.	Plumbaginaceae Armeria maritima var. siberica	leadwort						•

Table 25. Plant species collected in the Viscount Melville Sound study area (1981) and in the Lancaster Sound study area, 1980 (Stewart and MacDonald 1981). These collections are housed in the Department of Botany herbarium at the University of Manitoba, Winnipeg with other specimens which await identification.

species collected
 F.ovina var. brachyphylla
 Melandrium apstalum SSP. aroticum
 D. bellii

1

l

ī

1

ł

1

APPENDIX VI. BIRD AND MAMMAL OBSERVATIONS

Species and Location	Date	<u>Num</u> Adult		Species and Location	Date	<u>Num</u> Adult	ber Yound
BATHURST ISLAND				Ringed Seal			
Arctic Hare				75° 07′ N, 98° 00′W	30/7/81	18	
75° 33′N, 97° 38′W 75° 41′N, 98° 49′W	30/7/81	2 1		76° 35′ N, 99° 04′W 75° 30′ N, 99° 52′W	" 31/7/81	1	
75° 45′N, 98° 23′W	н	9		<u>Snow Goose</u>			
Peary Caribou				75° 42.5´N, 98° 41´W	24/7/81	20	1
75°49′N,98°17′W 75°51′N,98°50′W	30/7/81	1 5	1	75° 13′ N, 96° 14′W 75° 27.5′N, 99° 59′W	30/7/81	10 8	1
76° 16.6'N, 97° 48'W 76° 28.6'N, 97° 45'W	11 11	14 3	·	75° 28.4´N, 99° 54´W 75° 29.5´N, 99° 53´W	u H	18 9	
75° 31.5′N, 99° 40′W	31/7/81	3		75° 42.5´N, 98° 41´W 76° 18´ N, 97° 51´W	н 4	90 6	ז ו
76° 30.4′N, 98° 10′W 76° 31′ N, 98° 34′W	u u	3 3 7	2	76° 19′ N, 97° 51′W 75° 27.5′N, 99° 55′W	" 31/7/81	11 19	1
76°33′N, 98°22′W 76°35′N, 98°37′W		7 2	6 1	75° 27.5´N, 99° 59´W 75° 28.4´N, 99° 54´W	16	17 23	2
Black Brant				75° 32′ N, 99° 38′W 75° 42.5′N, 98° 41′W	u u	26 75	1 4
75°24′N, 100°24′W 75°25.5′N, 100°27′W	24/7/81	10 11		Snowy Owl			
75° 28.4′N, 99° 54′W 75° 29′ N, 99° 33′W	30/7/81	6 24		75° 38′ N, 99° 22´W	30/7/81	3	
75° 38′ N, 99° 18′W	n	11		75° 37′ N, 99° 22′W 76° 12′ N, 97° 34′W	31/7/81	1	
Brant				Walrus			
75° 38′ N, 99° 18′W 75° 28.4′N, 99° 54′W	30/7/81 31/7/81	16 6		76° 15´ N, 97° 35´W	30/7/81	2	
75° 51′ N, 97° 35′W	31/7/01	3		BYAM MARTIN ISLAND			
ider ducks (sp. ?)				<u>Peary Caribou</u>			
76° 23.5´N, 97° 42´W 76° 30.4´N, 98° 10´W	30/7/81 31/7/81	∿100 ∿ 20		75° 14′ N, 104°05´W	20/8/81	7	2
				<u>Muskox</u>			
75° 27.5´N, 99° 59´W	31/7/81	2	1	75° 17′ N, 104°40′W	20/8/81	1	
75° 28.4'N, 99° 54'W 75° 32' N, 99° 38'W	- 11	2 2		GRIFFITH ISLAND			
luskox				<u>Beluga Whale</u>			
75° 36′ N, 97° 43′W	30/7/81	9	3	74° 29′ N, 95° 50′W	13/8/81	22	11
75°39′N,97°54′W 75°39′N,99°18′W	11 11	1 13	3	MELVILLE ISLAND			
75° 43.5′N, 98° 07′W 75° 44.5′N, 98° 27′W	n 11	1		<u>Arctic Fox</u>			
75° 29.6′N, 99° 43′W 75° 32′ N, 99° 34′W	31/7/81	22 11	2	75° 06′ N, 108° 39′W	22/7/81	1*	
75° 32′ N, 99° 40′W 75° 32.5′N, 99° 30′W	n 11	10 1	5	<u>Peary Caribou</u>			
75° 56′ N, 97° 40′W 75° 28.4′N, 99° 51′W	1/8/81	7 17	2 2	75° 02′ N, 107° 42′W	22/7/81	7	
75° 34′ N, 98° 05′W 75° 37.5′N, 99° 18′W	"	13 11	2	<u>Black Brant</u>			
75° 38′ N, 99° 10′W	и	5	2	76° 12.5′N, 109° 35′W	24/7/81	48	
Parasitic Jaeger				Muskox			
75° 28.41N, 99° 541W 75° 43.61N, 98° 261W	31/7/81	2 4		74° 57.5′N, 108° 01′W 74° 58.3′N, 108° 01′W	20/7/81	5 1	3
Polar Bear				74° 58.3 N, 108° 16-W 74° 59- N, 108° 16-W 75° 00- N, 108° 20-W	н. н	38 6	6 2
75° 21.5′N, 100°45′W	30/7/81	1	1	75° 00′ N, 108° 23′W 75° 00′ N, 108° 23′W 75° 00′ N, 108° 25′W	и 11	8 8	2
76° 25′ N, 98°00-W	31/7/81	1		75°01′N, 108°25 W	0	8	23

Table 26. Wildlife sightings in the Viscount Melville Sound study area between July and September, 1981.

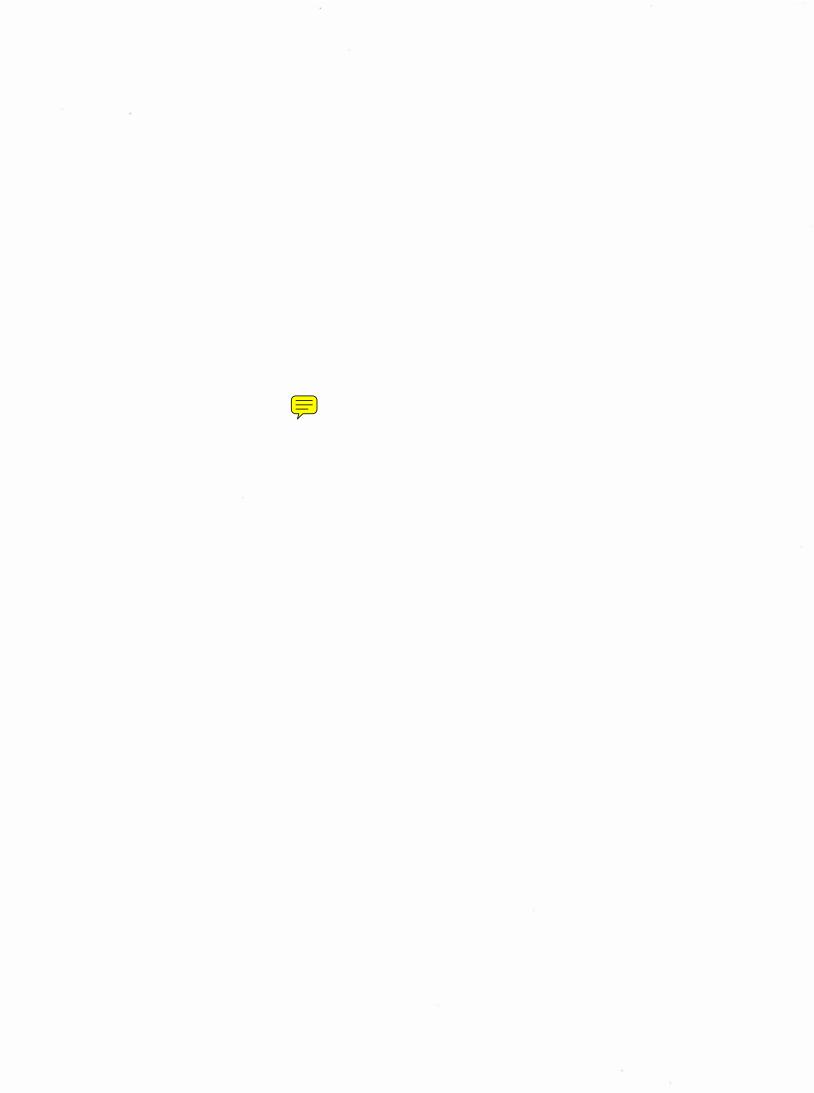
Table 26. Cont'd.

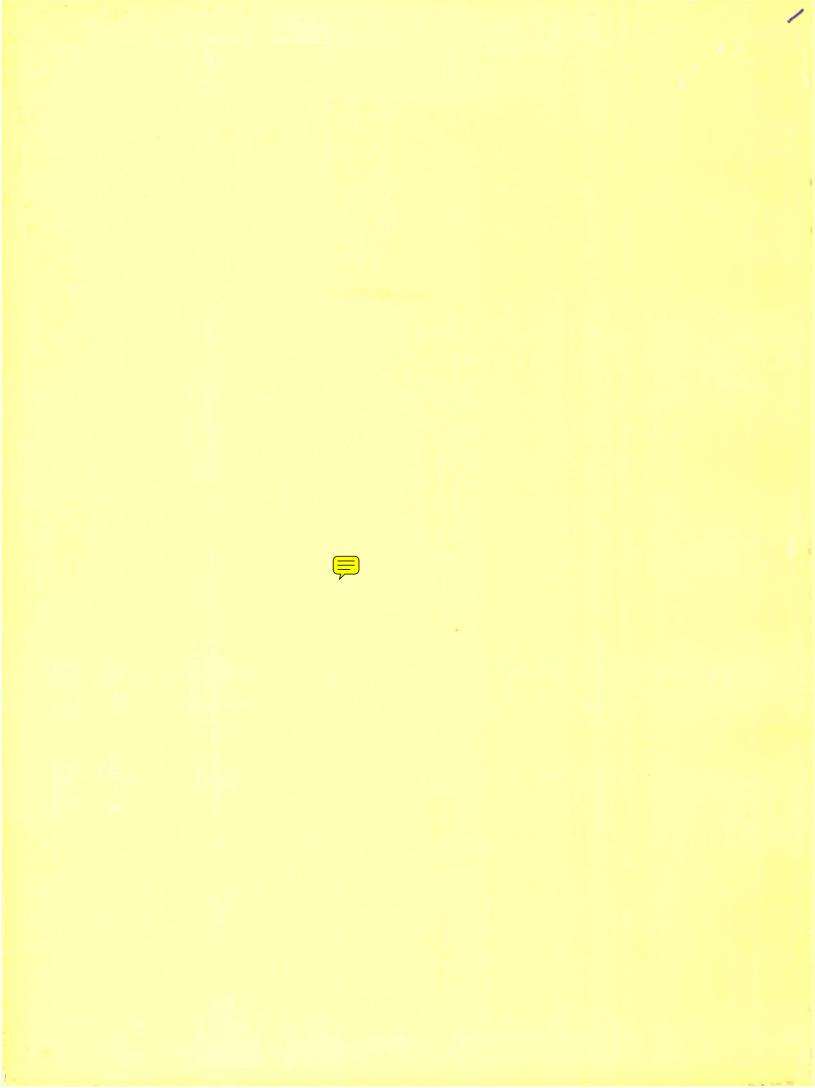
Species and Location Date Adult Young Species and Location Date Adult Meskox cont'd Image: Control of the second of th			Number	-		ber
75° 04.5°N, 106° 31°N 21/7/81 13 3 75° 05.7°N, 106° 16°N 20 2 2 75° 05.8°N, 106° 16°N 2 2 2 75° 05.8°N, 106° 11°N 2 2 2 75° 05.8°N, 106° 4 1 1 1 75° 05.8°N, 106° 46°N 1 1 1 75° 05.8°N, 106° 46°N 1 1 1 75° 05.8°N, 106° 46°N 1 1 1 75° 05.8°N, 106° 10°N 210°N 138.881 3 75° 05.8°N, 108° 24°N 138.881 20 20 75° 05.8°N, 108° 12°N 1 2 218'N 20 75° 05.7°N, 108° 12°N 1 2 218'N 20 75° 05.7°N, 108° 12°N 1 2 218'N 20 75° 10°N, 108° 12°N 21/7/81 2 2 218'N 20 18'N 20/8/81 1	Species and Location	Date	Adult Young	Species and Location	Date	Adult	Young
75° 0	Muskox cont'd			Long Tailed Jaeger			
75° 17.2° 10.05° 58.4° * 1 2/9/81 75° 0.12° 10.05° 52° * 1 2 75° 0.12° 111° 00° 22/1/81 4 1 Muskox 75° 0.12° 111° 00° 22/1/81 4 1 73° 13° 40° 13/8/81 73° 3 75° 0.12° 111° 00° * 10 2 13° 3 4 1 3 3 3 50 3 50 3 50 50 3 50 3 50		21/7/81		72° 40.5′N, 98° 54′W		+	
75° 10° 2° 10° 2° 75° 0.1° 0.1° 2° 10° 2° 75° 0.1° 0.1° 2° 11° 0.0° 2° 17° 0.1° 0.1° 17° 0.1° 0.1° 17° 0.1° <th< td=""><td></td><td>11 11</td><td></td><td></td><td></td><td></td><td></td></th<>		11 11					
75° 04 - N. 111° 00 - W - 2 75° 05 55 - N. 100° 37 - W - 20 6 73° 32° - N. 97° 52° W 6/8/81 7 75° 05 55 - N. 100° 37 - W - 20 6 73° 47 - N. 97° 40° W 13 75° 05 55 - N. 100° 37 - W - 10 2 73° 42 - N. 97° 40° W 13/8/81 7 75° 05 - N. 100° 25 - W - 10 2 01dsouw >50 7	75° 17.2'N, 105° 52'W			Muskov	-, -, - , - ,		
75% 0.6 73% 0.7 0	75° 04′ N, 111° 00′W		2		C / C / C]	_	•
1/2 1		u			6/8/81		2
75* 7							
75 77 75 77 <td< td=""><td>75° 47.3′N, 109° 20′W</td><td></td><td>10 2</td><td></td><td></td><td></td><td></td></td<>	75° 47.3′N, 109° 20′W		10 2				
73 73 <td< td=""><td>75° 29′ N, 105° 56′W</td><td>24/7/81</td><td>4</td><td></td><td></td><td>>50</td><td></td></td<>	75° 29′ N, 105° 56′W	24/7/81	4			>50	
Seals (sp. ?) 72° 40.5°N, 98° 54°W 20/8/81 + 75° 03° N, 100° 12°W 22/7/81 2 2/9/81 Snow Goose 72° 35° N, 98° 22°W 21/8/81 1 75° 03° N, 108° 12°W 24/7/81 7 7 73° 35° N, 98° 22°W 21/8/81 1 Snow Goose 75° 01° N, 108° 12°W 21/7/81 2 7 <td></td> <td></td> <td></td> <td><u>Parasitic Jaeger</u></td> <td></td> <td></td> <td></td>				<u>Parasitic Jaeger</u>			
75° 03 · N. 107° 41 · W 22/7/81 2 2/9/81 75° 03 · N. 108° 12 · W 24/7/81 1 Polar Bear 76° 08 · N. 108° 12 · W 24/7/81 7 72° 35 · N. 98° 22 · W 21/8/81 1 Snow Goose 72° 35 · N. 98° 22 · W 21/8/81 1 Red Throated Loon + 75° 01 · N. 106° 26 · W ···· 8 10 Snow Bunting + 75° 03 · N. 106° 18 · W ···· 2 ? Snow QW1 + 75° 03 · N. 106° 18 · W ···· 2 ? Snow QW1 + 75° 04 · N. 106° 18 · W ···· 2 / 9/81 - + PRINCE OF WALES ISLAND 72° 40.5 · N. 98° 54 · W 25/8/81 2 VICTORIA ISLAND 72° 42 · N. 98° 54 · W 25/8/81 2 VICTORIA ISLAND - 72° 40.5 · N. 98° 54 · W 20/8/81 1 Peary Caribou - 72° 40.5 · N. 98° 54 · W 20/8/81 - - 113° 28.3 · N. 113° 31 · W 6/8/81 1 72° 40.5 · N. 98° 54 · W 20/8/81 - - - 1 1 72° 40.5 · N. 98° 54 · W 20/8/81 - - 1 1 1 72° 40.5 · N. 98° 54 · W 20/8/81 - - 1 1 <td></td> <td></td> <td></td> <td>72° 40.5′N, 98° 54′W</td> <td>• •</td> <td>+</td> <td></td>				72° 40.5′N, 98° 54′W	• •	+	
75° 33.5°N, 108° 12°W 24/7/81 1 Polar Bear 75° 08° N, 108° 12°W 24/7/81 1 72° 35° N, 98° 22°W 21/8/81 1 75° 01° N, 106° 22°W 21/7/81 2 7 75° 01°N, 106° 22°W 21/8/81 1 75° 01° N, 106° 22°W 21/7/81 2 7 70° 35° N, 106° 1 8 10 5 50°W 1 1 7 4 5 50°W 10°W 1 7 4 5 70°W 1 7 4 5 70°W 10° 1 70°W 1 70°W 10°W 1 1 70°W 10° 10°W 1 10°W 1 10°W 10°W 10°W 1 10°W 10°W 10°W 10°W 10°W 10°W 1 10°W							
76° 08° N, 108° 12°W 24/7/81 1 Snow Goose 72° 35° N, 98° 22°W 21/8/81 1 Snow Goose 8 10 72° 35° N, 98° 22°W 21/8/81 1 75° 01° N, 106° 22°W 21/7/81 2 7 7 7 98° 22°W 21/8/81 1 75° 01° N, 106° 25°W " 2 7 7 7 98° 22°W 21/8/81 1 75° 01° N, 106° 25°W " 2 7 7 7 98° 48°W 25/8/81 1 72° 40.5°N, 98° 54°W 28/8/81 1 72° 35° N, 113° 31°W 6/8/81 1 72° 40.5°N, 98° 54°W 20/8/81 1 11° 28.3°N, 113° 31°W 6/8/81 1 72° 40.5°N, 98° 54°W 30/8/81 2 7 7° 36° N, 113° 31°W 6/8/81 1 72° 40.5°N, 98° 54°W 20/8/81 - 71° 28.3°N, 113° 31°W 6/8/81 1 72° 40.5°N, 98° 54°W 20/8/81 - 71° 25°N, 10°° 58°W 12/8/81 3 72° 40.5°N, 98° 54°W 20/8/81 - 71° 25°N, 10°° 58°W 12/8/81 1	75° 33.5′N, 110° 23′W		1	<u>Polar Bear</u>			
Snow Goose Red Throated Loon + 75° 01' N. 106° 22'W 21/7/81 2 7 75° 01' N. 106° 22'W 21/7/81 2 7 75° 01' N. 106° 22'W 21/7/81 2 7 75° 02'S N. 106° 18'W 2 2 7 75° 02'S N. 106° 18'W 2 7 4 75° 04'N. 106° 18'W 2 7 4 72° 40.5'N, 98° 54'W 26/8/81 1 72° 40.5'N, 98° 54'W 26/8/81 72° 40.5'N, 98° 54'W 26/8/81 1 Peary Caribou Arctic Tern 71° 28.3'N, 113° 31'W 6/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 2 71° 28.3'N, 113° 31'W 9/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 2 71° 28.3'N, 113° 31'W 9/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 1 71° 28.3'N, 113° 31'W 9/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 1 71° 28.5'N, 10° 27'W 1 1 72° 40.5'N, 98° 54'W 30/8/81 1 61aucous Gull 1 1 72° 40.5'N, 98° 54'W 30/8/81 1 61aucous Gull 1 1 72° 40.5'N, 98° 54'W 30/8/81 1 61aucous Gull 1 1 72° 40.5'N, 98° 54'W 30/8/81	76° 08′ N, 108° 12′W	24/7/81	1		21/8/81	1	
75° 01' N, 106° 22'W 21/7/81 2 ? 2 10' N, 106° 22'W 21/7/81 2 ? 75° 01' N, 106° 25'W " 2 2 75° 02'S N, 106° 18'W " 2 2 75° 04' N, 106° 18'W " 2 5 75° 04' N, 106° 18'W " 2 5 75° 04' N, 106° 18'W " 2 5 72° 40.5'N, 98° 54'W 20/8/81 1 72° 40.5'N, 98° 54'W 20/8/81 1 20/8/81 1 72° 40.5'N, 98° 54'W 20/8/81 1 9 98' 55'W 29/8/81 1 1 72° 40.5'N, 98° 54'W 30/8/81 >2* 71° 28.3'N, 113° 31'W 6/8/81 1 6/8/81 1 72° 40.5'N, 98° 54'W 30/8/81 >2* 71° 28.3'N, 113° 31'W 6/8/81 4 1 72° 40.5'N, 98° 54'W 30/8/81 >2* 71° 28.3'N, 113° 31'W 7 6/8/81 1 72° 40.5'N, 98° 54'W 30/8/81 >2* 71° 28.3'N, 113° 31'W 7 6/8/81 1 72° 40.5'N, 98° 54'W 30/8/81 - 71° 28.3'N, 113° 31'W 7 1/8/81 4 72° 40.5'N, 98° 54'W 30/8/81 - 71° 28.3'N, 110° 04'W 7 1 72° 40.5'N, 98° 54'W 30/8/81 - 71° 28.5'N, 100° 27'W 7 1 71° 28.5'N, 10° 27'W 7 1 1 1 72° 40.5'N, 98° 54'W 30/8/81 1 1 6 1 72° 40.5'N, 98° 54'W 30/8/81 1	Snow Goose				2.,0,0,		
75° 02.5 N, 106° 18'W " 2 ? 75° 02.5 N, 106° 18'W " 2 5 78° 04' N, 100° 51'W " 2 5 PRINCE OF WALES ISLAND " 2 5 Arctic Fox " 2 5 72° 40.5'N, 98° 54'W 25/8/81 2 VICTORIA ISLAND Arctic Fox " 71° 28.3'N, 113° 31'W 6/8/81 72° 40.5'N, 98° 54'W 28/8/81 1 Peary Caribou Arctic Tern 71° 28.3'N, 113° 31'W 6/8/81 3 72° 40.5'N, 98° 54'W 30/8/81 >2* 71° 28.3'N, 113° 42'W " 72° 40.5'N, 98° 54'W 30/8/81 - 71° 28.3'N, 113° 42'W " 72° 40.5'N, 98° 54'W 20/8/81 - 11° 25', 7'N, 115° 33'W 9/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 - 71° 25', N, 100° 4'W " 1 72° 40.5'N, 98° 54'W 20/8/81 - 11° 25', 7'N, 115° 04'W " 1 72° 40.5'N, 98° 54'W 20/8/81 - 71° 25', N, 100° 27'W " 1 72° 40.5'N, 98° 54'W						Ť	
75 04 N. 106 18 W 1				<u>Snow Bunting</u>		+	
PRINCE OF WALES ISLAND 72° 40.5°N, 98° 54°W 20/8/81 + Arctic Fox	75° 03′ N, 107° 51′W			Snowy Owl			
Arctic Fox 2/9/81 72° 42°. N, 98° 54°W 25/8/81 2 VICTORIA ISLAND 70° 23°. N, 98° 55°W 29/8/81 1 Peary Caribou 71° 28.3°N, 113° 31°W 6/8/81 1 Arctic Hare 71° 28.3°N, 113° 31°W 6/8/81 1 72° 40.5°N, 98° 54°W 30/8/81 >2* 72° 36° N, 113° 54°W 8/8/81 3 Arctic Tern 71° 28.3°N, 113° 31°W 6/8/81 1 1 1 1 72° 40.5°N, 98° 54°W 20/8/81 4 71° 28.3°N, 113° 31°W 8/8/81 3 72° 40.5°N, 98° 54°W 20/8/81 4 71° 26.5°N, 109° 58°W 12/8/81 1 72° 40.5°N, 98° 54°W 30/8/81 4 71° 26.5°N, 109° 27°W " 1 72° 40.5°N, 98° 54°W 30/8/81 1 Glaucous Gull 71° 28°S N, 109° 27°W " 1 72° 40.5°N, 98° 54°W 30/8/81 4 Rough-legged Hawk 71° 28°S N, 108° 03°W 11/8/81 2 72° 42°N, 98° 51°W 20/8/81 4 71° 28°S N, 108° 03°W 11/8/81 2 72° 42°N, 98° 51°W 30/8/81				- 72° 40.5′N, 98° 54′W		+	
Approximate VICTORIA ISLAND 72° 42. N. 98° 54.W 28/8/81 1 1 72° 40.5.N. 98° 55.W 29/8/81 1 1 Arctic Hare 71° 28.3.N. 113° 31.W 6/8/81 1 72° 40.5.N. 98° 54.W 30/8/81 >2* 72° 36. N. 113° 54.W 8/8/81 3 72° 40.5.N. 98° 54.W 30/8/81 >2* 72° 36. N. 113° 54.W 8/8/81 3 Arctic Tern 71° 28.3.N. 113° 42.W " 72° 40.5.N. 98° 54.W 20/8/81 + 71° 55.7.N. 115° 04.W " 72° 40.5.N. 98° 54.W 20/8/81 + 71° 25.6.N. 100° 58.W 12/8/81 4 72° 40.5.N. 98° 54.W 20/8/81 + 71° 25.6.N. 100° 58.W 12/8/81 1 71° 25.5.N. 100° 58.W 12/8/81 + 71° 25.6.N. 100° 29.W " 71° 25.5.N. 100° 27.W " 1 72° 40.5.N. 98° 54.W 30/8/81 1 Glaucous Gull 72° 40.5.N. 98° 54.W 30/8/81 1 Glaucous Gull 72° 40.5.N. 98° 54.W 30/8/81 1 Glaucous Gull 72° 40.5.N. 98° 54.W 30/8/81 1 12/8/81 4 72° 40.5.N. 98° 54.W 30/8/81 1 12/8/81 4 72° 40.5.N. 98° 54.W 20/8/81 4 71° 26.5.N. 107° 41.W 12/8/81 0 72° 40.5.N. 98° 51.W 30/8/81 12 4 72° 40.5.N. 98° 51.W 30/8/81 12 4 73° 02.5.N. 97° 45.W 19/8/81 >50** 4 73° 02.5.N. 97° 45.W 19/8/81 >50**							
72° 40.5 N, 98° 54 W 28/8/81 1 Arctic Hare 71° 28.3 N, 113° 31 W 6/8/81 1 Arctic Hare 71° 28.3 N, 113° 31 W 6/8/81 1 72° 40.5 N, 98° 54 W 30/8/81 >2* 72° 36 N, 113° 31 W 6/8/81 3 Arctic Tern 71° 28.3 N, 113° 31 W 6/8/81 3 1 1 72° 36 N, 113° 31 W 6/8/81 3 72° 40.5 N, 98° 54 W 20/8/81 4 72° 33 N, 113° 31 W 6/8/81 3 1 1 72° 33 N, 113° 31 W 6/8/81 <			_				
Arctic Hare 71° 28.3'N, 113° 31'W 6/8/81 1 72° 40.5'N, 98° 54'W 30/8/81 >2* 72° 36' N, 113° 42'W "" 1 Arctic Tern 71° 28.3'N, 113° 42'W 8/8/81 3 3 1 1 1 72° 40.5'N, 98° 54'W 20/8/81 4 71° 48' N, 115° 33'W 8/8/81 4 72° 40.5'N, 98° 54'W 20/8/81 4 71° 25' N, 116° 34'W "" 1 72° 40.5'N, 98° 54'W 20/8/81 4 71° 25' N, 110° 04'W "" 1 71° 25' A, 109° 58'W 12/8/81 1 1 71° 25' N, 109° 29'W " 1 72° 40.5'N, 98° 54'W 30/8/81 1 Glaucous Gull " 1 1 72° 40.5'N, 98° 54'W 30/8/81 1 Glaucous Gull * * 1 72° 40.5'N, 98° 54'W 20/8/81 4 71° 26.5'N, 107° 41'W 12/8/81 * 1 72° 40.5'N, 98° 57'W 20/8/81 4 71° 28' N, 108° 03'W 11/8/81 2 72° 42'N, 98° 51'W 30/8/81 12 Lemming 1 1 1				VICTORIA ISLAND			
71° 28.3 *N, 113° 42 *W " 1 72° 40.5 *N, 98° 54 *W 30/8/81 >2* 72° 36 *N, 113° 54 *W 8/8/81 3 Arctic Tern 71° 28.3 *N, 113° 54 *W 8/8/81 3 71° 48 *N, 113° 54 *W 8/8/81 3 Arctic Tern 71° 55.7 *N, 115° 33 *W 9/8/81 4 71° 55.7 *N, 115° 33 *W 9/8/81 4 72° 40.5 *N, 98° 54 *W 20/8/81 + 10° 55 *N, 100° 58 *W 12/8/81 1 72° 40.5 *N, 98° 54 *W 20/8/81 + 10° 55 *N, 109° 52 *W 12/8/81 1 Arctic Wolf 71° 25.6 *N, 109° 58 *W 12/8/81 1 1 71° 26.5 *N, 109° 27 *W " 1 72° 40.5 *N, 98° 54 *W 30/8/81 1 61aucous Gull " 1 1 72° 40.5 *N, 98° 57 *W 20/8/81 4 71° 26.5 *N, 107° 41 *W 12/8/81 *15 73° 11.8 *N, 99° 08 *W 13/8/81 4 71° 28 * N, 108° 03 *W 11/8/81 2 72° 40.5 *N, 98° 57 *W 20/8/81 4 71° 28 * N, 108° 03 *W 11/8/81 2 72° 42 * N, 98° 51 *W 30/8/81 12	72° 39′ N, 98° 55′W	29/8/81	1	Peary Caribou			
72° 40.5 °N, 98° 54 °W $30/8/81$ >2* 72° 36 °N, 113° 54 °W $8/8/81$ 3 Arctic Tern 71° 48 °N, 115° 33 °W $9/8/81$ 4 72° 40.5 °N, 98° 54 °W $20/8/81$ 4 71° 55.7 °N, 115° 94° W " 1 72° 40.5 °N, 98° 54 °W $20/8/81$ 4 71° 25.6 °N, 110° 04° W " 1 72° 40.5 °N, 98° 54 °W $20/8/81$ 4 71° 25.6 °N, 110° 04° W " 1 72° 40.5 °N, 98° 54 °W $30/8/81$ 1 71° 25.6 °N, 100° 94° W " 1 72° 40.5 °N, 98° 54 °W $30/8/81$ 1 $G1aucous_Gull$ " " 1 72° 40.5 °N, 98° 54 °W $30/8/81$ 1 $G1aucous_Gull$ " $12/8/81$ ~15 72° 40.5 °N, 98° 57 °W $20/8/81$ 4 71° 26.5 °N, 107° 41 °W $12/8/81$ ~15 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 40.5 °N, 98° 51 °W $20/8/81$ 4 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 40.5 °N, 98° 51 °W	<u>Arctic Hare</u>				6/8/81	1	1
Arctic Tern 71° 55.7°N, 115° 04°W 1 72° 40.5°N, 98° 54°W 20/8/81 71° 25.7°N, 115° 04°W 1 10° 10° 71° 25.7°N, 115° 04°W 1 11° 10° 25.7°N, 114° 34°W 1 11° 11° 25.6°N, 110° 04°W 1 11° 25.6°N, 110° 04°W 1 1 11° 25.6°N, 110° 04°W 1 1 11° 25.6°N, 110° 04°W 1 1 11° 25.6°N, 100° 27°W 1 1 11° 27.5°N, 108° 13°W 1 1 1 11° 27.5°N, 108° 13°W 1 1 1 12 10°° 27°W 1 1 1 11° 27.5°N, 108° 13°W 1 1 1 12 10° 11°W 12/8/81 1 1 10° 118/8/81 4 11° 1 1 10° 118/8/81 4 11° 28° 1 10° 118/8/	72° 40.5′N, 98° 54′W	30/8/81	>2*	72° 36′ N, 113° 54′W	· · · · · · · ·		I
72° 40.5 °N, 98° 54 °W $20/8/81$ + 72° 03 °N, 114° 34 °W " 1 72° 40.5 °N, 98° 54 °W $20/8/81$ + 71° 25 °N, 109° 58 °W $12/8/81$ 1 Arctic Wolf 71° 26 .4 °N, 109° 29 °W " 1 71° 26 .5 °N, 100° 74° " 1 Arctic Wolf 71° 27.5 °N, 108° 13 °W " 1 1 71° 27.5 °N, 109° 77° " " 1 72° 40.5 °N, 98° 54 °W $30/8/81$ 1 Glaucous Gull " 1 72° 40.5 °N, 98° 54 °W $30/8/81$ 4 71° 26 .5 °N, 107° 41 °W $12/8/81$ ~ 15 73° 11.8 °N, 99° 08 °W 13/8/81 4 Rough-legged Hawk 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 40.5 °N, 98° 57 °W $20/8/81$ 4 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 42 °N, 98° 51 °W $30/8/81$ 12 Lemming 1 1 1 73° 02.5 °N, 97° 45 °W $19/8/81$ >50 ** Loon (sp. ?) 1 3 1 3 Balack-Bellied Plover t 71° 32 °N, 114	Arctic Tern						1
to 71° 25.6 * N, 110° 04 * W 1 2/9/81 71° 26.4 * N, 109° 29 * W 1 Arctic Wolf 71° 27.5 * N, 108° 13 * W 1 72° 40.5 * N, 98° 54 * W 30/8/81 1 Glaucous Gull Peary Caribou 71° 26.5 * N, 107° 41 * W 12/8/81 15 73° 11.8 * N, 99° 08 * W 13/8/81 4 Rough-legged Hawk 71° 28 * N, 108° 03 * W 11/8/81 2 72° 37.5 * N, 98° 57 * W 20/8/81 4 71° 28 * N, 108° 03 * W 11/8/81 2 72° 40.5 * N, 98° 54 * W 13/8/81 4 71° 28 * N, 108° 03 * W 11/8/81 2 72° 40.5 * N, 98° 54 * W 4 71° 28 * N, 108° 03 * W 11/8/81 2 72° 40.5 * N, 98° 51 * W 30/8/81 12 Lemming Beluga Whale 71° 26.5 * N, 107° 41 * W 12/8/81 3 73° 02.5 * N, 97° 45 * W 19/8/81 >50 * * Loon (sp. ?) Black-Bellied Plover t 71° 32 * N, 114° 55 * W 8/8/81 1 t 71° 32 * N, 114° 55 * W 8/8/81 1 2		20/8/81	Ŧ			1	
Arctic Wolf 71° 27.5 N, 108° 13 W"1 72° 40.5 N, 98° 54 W $30/8/81$ 1Glaucous Gull 72° 40.5 N, 98° 54 W $30/8/81$ 1Glaucous Gull 73° 11.8 N, 99° 08 W13/8/814 71° 26.5 N, 107° 41 W12/8/81 ~15 73° 11.8 N, 99° 08 W13/8/814Rough-legged Hawk 72° 39 N, 98° 57 W20/8/814 71° 28 N, 108° 03 W11/8/81 72° 37.5 N, 98° 37 W21/8/814 71° 28 N, 108° 03 W11/8/812 72° 40.5 N, 98° 54 W4 71° 28 N, 108° 03 W11/8/812 72° 42 C N, 98° 54 W4 71° 28 S N, 108° 03 W11/8/812Beluga Whale71° 26.5 N, 107° 41 W12/8/813 73° 02.5 N, 97° 45 W19/8/81>50**Loon (sp. 2)Black-Bellied Plovert 71° 32 C N, 114° 55 W7/8/813Brantt71° 32 C N, 114° 04 W"2		to		71° 25.6′N, 110° 04′W	14	į	
72° 40.5°N, 98° 54°W 30/8/81 1 Glaucous Gull Peary Caribou 71° 26.5°N, 107° 41°W 12/8/81 ~ 15 73° 11.8°N, 99° 08°W 13/8/81 4 Rough-legged Hawk 71° 28° N, 108° 03°W 11/8/81 2 73° 11.8°N, 99° 08°W 13/8/81 4 71° 26.5°N, 107° 41°W 12/8/81 ~ 15 73° 11.8°N, 99° 08°W 13/8/81 4 71° 26.5°N, 107° 41°W 12/8/81 ~ 15 72° 37.5°N, 98° 57°W 20/8/81 4 71° 28° N, 108° 03°W 11/8/81 2 72° 40.5°N, 98° 51°W 30/8/81 12 Lemming 71° 26.5°N, 107° 41°W 12/8/81 3 8eluga Whale 71° 26.5°N, 97° 45°W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover * 71° 32° N, 114° 55°W 7/8/81 3 Brant * 71° 32° N, 114° 04°W 8/8/81 1 2		2/9/01		71° 27.5′N, 108° 13′W	н	1	1
Peary Caribou 71° 26.5 °N, 107° 41 °W 12/8/81 ~ 15 73° 11.8 °N, 99° 08 °W 13/8/81 4 Rough-legged Hawk ~ 15 72° 39 °N, 98° 57 °W 20/8/81 4 71° 28 °N, 108° 03 °W 11/8/81 2 72° 37.5 °N, 98° 37 °W 21/8/81 4 71° 28 °N, 108° 03 °W 11/8/81 2 72° 40.5 °N, 98° 54 °W " 4 71° 28 °N, 108° 03 °W 11/8/81 2 72° 42 °N, 98° 51 °W 30/8/81 12 Lemming 12/8/81 3 73° 02.5 °N, 97° 45 °W 19/8/81 >50 ** Loon (sp. ?) 12/8/81 3 Black-Bellied Plover t 71° 32 °N, 114° 55 °W 7/8/81 3 frant t 71° 32 ′N, 114° 04 °W 2	<u>Arctic Wolf</u>			71° 27.5′N, 109° 27′W	11	1	
73° 11.8'N, 99° 08'W 13/8/81 4 Rough-legged Hawk 72° 39' N, 98° 57'W 20/8/81 4 71° 28' N, 108° 03'W 11/8/81 2 72° 37.5'N, 98° 57'W 21/8/81 4 71° 28' N, 108° 03'W 11/8/81 2 72° 40.5'N, 98° 54'W 4 71° 28' N, 108° 03'W 11/8/81 2 72° 42' N, 98° 51'W 30/8/81 12 Lemming Beluga Whale 71° 26.5'N, 107° 41'W 12/8/81 3 73° 02.5'N, 97° 45'W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover † 71° 32' N, 114° 55'W 7/8/81 3 frant t 71° 32' N, 114° 04'W 2	72° 40.5′N, 98° 54′W	30/8/81	1	<u>Glaucous Gull</u>			
72° 39' N, 98° 57'W 20/8/81 4 Rough-regged nawk 72° 37.5'N, 98° 37'W 21/8/81 4 71° 28' N, 108° 03'W 11/8/81 2 72° 40.5'N, 98° 54'W 4 71° 28' N, 108° 03'W 11/8/81 2 72° 42' N, 98° 51'W 30/8/81 12 Lemming 3 Beluga Whale 71° 26.5'N, 107° 41'W 12/8/81 3 73° 02.5'N, 97° 45'W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover † 71° 32' N, 114° 55'W 7/8/81 3 frant † 71° 32' N, 114° 04'W 2	<u>Peary Caribou</u>			71° 26.5′N, 107° 41′W	12/8/81	~15	
72° 37.5 °N, 98° 57 °W $20/8/81$ 4 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 40.5 °N, 98° 51 °W $21/8/81$ 4 71° 28 °N, 108° 03 °W $11/8/81$ 2 72° 40.5 °N, 98° 51 °W $30/8/81$ 12 Lemming 12/8/81 3 Beluga Whale 71° 26.5 °N, 107° 41 °W $12/8/81$ 3 73° 02.5 °N, 97° 45 °W $19/8/81$ >50** Loon (sp. ?) Black-Bellied Plover † 71° 32 °N, 114° 55 °W $7/8/81$ 3 71° 32 °N, 114° 04 °W " 2				Rough-legged Hawk			
72° 42′ N, 98° 51′W 30/8/81 12 Lemming Beluga Whale 71° 26.5′N, 107° 41′W 12/8/81 3 73° 02.5′N, 97° 45′W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover † 71° 32′N, 114° 55′W 7/8/81 3 Brant † 71° 32′N, 114° 04′W " 2	72° 37.5'N, 98° 37'W				11/8/81	2	2
Beluga Whale 71° 26.5′N, 107° 41′W 12/8/81 3 73° 02.5′N, 97° 45′W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover * 71° 32′N, 114° 55′W 7/8/81 3 Brant * 71° 32′N, 114° 55′W 8/8/81 1		" 30/8/81	•	Lemming			
73° 02.5'N, 97° 45'W 19/8/81 >50** Loon (sp. ?) Black-Bellied Plover † 71° 32' N, 114° 55'W 7/8/81 3 Brant † 71° 32' N, 114° 55'W 8/8/81 1 t 71° 32' N, 114° 04'W " 2	•	,-,-			12/8/81	3	
Black-Bellied Plover + 71° 32′ N, 114° 55′W 7/8/81 3 Brant + 71° 32′ N, 114° 55′W 8/8/81 1 Brant + 71° 32′ N, 114° 04′W " 2		10/0/01	. 50++	<i>.</i>	12/0/01	5	
Brant 114° 55 rW 8/8/81 1 # 71° 32 r N, 114° 04 rW " 2		12/0/01	•			-	
	Black-Bellied Plover			71° 32′ N, 114° 55′W		1	
	<u>Brant</u>		+		19	2	
Glaucous Gull + <u>Muskox</u>	<u>Glaucous Gull</u>		+	Muskox			
Gyrfalcon † 71° 28.3 îN, 113° 43.5 îW 6/8/81 2 71° 28.3 îN, 113° 43.5 îW 7/0/01 6 6 7	Gyrfalcon		+				1
71° 18.2′N, 115° 39′ W 7/8/81 6 Lapland_Longspur t 71° 27′ N, 115° 11′ W 8/8/81 1	Lapland Longspur		+	71° 27′ N, 115° 39′ W 71° 27′ N, 115° 11′ W			1

Table 26. Cont'd

•

			ber				ber
Species and Location	Date	Aduit	Young	Species and Location	Date	Adult	Youn
luskox cont'd							
71° 37.5′N, 114° 58′W	8/8/81	10	2	<u>Rock Ptarmigan</u>			
72° 13′ N, 114° 22′W 72° 30′ N, 114° 21′W		6 4	3 2	71° 02′ N, 108° 05′W	11/8/81	1	4
72° 33′ N, 114° 05′W	n	7	3	a			
72° 33′ N, 114° 11′W	а м	7	3	<u>Sandhill Crane</u>			
72° 34′ N, 113° 32′W 72° 34′ N, 114° 13′W		6 2		71° 12.6´N, 116° 44´W	9/8/81	2	
2° 35.5'N, 113° 59'W	н	ĩ					
72° 36′ N, 113° 28′W	11 11	10	2	<u>Seal (sp. ?)</u>			
72° 37.2′N, 113° 46′W 72° 38.3′N, 113° 41′W	н	4 15	1 2	71° 49′ N, 107° 28′W	12/8/81	1	
71° 08′ N, 116° 30′W	9/8/81	ĩ		Shown Owl			
71° 18.2′N, 115° 31′W	"	6	2	<u>Snowy Owl</u>			
71° 31.2′N, 116° 14′W 71° 35.4′N, 116° 09′W	и	1	3	71° 59.8′N, 106° 29′W	12/8/81	2	
71° 39.4′N, 116° 01′W	n	1	-	72° 00.5′N, 106° 41′W 72° 02′ N, 106° 04′W	N	1	
71° 42′ N, 115° 56′W	н	1	2	71° 22′ N, 107° 44′W	13/8/81	i	
71°43′N, 115°54′W 71°45′N, 113°53′W	u .	11 11	2 2	71° 26′ N, 107° 41′W	u u	i	
71° 57′ N, 113° 00′W	н	10	2	Whictling Swan			
2° 09′ N, 112° 19′W	н	,7	2	<u>Whistling Swan</u>			
72° 13.8′N, 113° 00′W 72° 18′ N, 113° 25′W	а	15 5	2	71° 03.2′N, 117° 07′W	9/8/81	4	2
72° 29.3'N, 114° 10'W	и	2	2	71° 07′ N, 116° 59′W		1	
72° 34′ N, 113° 25′W	11 11	7	,	71° 08.6′N, 116° 54′W 71° 09.6′N, 116° 52′W	н	2 2	
72° 34.5′N, 114° 11′W 72° 36.3′N, 113° 58′W	0	5 4	1	71° 13′ N, 116° 44′W	н	2	3
72° 37′ N, 113° 25′W	н	7	1	71° 15′ N, 115° 56′W		2	
72° 37.21N, 113° 391W	"	1	•	71° 17.3′N, 115° 41′W 71° 46.5′N, 115° 39′W		2	3
72° 05.6′N, 112° 22′W 72° 08.7′N, 112° 11′W	10/8/81	9 2	2			-	
72° 12.7′N, 112° 34′W	п	5		<u>Yellow Billed Loon</u>			
72° 17′ N, 114° 43′W	N 11	6	2	72° 00.21N, 112° 431W	9/8/81	I	
72° 25.7′N, 114° 30′W 72° 29.6′N, 114° 20′W		3 7		, <u>, , , , , , , , , , , , , , , , , , </u>	370701	•	
2° 33′ N, 114° 13′W	н	6	2				
1° 12.5 N, 109° 10 W	11/8/81	6	1				
71° 15′ N, 108° 15′W 71° 24.7′N, 109° 38′W		1					
1° 28′ N, 108° 03′W	н	7	2				
71° 28′ N, 108° 13′W	() 11	3	1				
/1° 28′ N, 110° 31′W /1° 30.5′N, 108° 47′W	a	1 15	2				
'1° 26.8'N, 108° 12'W	12/8/81	3	ĩ				
1° 27 · N, 110° 17 · W	i u i u	2	2				
'1° 28′ N, 110° 29′W '1° 31′ N, 107° 42′W		1 6					
'1° 36.7′N, 107° 45′W	u	1					
72° 01.5′N, 106° 34′W	"	5					
71° 07.7′N, 108° 06′W 71° 10.5′N, 108° 00′W	13/8/81	3					
71° 14.4′N, 107° 57′W	н	10					
71° 14.7′N, 107° 56′W	н 11	1					
72° 09′ N, 105° 10′W		8					


footprints
 includes young
 numbers not counted


APPENDIX VII. LAND USE INFORMATION SERIES REPORTS

•

LAND USE INFORMATION SERIES REPORTS

- Beaubier, P.H., and T. Pierce. 1974. Recreation-Tourism Evaluation, Eand Use Information Series, Lands Directorate, Environment Canada, Ottawa.
- Elson, M. 1974. Catalogue of Fish and Stream Resources of East Central Yukon Territory, Northern Operations Branch, Fisheries and Marine Service, Environment Canada.
- Jacobson, R. 1979. Wildlife and Wildlife Habitat in the Great Slave and Great Bear Lake Regions 1974-1977, Environmental Studies No. 10, Northern Environmental Protection and Renewable Resources Branch, Department of Indian Affairs and Northern Development, Ottawa.
- MacDonald, G. and R. Fudge. 1979. A Survey of the Fisheries Resources of the Kazan Upland (Southeastern District of Mackenzie, Southern District of Keewatin, N.W.T.) Environmental Studies No. 11, Northern Environmental Protection and Renewable Resources Branch, Department of Indian Affairs and Northern Development, Ottawa.
- MacDonald, G., and D.B. Stewart. 1980. A Survey of the Aquatic Resources of the Central Keewatin Region of the Northwest Territories, Environmental Studies No. 17, Northern Environmental Protection and Renewable Resources Branch, Department of Indian Affairs and Northern Development, Ottawa.
- Stewart, D.B., and G. MacDonald. 1978. A Survey of the Fisheries Resources of the Central Northwest Territories, Environmental Studies No. 8, Northern Environmental Protection Branch, Department of Indian Affairs and Northern Development and the Lands Directorate, Environment Canada, Ottawa.
- Stewart, D.B., and G. MacDonald. 1981. An Aquatic Resource Survey of Devon, Cornwallis, Somerset and northern Baffin islands, District of Franklin, Northwest Territories, Environmental Studies No. 20, Northern Environmental Protection Branch, Department of Indian Affairs and Northern Development and the Lands Directorate, Environment Canada, Ottawa.
- Sutherland, B.G., and W.R. Golke. 1978. A Summary of Fisheries Data Collected for the Land Use Map Series during 1975 and 1976, Environmental Studies No. 5, Northern Environmental Protection Branch, Department of Indian Affairs and Northern Development and the Lands Directorate, Environment Canada, Ottawa.

